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Abstract In order to investigate the local stability of both
equilibria and periodic orbits of delayed dynamical systems
we employ the numerical method recently proposed by the
authors for discretizing the associated evolution family. The
objective is the efficient computation of stability charts for
varying or uncertain system parameters. A benchmark set of
tests is provided including computational data such as the
accuracy of the stability boundaries and the total computa-
tional time, with particular reference to the delayed Mathieu
equation.
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1 Introduction

Dynamical systems whose evolution depends on both present
and past are ubiquitous in applications, mainly due to their
enhanced ability in describing real phenomena. The growing
interest is witnessed by, beyond the extensive paper litera-
ture, the considerable number of monographs treating all the
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important aspects, from the mathematical, dynamical and sta-
bility theories to the numerical approximation and, indeed,
the applications [1,2,13,14,16–18,20,23–25,28,31,32].

In many practical engineering and biological fields a key
question is the (local or linearized) stability of equilibria and
periodic orbits, often as a function of varying or uncertain
system parameters (e.g., in control or population dynamics).
Analytical results are in general unattainable since the pres-
ence of the delay makes the state space infinite dimensional,
thus requiring efficient and reliable approximations.

In the last decade different numerical techniques have
been developed to the scope, mostly based on reducing to
finite dimension (i.e., to matrices) the operators whose spec-
tra decide the stability, such as solution operators, mon-
odromy operators and infinitesimal generators. Then stability
is inferred from the eigenvalues of such matrices, by looking
at the position of the rightmost one w.r.t. the imaginary axis or
of the dominant one w.r.t. the unit circle. Among these meth-
ods are, e.g., [4,7,10,11,15,19,21,22,30]. Other methodolo-
gies are also available, which directly point at computing the
stability boundaries in given regions of the parameters space,
e.g., [26,27].

This work focuses on the computation of stability charts
for both autonomous and (mainly) periodic linear delayed
dynamical systems. A stability chart is the decomposition of
a region of a two-parameters plane into stable and unstable
portions through the stability boundaries. We compute these
boundaries as level contours of a function approximating the
eigenvalue that determines the stability for each choice of
the two parameters. The level contours are obtained via the
adaptive triangulation technique developed in [8]. The func-
tion approximating the eigenvalue that determines the stabil-
ity is based on the numerical method recently proposed in
[9]. The latter discretizes the evolution family associated to
the delayed system by pseudospectral schemes. On the one
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hand, it is suitable for general linear nonautonomous prob-
lems, with any number of discrete and distributed delays,
even rationally independent w.r.t. the period when periodic
orbits are analyzed. On the other hand, the convergence of
the approximations is extremely fast, a much desirable fea-
ture when point-by-point investigation has to be performed
as it is the case of stability charts.

The paper describes in Sects. 2 and 3 the approximation
technique by summarizing from [9] its essential ingredients.
Explicit approximating matrices are given for the sake of
implementation for those interested. The main objective is
then to furnish in Sects. 4 and 5 a benchmark set of tests on
stability charts computation, with particular reference to the
delayed Mathieu equation, providing experimental data on
accuracy and CPU time, mainly for the sake of comparison
with other existing or future techniques.

2 Evolution operators and stability

For given r > 0 let X := C([−r, 0], C
d) be the state space.

We consider dynamical systems arising from linear nonau-
tonomous differential equations with delay

x ′(t) = f (t, xt ), t ∈ I, (1)

where I ⊆ R is unbounded on the right, the state xt ∈ X at
time t is defined as xt (θ) := x(t +θ) for θ ∈ [−r, 0] and f :
I×X → C

d is a functional given through the Stieltjes integral

f (t, ϕ) =
r∫

0

dθ [η(t, θ)]ϕ(−θ), (2)

where η : I × [0, r ] → C
d×d is of normalized bounded

variation as a function of θ and continuous in the topology
of the total variation as a function of t , thus f is continuous.

For any s ∈ I and ϕ ∈ X , the initial problem{
x ′(t) = f (t, xt ), t ≥ s,
xs = ϕ

(3)

has a unique solution which is defined on [s − r,+∞), con-
tinuously differentiable on [s,+∞) and, for any t ≥ s, xt

continuously depends on ϕ [14,18]. This allows to intro-
duce, for any s ∈ I and h ≥ 0, the linear bounded operator
T (s + h, s) : X → X given by

T (s + h, s)ϕ = xs+h,

i.e. it associates to the initial state xs = ϕ at time s the state
xs+h at time s + h. The operator T (s + h, s) is called an
evolution operator and {T (s + h, s) : s ∈ I and h ≥ 0} the
evolution family [12].

