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An extension of the Veneziano model to Ps-V elastic (inelastic) scattering amplitude is
presented, using the generalized Veneziano amplitude. The amplitude has the following
natural properties: consistency with the original Veneziano model for nr—>nw scattering
amplitude and reasonable treatment for spin complications. Then one obtains relations for
the coupling constants for three-vector mesons. These predicted relations are shown to be
consistent with the SU(3) symmetry.

§ 1. Introduction

The problem of extension of the Veneziano formula to the spinning particles
iS a non-trivial one. Several authors® have noticed that a simple-mined extension
of the formula to pseudoscalar-vector elastic scattering gives rise to the so-called
parity doubling phenomenon, and have observed that in order to eliminate parity
doubling, several higher terms were needed.

On the other hand the Veneziano formula has been extended to processes
with 7 spinless particles,” so that one could think a prior: that the best way of
treating the spin complications is to start from the n-body amplitude. Along
these lines of thought Bardakeci and Ruegg® have constructed a beautiful model
for the (KKurr) and (KKKKr) systems. The four-point amplitudes reduced
from them have as good properties as the original Veneziano model.

In this note we further study the spin complications in Veneziano-type for-
mulae for pseudoscalar-vector elastic (inelastic) scattering, starting from the six-
point Veneziano model for the (KKunznr) process.

In §2, we construct an amplitude for the process (KKnnur), paying atten-
tion to the consistency with the original Veneziano model and the five-point Ven-
eziano amplitude of Bardakci and Ruegg. There the consistency is shown by an
example.

In § 3 reduced amplitudes are presented for the scattering Kp—Kp, mp—mp
and 7K—pK*. The general properties of these amplitudes are studied.

Relations for the coupling constants for V-V-V are given in §4, and in the
last section some general remarks are given,
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1662 Y. Miyata

§2. Consiruction of an amplitude for the process (KKzwww)

The six-point function for spinless particles has been constructed by Chan
Hong-Mo et al.? = It satisfies the following conditions:

(a) analyticity,

(b) crossing symmetry,

(¢) Dolen-Horn-Schmid duality,”

(d) resonance poles on linearly rising trajectories,

(e) Regge asymptotic behaviours in all Mandelstam channels.

We require the absence of the /=2, /=2 and §=2 resonances and the lowest
spin of parent to be 17. Accordingly, we consider the w(A4,) trajectory for three-
pion resonances only, but we can add a 7 (A,)-trajectory for them following the
prescriptions described in the last section.

Hence one can write the amplitude as a sum of terms each corresponding
to a particular permutation of the external lines.

A (KK?UWUT) =9 2, 1123456K2+Z‘iafi4fisfisKlBﬁ A—ab 1—az,

P(3T56)
1—af, 1—af, 1—af, 1— am,l C(zml Cays, 1 — CL’M) (1>
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with py+ pot ps+ put ps+ps=0. The indices 1, ---, 6 label the particles in Fig.
1. The sum is over all permutations of the four pions. The kinematical factor
is imposed by parity and gives a correct Regge behaviour, as well as satisfying
Adler’s self-consistency relations for soft mesons. The isospin factor in front
satisfies the requirements about the absence of exotic resonances, K; being an
isospinor and t the Pauli matrices. The function B, is defined in reference 3).
It can be written in many particular forms, one of which is

B; (1 — g, 1 — Oz, 1 — Algs, 1 — s, 1 ee, L— o1y 1 — oz, 1 — Qs 1 a456)

1
v s _ _ _ _
= j“jig dulduﬁdm(r Z)u] Cizgy —Heagy = Foagy T Fasyy T Fsogy —For
0 U

.v:}—*“uc'l? (2)
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Pseudoscalar-Vector Meson Scattering Amplitude 1663

where
ur=1—ussvy , u,=1—uusv,, v1=1— vvsttity ,
Uy =1— w50y, uy=1—wuuev,, Ve =1 — vs02s2s5 ,
s =1—uyt,v5 , us=1—usu,vs , Vs =1 — V1Vs8sUs .