The local asymptotic stability properties of possible equi-
libria, periodic orbits and other invariants of a nonlinear
autonomous delayed system are determined by the spectral

properties of the evolution family of the system linearized
around the concerned orbit. In particular

(1) for equilibria, (1) is autonomous and T (s + h, s) =
T (h, 0) for s ∈ R and h ≥ 0: the evolution family
reduces to the standard C0-semigroup of solution oper-
ators {T (h, 0) : h ≥ 0} and, for h > 0, the equilibrium
is asymptotically stable iff all the eigenvalues of T (h, 0)

are inside the unit circle;
(2) for periodic orbits, η in (2) is periodic in time, i.e. η(t +

ω, θ) = η(t, θ) for t ∈ R, θ ∈ [−r, 0] and for some
(minimal) period ω > 0; then for k nonnegative integer
and a ∈ [0, ω)

T (s + kω + a, s) = T (s + a, s)T (s + ω, s)k,

the eigenvalues of T (s +ω, s) are independent of s ∈ R

[14,18] and thus we can refer to T (ω, 0), known as the
monodromy operator: the periodic orbit is asymptoti-
cally stable iff all the eigenvalues of T (ω, 0) are inside
the unit circle;

(3) for other orbits, (1) is neither autonomous nor periodic
and the asymptotic properties are characterized by the
Lyapunov exponents, i.e. the eigenvalues of the limit
operator lim

n→∞[T (s + nr, s)H T (s + nr, s)]1/2n [5,6].

In order to investigate stability we construct in the fol-
lowing section a finite dimensional approximation of T :=
T (s + h, s) and use its nonzero eigenvalues to approximate
a finite number of the original (and dominant) ones. Then in
Sects. 4 and 5 we will use always s = 0, while h = r for
equilibria and h = ω for periodic orbits according to (1) and
(2) above. First we express T in a more convenient form.

Let X+ := C([0, h], C
d), X± := C([−r, h], C

d) and
V : X × X+ → X± be the map

V (ϕ, z)(θ) :=
{

ϕ(0) + ∫ θ

0 z(t)dt if θ ∈ [0, h],
ϕ(θ) if θ ∈ [−r, 0].

Let also V1 : X → X± and V2 : X+ → X± be given by
V1ϕ := V (ϕ, 0) and V2z := V (0, z). Note that

V (ϕ, z) = V1ϕ + V2z. (4)

For v ∈ X± and t ∈ [0, h], let vt ∈ X denote the function
vt (θ) := v(t + θ) for θ ∈ [−r, 0]. Being f continuous, the
function t �→ f (s + t, vt ) for t ∈ [0, h] belongs to X+ for
any v ∈ X±. Therefore, we can introduce the linear operator
Fs : X± → X+ defined by

(Fsv) (t) := f (s + t, vt ), t ∈ [0, h].
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Now the evolution operator T can be expressed through
V and Fs above as

T ϕ = V (ϕ, z∗)h, (5)

where z∗ ∈ X+ satisfies the fixed point equation

z∗ = Fs V (ϕ, z∗). (6)

It is clear that (6) has a fixed point iff (3) has a solution on
[s, s + h], and z∗ is the derivative of such solution. Above,
V (·, ·)h refers to the notation introduced after (4).

3 Numerical approximation

Since T can be expressed through (5) and (6), it can be
approximated by discretizing the spaces X and X+ as fol-
lows.

3.1 Discretization of X

We treat separately the two cases h ≥ r and h < r .

The case h ≥ r . For a given positive integer M , consider
the mesh ΩM := {θM,0, . . . , θM,M } in [−r, 0] with 0 =
θM,0 > · · · > θM,M ≥ −r , and set X M := C

d(M+1) as the
discrete counterpart of X . An element Φ ∈ X M is written as
Φ = (Φ0, . . . , ΦM )T where Φm ∈ C

d , m = 0, . . . , M . Let
the restriction operator RM : X → X M be given by

RMϕ = (ϕ(θM,0), . . . , ϕ(θM,M ))T ,

i.e. a function ϕ ∈ X is discretized by the vector RMϕ of
its values at the nodes of ΩM . Let the prolongation operator
PM : X M → X be given by

(PMΦ)(θ) =
M∑

m=0

�M,m(θ)Φm, θ ∈ [−r, 0],

where �M,m, m = 0, . . . , M , are the Lagrange basis polyno-
mials [3] relevant to the nodes of ΩM , i.e. a vector Φ ∈ X M

becomes a function by taking its Lagrange interpolation poly-
nomial PMΦ at the nodes of ΩM .

The case h < r . We operate piecewise in [−h, 0],
[−2h,−h], etc. Let Q be the minimum positive integer q s.t.
qh ≥ r , hence Q > 1. Set θq := −qh, q = 0, . . . , Q − 1,
and θQ := −r . For a given positive integer M , consider
the mesh ΩM := ⋃Q

q=1{θM,q,0, . . . , θM,q,M } in [−r, 0]
with θq−1 =: θM,q,0 > · · · > θM,q,M := θq , q =
1, . . . , Q − 1, and θQ−1 =: θM,Q,0 > · · · > θM,Q,M ≥ θQ

and set X M := C
d(QM+1) as the discrete counterpart of

X . An element Φ ∈ X M is written as Φ = (Φ1,0, . . . ,

Φ1,M−1, . . . , ΦQ,0, . . . , ΦQ,M−1, ΦQ,M )T where Φq,m ∈
C

d for q = 1, . . . , Q and m = 0, . . . , M − 1 and ΦQ,M ∈

C
d (we also set Φq,M := Φq+1,0, q = 1, . . . , Q − 1). Let

the restriction operator RM : X → X M be given by

RMϕ = Φ,

where Φq,m = ϕ(θM,q,m), q = 1, . . . , Q and m =
0, . . . , M . Let the prolongation operator PM : X M → X
be given by

(PMΦ)(θ) =
M∑

m=0

�M,q,m(θ)Φq,m, θ ∈ [θq , θq−1],

q = 1, . . . , Q,

where �M,q,m, q = 1, . . . , Q and m = 0, . . . , M , are
the Lagrange basis polynomials relevant to the nodes
θM,q,0, . . . , θM,q,M .

3.2 Discretization of X+

For a given positive integer N , let Ω+
N := {tN ,1, . . . , tN ,N }

be a mesh in [0, h] with 0 ≤ tN ,1 < · · · < tN ,N ≤ h
and set X+

N := C
d N as the discrete counterpart of X+. An

element Z ∈ X+
N is written as Z = (Z1, . . . , Z N )T where

Zn ∈ C
d , n = 1, . . . , N . Let the restriction operator R+

N :
X+ → X+

N and the prolongation operator P+
N : X+

N → X+
be given respectively by

R+
N z = (z(tN ,1), . . . , z(tN ,N ))T

and

(P+
N Z)(t) =

N∑
n=1

�+
N ,n(t)Zn, t ∈ [0, h],

where �+
N ,n, n = 1, . . . , N , are the Lagrange basis polyno-

mials relevant to the nodes of Ω+
N .

3.3 Discretization of T

For given positive integers M and N , a finite dimensional
approximation TM,N : X M → X M of the evolution operator
T defined through (5) and (6) is given by

TM,N Φ = RM V (PMΦ, P+
N Z∗)h, (7)

where Z∗ ∈ X+
N satisfies the fixed point equation

Z∗ = R+
N FV (PMΦ, P+

N Z∗). (8)

Clearly, (7) and (8) are the discrete counterparts of (5) and (6),
respectively. In particular, the function ϕ ∈ X in (5) and (6) is
replaced in (7) and (8) with its interpolation polynomial at the
nodes of ΩM and the Eq. (6) is discretized by a collocation
at the nodes of Ω+

N .
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3.4 The matrix form of TM,N

By using (4), (7) can be rewritten as

TM,N Φ = T (1)
M Φ + T (2)

M,N Z∗,

where T (1)
M : X M → X M and T (2)

M,N : X+
N → X M are given

respectively by

T (1)
M Φ = RM (V1 PMΦ)h

and

T (2)
M,N Z = RM

(
V2 P+

N Z
)

h .

Note that T (1)
M and T (2)

M,N are independent of f . Always (4)
leads to rewrite (8) as
(

IX+
N

− U (2)
N

)
Z∗ = U (1)

M,N Φ,

where U (1)
M,N : X M → X+

N and U (2)
N : X+

N → X+
N are given

respectively by

U (1)
M,N = R+

N Fs V1 PM

and

U (2)
N = R+

N Fs V2 P+
N .