One can convince himself that the amplitude (1) is consistent with the origi-
nal Veneziano model and has correct kinematical factors. It is easily seen by
considering the process described in Fig. 2. The reduction is done using the
formula

Resam:l[Bs (A=, s 1 —er; 1 —aga, 1 — g5, 1 — CKm)]

=B (1 — 12, 1-— Ckg:;) B (1 — (Wyp5 1— @56) (3)
and the identities
€1,001,C0, = (€5,0,601,2, + €1,0,605,8, — €i,03k01,2,) Tk » (4)

T3,03,Ts,0es, — 6@'11'261'31:4 + 61'21'361',1'4 - 61’,1'361'21‘,4 + i(ai,iz€i3i4k

+ 0142,80,050 + 04,8,85,0,0 T 04,4,81,50 — 04,4,84,8,6 — 04,1,84,040) Tt - (5)
In terms of these identities one gets
A (KK?ZT[TUC) larpy=1> B —afy, 1— )
X [B (1 —ak, 1— aé)s) {Lzuﬁefisfi‘,fisfiﬁ -+ 11236541'1137'55?1'52‘134}
+B(1—af, 1 —ak) {I12:i465’(i3fi4z-i5ri5 + 1123564fi3fi5fiafi4}’
+ B(1 —ads, 1 —afe) {LrassasTs,74,T,Tig + L19964575,T,05,Ts,f |
+B(—af, 1—al)-
= — 20 (04,1,€,040 F 01,3,C0,66 — 0441,E1,240) Tr€ s pansv pamsmey 11 p:i7

X {ABA—af 1—ax) +B(1—ab, 1—als)}
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1664 Y. Miyata

XABA—afs, 1 —ady) + Bl —aky, 1—af) + B —af, 1 —ak)}
-+ anomalous terms. (6)

On the other hand from the original Veneziano model one can construct the am-

plitude as
o By Bog K3p VS K K 1
(“/Ll,ug,ugupl ])2 ])3 Co Zfig)ng{XnA(ﬂ' >0 ) Ty
S193 — M2, +l€
X (S/”/LGM)L /)4#4/)5F5])6ﬂ66mx8i4isie) gmnmA (7[72'*)71'(1)) s
where

A@K—->0K) =Bl —ab, 1—af) +BA—ab, 1—ak),
Anr—nw) =B —ab, 1—abl) + B —al, 1—ab) + BA—af, 1—af). (7)

With the identity (4), Eq. (6) is equivalent to Eq. (7) with the anomalous terms
discarded. The reason for discarding the anomalous terms is: when one obtains
the amplitudes for PsPs—PsT from five-point Veneziano model (Appendix A),
one encounters the same difficulties. We consider these circumstances always
occur in applying the multi-point Veneziano model. However, one can expect
that these difficulties are evaded by taking into account the higher order Ven-
eziano terms. This is supported by the fact that a simple extension of the Ven-
eziano model for PsV-.scattering amplitudes fails to give reasonable amplitudes
without taking into account higher order Veneziano terms.”

§3. Reduced amplitudes

By reduction of the five-point Veneziano amplitude one gets the amplitudes

for PsPs—>PsV (1) (see Appendix A). In the same way the amplitude (1) re-
duces to ones for PsV—PsV. :

3-1 K(p)0'(p:) > K (p2) 07 (£0)
This process corresponds to Fig. 3, and can be reduced using®
Resay,ot, a1 Bo (1 — gy =5 T —Wor; 1 — Qlasa, 1 — Alaas, 1 — ) |
=B — a1 — Wse) » etc. (8)
Then the amplitude is given as follows:
T=0;,AM+L{r;, ;] ]AT,
AR =(X+Y+Z2)BA—a(),1—-a™(s))
L (X—Y-Z2)BA—ar(@),l—a®(w)), 9)
where

4X= (prpn) [(epp0) (@pu0) = (€0, (Pop) 1,
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Pseudoscalar-Vector Meson Scattering Amplitude 1665

8(Y+Z) =~ (pr—10 1) (€,,00) (€ L1+ 1) + (D1-F D> €5) (D5€,,) (Pes D1— P2)
— (Pi+ 13 13) (e,8,,) (D1 r—12) + (br— 11 €,,) (Ds20) (€5, D1+ 12)
— (P17t P €,,) (PsD0) (€pp D1 D3) + (21— D, D) (€56,,) (D1, P17+ 12)
— (D11 €,,) (Ps¢,,) (P15 D1+ 23) + (D1t Do 23) (€,,00) (€, P1—12)

(10)
e,, and e, are the polarization vectors of particle 3 and 4, 1 6\\ 5
and pi-+pat+pst pa=0, s= (pr+ps)’, t= (P po)* and w= (P \ N
+ po)% (Derivations of these are given in Appendix B.) i

The coupling for V-V.V is easily seen by taking the
pole at (pi+p)'=m, in the amplitude A and using ot
coupling for Ps-Ps-V as (Ps0,Ps) V*. Then the residue of M
A at the pole (pi+p,)'=m," suggests that one can take . // \\
the V,VzVy vertex as 3 4
Fig. 3.