Then, for N sufficiently large, the finite dimensional operator
TM,N : X M → X M can be expressed by

TM,N = T (1)
M + T (2)

M,N

(
IX+

N
− U (2)

N

)−1
U (1)

M,N .

If T(1)
M , T(2)

M,N , U(1)
M,N and U(2)

N are the canonical matrices

relevant to T (1)
M , T (2)

M,N , U (1)
M,N , U (2)

N , respectively, then

TM,N = T(1)
M + T(2)

M,N

(
Id N − U(2)

N

)−1
U(1)

M,N

is the matrix whose eigenvalues are used as approximations
of (part of) the spectrum of T .

Now we give the explicit form of the above matrices for the
applications of interest, i.e. for equations with both discrete
and distributed delays of the form

x ′(t) =
k∑

i=0

Ai (t)x(t−τi )+
r∫

0

B(t, θ)x(t−θ)dθ, t ∈ I,

(9)

where 0 =: τ0 < τ1 < · · · < τk ≤ r, Ai : I → C
d×d

is continuous for any i = 0, 1, . . . , k and B : I × [0, r ] →
C

d×d is s.t. B(·, θ) is continuous for almost all θ ∈ [0, r ] and,
for any compact I ⊆ I, there exists m ∈ L1([0, r ], R) s.t.
‖B(t, θ)‖ ≤ m(θ) for all t ∈ I and for almost all θ ∈ [0, r ].

The matrix T(1)
M . It turns out that T(1)

M = T̃
(1)

M ⊗ Id where ⊗
denotes the Kronecker product and

T̃
(1)

M =
⎛
⎜⎝

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0

⎞
⎟⎠

in C
(M+1)×(M+1) if h ≥ r , while

T̃
(1)
M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
.
.
.

1

t(2)
0,0 · · · t(2)

0,M
.
.
.

.

.

.

t(2)
M−1,0 · · · t(2)

M−1,M

t(3)
0,0 · · ·
.
.
.

t(3)
M−1,0 · · ·

. . .

t(Q)
0,0 · · · t(Q)

0,M 0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

t(Q)
M−1,0 · · · t(Q)

M−1,M 0 · · · 0

t(Q)
M,0 · · · t(Q)

M,M 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in C
(QM+1)×(QM+1) if h < r , where blank entries are zero,

t (q)
m, j = �M,q−1, j (h + θM,q,m)

for q = 2, . . . , Q, m = 0, . . . , M − 1 and j = 0, . . . , M
and

t (Q)
M, j = �M,Q−1, j (h + θM,Q,M )

for j = 0, . . . , M .

The matrix T(2)
M,N . It turns out that T(2)

M,N = T̃
(2)

M,N ⊗ Id

where

T̃
(2)

M,N =

⎛
⎜⎜⎝

∫ h+θM,0
0 �+

N ,1(t)dt · · · ∫ h+θM,0
0 �+

N ,N (t)dt
...

. . .
...∫ h+θM,M

0 �+
N ,1(t)dt · · · ∫ h+θM,M

0 �+
N ,N (t)dt

⎞
⎟⎟⎠

in C
(M+1)×N if h ≥ r , while

T̃
(2)

M,N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ h+θM,1,0
0 �+

N ,1(t)dt · · · ∫ h+θM,1,0
0 �+

N ,N (t)dt
.
.
.

. . .
.
.
.∫ h+θM,1,M−1

0 �+
N ,1(t)dt · · · ∫ h+θM,1,M−1

0 �+
N ,N (t)dt

0 · · · 0
.
.
.

. . .
.
.
.

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in C
(QM+1)×N if h < r .
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The matrix U(1)
M,N . If h ≥ r , it holds

U(1)
M,N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1,0 C1,1 · · · C1,M
...

...
. . .

...

CN̂ ,0 CN̂ ,1 · · · CN̂ ,M
CN̂+1,0 0 · · · 0

...
...

. . .
...

CN ,0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in C
d N×d(M+1) with d × d blocks

Cn,0 =
i(tN ,n)∑

j=0

A j (s + tN ,n) +
tN ,n∫

0

B(s + tN ,n, θ)dθ

+
k∑

j=i(tN ,n)+1

�M,0(tN ,n − τ j )A j (s + tN ,n)

+
r∫

tN ,n

�M,0(tN ,n − θ)B(s + tN ,n, θ)dθ

for n = 1, . . . , N̂ ,

Cn,m =
k∑

j=i(tN ,n)+1

�M,m(tN ,n − τ j )A j (s + tN ,n)

+
r∫

tN ,n

�M,m(tN ,n − θ)B(s + tN ,n, θ)dθ

for n = 1, . . . , N̂ and m = 1, . . . , M and

Cn,0 =
k∑

j=0

A j (s + tN ,n) +
r∫

0

B(s + tN ,n, θ)dθ

for n = N̂ + 1, . . . , N with

N̂ := max
n=1,...,N

{tN ,n < r}

and

i(θ) :=
{

i if τi ≤ θ < τi+1, i = 0, . . . , k,

k if θ ≥ τk .
(10)

If h < r it holds

U(1)
M,N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(1)
1,0 · · · C(1)

1,M−1 · · · C(Q)
1,0 C(Q)

1,1 · · · C(Q)
1,M

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

C(1)

N̂ ,0
· · · C(1)

N̂ ,M−1
· · · C(Q)

N̂ ,0
C(Q)

N̂ ,1
· · · C(Q)

N̂ ,M

C(1)

N̂+1,0
· · · C(1)

N̂+1,M−1
· · · C(Q)

N̂+1,0
0 · · · 0

.

.

.
. . .

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

C(1)
N ,0 · · · C(1)

N ,M−1 · · · C(Q)
N ,0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in C
d N×d(QM+1) with d × d blocks

C (1)
n,0 =

i(tN ,n)∑
j=0

A j (s + tN ,n) +
tN ,n∫

0

B(s + tN ,n, θ)dθ

+
i(tN ,n,1)∑

j=i(tN ,n)+1

�M,1,0(tN ,n − τ j )A j (s + tN ,n)

+
tN ,n,1∫

tN ,n

�M,1,0(tN ,n − θ)B(s + tN ,n, θ)dθ

for n = 1, . . . , N ,

C (q)
n,0 =

i(tN ,n,q−1)∑
j=i(tN ,n,q−2)+1

�M,q−1,M (tN ,n − τ j )A j (s + tN ,n)

+
tN ,n,q−1∫

tN ,n,q−2

�M,q−1,M (tN ,n − θ)B(s + tN ,n, θ)dθ

+
i(tN ,n,q )∑

j=i(tN ,n,q−1)+1

�M,q,0(tN ,n − τ j )A j (s + tN ,n)

+
tN ,n,q∫

tN ,n,q−1

�M,q,0(tN ,n − θ)B(s + tN ,n, θ)dθ

for n = 1, . . . , N and q = 2, . . . , qn ,

C (q)
n,m =

i(tN ,n,q )∑
j=i(tN ,n,q−1)+1

�M,q,m(tN ,n − τ j )A j (s + tN ,n)

+
tN ,n,q∫

tN ,n,q−1

�M,q,m(tN ,n − θ)B(s + tN ,n, θ)dθ

for n = 1, . . . , N , q = 1, . . . , qn and m = 1, . . . , M − 1,

C (Q)
n,M =

k∑
j=i(tN ,n,Q−1)+1

�M,Q,M (tN ,n − τ j )A j (s + tN ,n)

+
r∫

tN ,n,Q−1

�M,Q,M (tN ,n − θ)B(s + tN ,n, θ)dθ

for n = 1, . . . , N̂ ,

C (Q)
n,0 =

k∑
j=i(tN ,n,Q−2)+1

�M,Q−1,M (tN ,n − τ j )A j (s + tN ,n)

+
r∫

tN ,n,Q−2

�M,Q−1,M (tN ,n − θ)B(s + tN ,n, θ)dθ
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Fig. 1 Error in the dominant
eigenvalue for Eq. (11) with
b0 = 0.2, c0δ = 1, c0ε =
2, c1 = −1.5, τ = 1 and
varying Ω
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for n = N̂ + 1, . . . , N , with i(θ) as in (10),

N̂ := max
n=1,...,N

{tN ,n < r − (Q − 1)h},

qn :=
{

Q if n = 1, . . . , N̂
Q − 1 if n = N̂ + 1, . . . , N ,

and tN ,n,q := tN ,n +qh for q = 0, . . . , qn −1 and tN ,n,qn :=
r .

The matrix U(2)
N . It holds

U(2)
N =

⎛
⎜⎝

D1,1 · · · D1,N
...

...