Y4+ 722> % {% (eapne) (eppoa) (€cpan)

2

m
="y LCeaen) Coban) + (enco) (earm) + (coes) enpon 1.

where p z=ps—ps and e, is the polarization vector of the particle A,” etc.
This is the momentum representation of the coupling,

PN R (11)
where f*=0*V, —0"V,*, etc.

Unfortunately the amplitude A" has small residue at the pole «’(¢) =1; but
as pointed out in the previous section, if we take into account a contribution of
higher order terms in the direct channel, this difficulty can be avoided without
changing the coupling for V-V.V.

3-2 7 (p) 0" (o) =" (£2) 0™ (P9)
This process can be reduced by taking the pole at axzx=1 and «,,=1, then
the very amplitude is obtained as (for details of the derivation, see Appendix C)

T=04,3,01,,A+ 04,3,01,6, B+ 04,1,05,:,C »

A= (X+Y+Z2)BA—a®(s), 1—a* (@) + (X—Y—2)B( —a® (), 1 —a’))
—(X+Y-Z2)BA—a’(s), 1 —a”(n)),

B=—(X+Y+Z2)BA—a®(s),l1—a*@))+ (X-Y-Z)BA—a"(w),1—a’@))
+ (X+Y-2)B(1—a’(s), 1 —a®(n)),

C=X+Y+Z2)BA—-a"(s),1—a’(@)) - (X~-Y—-Z)B(1—a"(w),1—a’®))
+(X+Y-Z)BO—-a’(s), 1 —a(w)), 12)
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1666 Y. Miyata

where

4X = (pips) [(ep,00) (e,,00) — (e,ie,) (D520 ],
4Y = — (1) [ (e, ) (€5, 10) — (€,85,) (P11) ]
+ (pie,,) L(psps) (ep,00) — (P5€,) (Papp) 1
4Z= (prps) [(e,,18) (€, 0) — (e,,0,,) (Papa) ]
— (pe,,) L(paps) (e,,00) — (paey,) (Ps2) 1. (13)
X, Y and Z are equal to those in Eq. (10) for Kp—>Kp. The vertex for V-V-V

is given in the same manner as in the Kp-elastic scattering case.

3-3 7' () K(p1) =07 () K* (p3) ,
Reduction for this process is made as the previous subsections, and the re-

sult is given,
T=05A+ 7, 1] A,
AP = (X+Y+Z)BA—a™ (), 1—a” 1))

L (X+Y-Z2)BA—-a"(w),1—a"(@)), (14)
where X, Y and Z are the same for the mp->mp scattering case with e, replaced
by ex- in Eq. (13).

This amplitude gives also the same coupling for V-V-V as ones for Kp—>Kp
and 7p—7p.

§4. Coupling constants of three-vector mesons

In terms of the four- and five-point Veneziano models, relations for the coupl-
ing constants for Ps-Ps-V(7T) and Ps-V-V(T1') have been obtained and those give

=19
= 4.

wg and ff’ mixing angles by tg’0
Using these results, our model amplitude provides partial SU(3) symmetric

three-vector-meson couplings. IFor example,

Joor =G pxxT oo »

29 %10 =Y ox5 ppp > ete. (15)
and

G oop =29 x2k5p 5 (16)
where the normalization of the ¢’s can be read off from the couplings

G s (ﬁiépﬁj> 0",

gmpnzl‘sww (0*0") (0%0:") ',
Do somcsd™ S ()i ™ (o)™,
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Pseudoscalar-Vector Meson Scattering Amplitude 1667

where
T (0a):i=0" (04" — 0" (0.0):", ete. 17)

(Note that these symmetrical couplings for three-vector mesons will be changed
if Ps-meson exchanges are included.)

§ 5. Discussion

Requiring the six-point Veneziano amplitude to reduce the original Veneziano
model for nw—>7w, we have constructed the amplitude for the (KKzznn) system
and derived amplitudes for Kp-, mp-elastic scattering and 7K->pK* scattering.

Then one can study the spin complications reasonably and can predict the
V-V-V coupling constants to be consistent with F-type coupling in SU(3) (even
if the amplitudes have higher order terms).

Now we would like to mention some other consequences concerning gauge
conditions and effects of higher order terms.