DN ,1 · · · DN ,N

⎞
⎟⎠

in C
d N×d N with d × d blocks

Dn, j =
i(min{r,tN ,n})∑

l=0

⎛
⎝

tN ,n−τl∫

0

�+
N , j (t)dt

⎞
⎠ Al(s + tN ,n)

+
min{r,tN ,n}∫

0

⎛
⎜⎝

tN ,n−θ∫

0

�+
N , j (t)dt

⎞
⎟⎠ B(s + tN ,n, θ)dθ

for n, j = 1, . . . , N with i(θ) as in (10).

Remark 1 For computational efficiency the Lagrange basis
polynomials in the above entries are evaluated by the
barycentric formula [3]. Moreover, the integrals need in gen-
eral to be numerically computed. It is advisable to adopt
gaussian quadrature formulae in order to preserve the high-
order convergence guaranteed by the overall method. In the
case of discontinuities in the function B(t, ·), adaptive or
piecewise strategies should be employed. In this work we
use quadrature on Chebyshev extremal points, i.e. Clenshaw-
Curtis formula [29].

3.5 Convergence

As proved in [9], spectrally accurate approximations of T
and of its spectrum are obtained by letting M, N → ∞ with
M ≥ N if the mesh Ω+

N is made of Chebyshev zeros:

tN ,n = h

2

(
1 − cos

(2n − 1)π

2N

)
, n = 1, . . . , N .

In particular, the error is O(N−N ) as shown, e.g., in Fig. 1
for the delayed damped Mathieu equation

x ′′(t) + b0x ′(t) + c0(t)x(t) = c1x(t − τ) (11)

where

c0(t) = c0δ + c0ε cos (2π t/Ω) (12)

for either Ω = τ and Ω = τ rationally independent. In
this paper we use Chebyshev zeros for Ω+

N and Chebyshev
extremal points for ΩM .

4 Stability charts

In applications it is often essential to determine stability
depending on varying or uncertain system parameters. When
two parameters are concerned, one can collect the stability
information in a rectangular region of the parameters plane
by determining stable/unstable portions separated by the rel-
evant stability boundaries. The latter are the locus |μ| = 1
for the dominant eigenvalue μ of either T (r, 0) for equilibria
(i.e. (9) with autonomous coefficients) or T (ω, 0) for peri-
odic orbits of period ω (i.e. (9) with ω-periodic coefficients).
These so-called stability charts are thus usually obtained by
computing the contours at level 1 of the surface |μ(p1, p2)|
as a function of the two parameters p1 and p2. In general
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this function gives a numerical approximation of the exact
eigenvalue that determines the stability, in our case the dom-
inant one. Therefore the overall computational cost of a sta-
bility chart is determined by two aspects: first, the accuracy
desired for the stability boundaries, i.e. basically the number
of times the dominant eigenvalue approximation function is
evaluated and, second, the cost of a call to this function for
a single choice of the two parameters. In this paper, as for
the first aspect we apply the adaptive triangulation technique
described in [8], which is on average more efficient than, e.g.,
Matlab’s contour. As for the second aspect we apply the
pseudospectral technique described in Sect. 3. The spectral
convergence shown in Fig. 1 is a clear advantage over the total
computational cost since accurate estimates of the dominant
eigenvalue are obtained with rather low matrix dimensions
(e.g., N = 10 already gives more than 5 digits accuracy in
general).

5 Numerical tests

In this section we report on several tests on stability charts of
linear autonomous and (mainly) periodic delayed systems.
For the sake of comparison, each example is accompanied
with the relevant references where similar tests can be found,
a plot of the resulting stability chart and a table contain-
ing computational information such as the resolution of the
stability boundaries (in % of the length of the sides of the
rectangular domain), the number of evaluations of the domi-
nant eigenvalue approximation function and the overall CPU
time. All the tests are performed on a Mac OS X 10.5.8, 2.53
GHz Intel Core 2 Duo, 4 GB RAM and all the algorithms are
implemented in Matlab (R2009b).

Remark 2 In all the following stability charts, the stable
regions are those inside the closed contours.

5.1 Test 1

We consider the second order equation with a single discrete
delay

x ′′(t) + c0x(t) = c1x(t − 2π),

see [19, Eq. (9)]. We approximate T (r, 0) for r = 2π .
The parameters for the stability chart are p1 = c0 ∈
[−1, 5] and p2 = c1 ∈ [−1, 1], see Table 1 and Fig. 2
(compare with [19, Figs. 2, 3]). The test is relevant to vary-
ing N for the dominant eigenvalue approximation function.
Note that N = 10 gives a chart indistinguishable from the
exact one [19, Fig. 2].

Table 1 Computational data for Test 1, see text

N Resolution (%) # Evaluations CPU time (s)

4 0.5 2,112 26

6 0.5 2,469 51

8 0.5 2,953 95

10 0.5 2,929 144

5.2 Test 2

We consider the delayed damped Mathieu equation with dis-
tributed delay

x ′′(t) + b0x ′(t) + c0(t)x(t) = c1

0∫

−1

w(θ)x(t + θ)dθ

where b0 = 0 and c0 is given in (12) with Ω = 1/2, see
[19, Eq. (44)] and [22, Eq. (28)]. We approximate T (ω, 0)

where the period is ω = 1/2. In a first test, called Test 2.1,
the parameters for the stability chart are p1 = c0δ/(4π2) ∈
[−2, 10] and p2 = c1/(4π2) ∈ [−2, 10], while w(θ) = 1,
see Table 2 and Fig. 3 (compare with [19, Fig. 7]). In a sec-
ond test, called Test 2.2, the parameters for the stability chart
are p1 = c0δ/π

2 ∈ [−5, 20] and p2 = c1/π
2 ∈ [−50, 20],

while w(θ) = −(π/2) sin(πθ), see Table 3 and Fig. 4 (com-
pare with [19, Fig. 8] and [22, Fig. 6]). In a third test,
called Test 2.3, the parameters for the stability chart are
p1 = c0δ/π

2 ∈ [−5, 35] and p2 = c1/π
2 ∈ [−50, 300],

while w(θ) = (π/2) sin(πθ) + (13π/77) sin (2πθ), see
Table 4 and Fig. 5 (compare with [19, Fig. 9] and [22,
Fig. 7]). All the tests are relevant to N = 10 and varying
c0ε = 0, 20, 40, 60.

5.3 Test 3

We consider the delayed Mathieu equation with two discrete
delays

x ′′(t) + [6 + c0ε cos (2π t)]x(t) = x(t − τ1) + x(t − τ2),

see [19, Eq. (53)]. We approximate T (ω, 0) where the period
is ω = 1. The parameters for the stability chart are p1 =
τ1 ∈ [0, 10] and p2 = τ2 ∈ [0, 10], see Table 5 and Fig. 6
(compare with [19, Fig. 10]). The test is relevant to N = 10
and varying c0ε = 0, 6.

5.4 Test 4

We consider the delayed Mathieu equation with two discrete
delays

x ′′(t) + [a + b cos (t)]x(t) = cx(t − 2π) + dx(t − 4π),
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Fig. 2 Stability chart for Test
1, see text
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Table 2 Computational data for Test 2.1, see text

c0ε Resolution (%) # Evaluations CPU time (s)

0 1 1,769 526

20 1 1,622 491

40 1 1,555 464

60 1 1,495 448

Table 3 Computational data for Test 2.2, see text

c0ε Resolution (%) # Evaluations CPU time [s]

0 0.3 3,926 1,232

20 0.3 4,279 1,409

40 0.3 4,212 1,335

60 0.3 4,270 1,349

Fig. 3 Stability charts for Test
2.1, see text
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Fig. 4 Stability charts for Test
2.2, see text
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Table 4 Computational data for Test 2.3, see text

c0ε Resolution (%) # Evaluations CPU time (s)

0 0.25 8,382 2,718

20 0.25 8,220 2,618

40 0.25 7,898 2,528

60 0.25 6,840 2,197

Table 5 Computational data for Test 3, see text

c0ε Resolution (%) # Evaluations CPU time (s)

0 0.5 9,028 1,304

6 0.25 13,683 2,061

Fig. 5 Stability charts for Test
2.3, see text
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Fig. 6 Stability charts for Test
3, see text
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Table 6 Computational data for Test 4, see text

Resolution (%) # Evaluations CPU time (s)

0.25 4, 802 327
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Fig. 7 Stability chart for Test 4, see text

where b = d = 0.1, see [10, Eq. (40)]. We approximate
T (ω, 0) where the period is ω = 2π . The parameters for the
stability chart are p1 = a ∈ [−1, 5] and p2 = c ∈ [−1, 1],
see Table 6 and Fig. 7 (compare with [10, Fig. 11]). The test
is relevant to N = 10.
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