1) Gauge conditions: Writing the invariant amplitude for zp-elastic scattering,

T= (e, P) (e, ) A+ {(e,P) (¢,,Q) + (¢,,P) (¢,,Q)} B
+ (e,,Q) (€,,Q)C+ (e,¢,,) D,
where
P=5(p1—1) and Q=%(s—14),

Itabashi® has obtained the “non-zero mass gauge” conditions

{(s +m, = ) —dm, s+ —;— (s+m,*—u") }AN
- % (s+m, = i) BY + dm D" =0 , (18)
{(H« m,t— ) —4dm s+ % (s-+m,— ") }BN

- é‘ (st+m,}—u)C¥~4(s—p) D=0, (19)

where AY~ D" stand for the s.channel normal-parity parts of A~D. In our am-
plitude the s-channel normal-parity part, for example w-pole term, has a residue
X+ Y (this is equal to that of standard perturbation calculation). Then one can
fix the invariant amplitudes A"~ DY,

AY¥(s=m,) = —~5@—2m,%),
BY(s=m,) =u— 1 —m,+ L@ —-2m,"),

CT(s=m) = —[$@—2m,) = 2(s=m,"+ 1) ],
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1668 Y. Miyata

D¥(s=m) = — [ (= P=m,?) — 6~ 24) (t—2mD) ).

These actually satisfy the conditions (17) and (18). Moreover this is true if
one adds higher order terms. So our amplitude has reasonable features for s-
(and #-) channel normal-parity parts concerning the non-zero mass gauge condi-
tions.
2) Effects of higher order terms: The amplitudes derived in the previous sec-
tions have favorable features without free parameters, but have defects for spin
doubling. Here we will make explicit the simplest possibility for resolving them.
Requiring Regge behaviours at high energies, one would for example re-
place Eq. (12) as follows:

A-A'=(X+Y+Z)BA~a@s),1—a@))+ X—-Y—-Z)BA—a(@),l1-au))
—(X+Y-Z2)BA—a(s), 1—a(w))
X+ Y-2)BA—a(s),2—a@) + (—X—Y—-Z)BA—a (), 2—a))
—(X+Y+Z2)BA—a(s),2—aw))
+ (= X+Y+2)BC—a(s),l—a@)+ X+ Y—-Z2)B@2—a(t),l-a(u))
—~ (X-Y-2)BC—a(s),1—a)),
BB =—(X+Y+Z2)BA—a(s),l—-a@)+ X-Y-2)B(1—a®),l-au))
+ X+ Y-2)B(l—a(s),l—a))
— (X+Y-Z2)BA~a(s),2—a@)+ (- X-Y-Z2)B(l—a@®),2—a(u))
+ X4+ Y+2)BU—as),2—au))
(- X+Y+2)BC2—a(s), 1 —a@) - (X+Y-Z)B2—-a(),l-a(u))
+ (X—=Y-2)BC—ua(s),l—a(x)),
CoC'=X+Y+Z)BA—a(s),l-a@) - X—-Y-Z)BA—a(@),1—a(u))
+ (X+Y-2Z2)BA—a(s),l—a@))
+(X+Y-2)B(—a(s),2—a(@) —(—X—-Y—-Z)BQ—a(®),2—au))
+ (X+Y+Z2)BA—a(s),2—a(x))
b (=X YD) BE—als),l—a@®) — (X+Y—-Z)B@—a®),1—a@))
+ (X=Y-2)BC2—a(s),1—a(u)).

In these ways one can get rid of the difficulty involved in the spin-doubling pheno-
menon. Notice that in terms of the inclusion of higher order terms as above,
the results for coupling constants in the previous section are not altered. Of
course, our method is a term by term one, so this is nothing more than a spe-
culation and we do not claim that it actually happens in nature.
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Appendix A
Amplitudes reduced from the Bardakci-Ruegg amplitude®

Reducing the Bardakci-Ruegg model for (KKzgnr) process, one can obtain
the amplitudes for nwwr-—>7A; and 7K—->7K**, assuming the degeneracy a,=ay

2

and og«= g~ Here we list the amplitudes for nz-—»>nA, and 7 K*—zK** scat-
tering.

(@) a"(p)n"(p) —>u"(ps) A™ (p0)
T =9 4yrrnCpmrct Wb by
200,600, A F (016,00, — 04,2,01,0,) A
+ 128 [04,6,0436, B+ (01,0,04,8, — 04,2,01,,) BT,
+ £5°[04,1,00,0,C7 + (04,6048, ~ 02,1,04,,) C]
AP=B2—-a(w),l—a®)) +B2—a(s),1—a(®)),
B®=B2—-a@),1—a@) +B2-a®),l—al)),
CH=B2—a®),l—als)) =BC-a),l—als)),

where pi+py+pst+ =0, s= (p1+p)', t=(pi+ps)" and u= (p:-+p)". €4 is the
polarization tensor of A,-meson,” and a=qa’.

(b)  7°(p0) K (k) —n’ (p) K**(g)
T'= G e semnC pn o€k 0y {00467 + Sty T ] AV,
AP =ks[B2—a®(s5),1—a’ (@) + B2 —a™ (), 1—a’())]
£ (P)eBE2—a’ @), 1—a™ (W) — (p)pB2—a’ (1), 1 - (5)),
where pi+p,+k+g=0 and eff. is the polarization tensor of K ** meson.
Appendix B
Derivation of the amplitude for Kp— Kp

Taking poles at @y =1 and ay=1 and using the reduction formula
ReSa“=~_1,am=1[Bs A~y 5 T—asr; 1 — ass, 1 — sz, 1 —ss) ] =B (1 —ty, 1 — Qlgse) »

one can get the amplitude.
The factor corresponding to a term B(l—a, 1 — ) is
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1670 Y. Miyata

Liay4ssT,T4, T3 Ta, Liaaa65T 5,03, Ts, Ty + LisasesT T Ta, T,
+ Liag60T3,73,T3,T, = (@+ ) (X+ Y+ Z) + -+, (B-1)
where®
= 0%,1,05,0,— 04,:,04,1, »
B7=1(04,5,80,150 T+ Otyi,8s,350 — Oty5.8,000 — 01,2,8i0 k) Tt »
X 00 (0 s+ Ol ) 11 21
Yt Z= 100000 Ol iio = OB i) = s O saie = O s )
=0 QoD e = OO e O siis OO e = Ouon¥as ) 11T £
where
LI 25 =D a2 b5 pu s pa*e. (B-2)
In the same way the coefficient for a term B —au, 1 —as) is
Lia584T 5,05, T1,Ta, + LisgsndTs, Ta T2, Ta, + L 196543T1,05,04,T 1,
+ DigsoasTiT0,0s,0a, = (@ —B) (X =Y —Z) -+, (B-3)
Combining Eqgs. (B-1) and (B-3), one gets the amplitude:
A=a[(X+Y+Z)BA —uy 1 —ta) + (X—Y—2Z)B( — sy, 1 — ctuse) |
HBLXH Y+ Z) B =, 1 —ttye) — (X—=Y—2Z) Bl —at, 1 —a) .
(B-4)
On the other hand, isospin amplitudes are given for this process,
8igisiCisini (03 A + 1850t AT) = (01,4,01,1, — 0ai01,3,) A
(05 24815050 T Oty5,80,10% — Oay10E1,508 — 04,3,80410%) THAT. (B-5)
Comparing Eqs. (B-4) and (B:5) one has
AP = (X+Y+Z)B(l— sy 1 = lap) £ (X =Y —=Z)B(1l—cty, 1 —tase).  (B-6)

This is the form of Eq. (9) in §3. X, Y and Z are easily expressed as in the
text. For example,

8(Y+Z) = — (p1—=1s, s+ Ds) (Ds— s D5+ P6) (5 o> P17+ )
+ (Prt Doy Ps—15) (D5 Pas Ps— P6) (Ps+ Po, 1~ p3)
— (D1t D0 s+ 00) (Ps— Pus s~ P6) (s + Por o1 P2)
+ (p1= D2 Ds— D) (Ds+ Do D5+ P6) (05— Pos 1+ P2)
& (br=Po ps+ pa) (bs— Po ps— po) (bs+ po, pr+ ) |
= (D1t 13, Ds—1D8) (D3t Dy s+ Ps) (5 Dor 1~ P2)

*) We have used the coupling for gnz as (7'c5ﬂn) ou,
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Pseudoscalar-Vector Meson Scattering Amplitude 1671

+ (Pt Do Dot 10) (Ps—Pu D5+ P6) (Ps— Dos 17— P3)
— (P17 12y D3~ 1u) (Ba+ Pa s~ 1s) (PsF Lo, P1+P3)

Then by use of the coupling (ﬂg,ﬂ) p” for the two prnzw vertices, this reduces to
Eq. (10), rewriting the initial and final rho-meson momenta p;(<—ps-+p,) and
ps(—ps+ ps) respectively.

Appendix C
Derivation of the amplitude for mp—>mp

Taking poles at @p=1 and awu=1 in the amplitude (KKzuzr), one has an
amplitude for 7p elastic scattering.

B(1 — s, 1— aas) [Lrasas6T2,7,T2,T2, + LioaasT2,T0,05,C1,
+ LigesaaT2,T1405,0 e, + L19654504,C3,T1, T, |
+ B (1 — sy 1 — Uaas) [Lia065T1,T1,T1,Ce5 7 D12as65T5,T8,T5, T
- LigseaaTs, T, 0a,Ce, + L19564872,C 2,02,y )
+ B (1 — aszs 1 ass) [Di95306T5,03,T2,T1, - LiasassTa,T0,T2,T 1,
+ T196345T 5, ey s, Uty ~+ DiasassTe,Te, T Ta |
= (X+ Y+2Z)BA— s, 1 — ) + (X—Y=2Z) B~ s, 1 — Claas)
+ (X+Y-Z)B( ~ s, 1~ as) ]
FRLX+Y+Z)BA — sy 1 —ass) — (X =Y —Z)B(1 — g, 1 — ttaug)
+ X+ Y—-Z)B(1 —las, 1 —taag) |
+rL X+ Y+Z)BA — ey 1 —tags) — (X —Y—2)B(1— ctes, 1 — aas)
— (X4 Y—-Z)B( — s, 1 — lass) ]

doeee (C-1)
where

= 104,60, 4Tk » B =2 (01,8,68,056 — 01,1,844551) Tk » T =1 (00,8000 — 0y0,8,000) T »
and

X=— 6/“5/‘6 (6#1#36ﬂ2ﬂ4 - 6/b1#46ﬂz#a) H pfﬂi;’
Y= [O\l’fz/bs (6#1M36N4M5 - 6/‘1#46/43:“0) - 6#1#5 (6ﬂwsaﬂwa - 6#2#46#8/%) ] E[ j)y'ﬂiﬁ
Z= [ o 6#:}#5 ((Y)‘,uzmamm - §/¢2#66#1/‘4) + 6/‘v4/¢5 (8#2M35ﬂlﬂe - 5‘#2,%{3},1”) ] H 25
while isospin amplitudes are taken for this process
T3, 0600001004+ 05,0105, 8 014,8,01,58C ] €414
= 104,1,61,8 4Tk (A + B+ C) 41 (01,1,81,500 — 0t,3,805100) TrlS
2 (04,081,006 — 01,8,8,156) TaC (C.-2)
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Comparing Eqgs. (C-1) and (C-2), one has
A= (X4 Y+2Z)BA~ g, L — ) + (X =Y —=Z) B(L— o, 1 — sas)
(X +Y—Z)BG ~ sy 1 — laas)
Be=— (X4 Y+ Z) B~ s, L —tasg) + (X = Y —Z) B~ las, 1 — tlsss)
F (XY —Z)B(A — o, 1 — s
C= (XA Y+Z)B( -ty 1= Qo) — (X~ Y~ Z) B — lsgy 1 — tnss)
XY —Z) B = tlagsy L~ Qlags) -

These are Eq. (12) in §3. X, Yand Z can be written as in the text, rewriting
4X == (Ps6) (11w D+ 1) (Do iy D1+ 2) = (1= Py s~ (Do~ Py 1+ 2) ],
AY= = (it o ) L0, s+ 08) (3= 1wy 16) = (b1~ u, s~ 3) (Ps+ P )]

F (Brn p0) LDt oy 037000 (Da= Py £0) = (put s, 5= D) (o Py 6) 1
42 (ot i 03) L1t oy 3= 00 (1= 10: 06) = (1 0y s 2) (Pit 0, ) ]
= (P00 25) L(Ds 4 D D5+ 0) (D1 s 0) — (1 Py s+ 00) (Bt oy 16) ]

(In §3, we have replaced 15 (pe) =P (p2), D1~ po(Ps— po) —e, (e,,) and pi+py (P
+pa) =3 (Pa) )

Of course, one can easily convince oneself that these amplitudes involve
natural spin complications. For example, consider at the pole agis=1, then this
case involves a factor X+ Y according to the isospin symmetry in BEq. (C.2).
On the other hand the pole diagram

K(p) E(0:) 7 (p6) =0 (pr+ 0) 70 (16) =0 (pro+ Py + s = —Ps— D Ds)

=0(Ps+ )7 (Ds) =7 (Po) T (p) 7 (s)

has the same factor X+ V.
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