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Pseudospline Interpolation for Space Curves

By D. H. Thomas

Abstract.   A method for interpolating a curve through points in space is described.

It is the direct analogue of Fowler-Wilson or pseudospline interpolation for plane

curves in that local coordinate systems, cubic polynomials of suitable parameters,

and mildly nonlinear equations are used to obtain a continuous interpolating curve

with continuous tangent and curvature vectors.

1.  Introduction.  In the last two decades advances in computer-aided design and

numerical control technology have stimulated considerable interest in the development

and use of practical algorithms for the interpolation and approximation of points

representing plane and, to some extent, space curves. Much of this interest surrounds

the design and representation of smooth free form shapes by curves exhibiting at least

"visual" C2 continuity.  For problems of this type it has become fashionable to adopt

techniques based on various analogies and approximations to the draftsman's or the

mechanical spline.  A milestone in the history of mechanics, Bernoulli-Euler's eigh-

teenth century treatment of the elástica was, in effect, the first definitive mathe-

matical result on the latter subject [10].  In 1906 the physicist Max Born gave an

elegant account of both the two-and three-dimensional elástica using an intrinsic co-

ordinate formulation to "solve" the problem (in terms of elliptic functions) under a

variety of boundary conditions [3].  In recent years the nonlinear spline and, more

generally, the elástica have attracted renewed attention, this time, strictly from the

point of view of interpolation theory with obvious implications for curve fitting

methodology, [2], [8], [9], and [12].

On the more mundane side, most of today's users and developers of curve

fitting routines continue to rely heavily on new or established methods usually con-

nected with the linear theory of interpolation and approximation of functions

(whether motivated by splines or not).  For example, if the intended curve is "func-

tional" in some fixed Cartesian frame of reference, the approximation method (what-

ever it may be) is most easily applied once and/or twice, respectively, using the

special parametric representations (x, fix)) for plane curves and/or (x, fix), gix))

for space curves.  Of course, more generally and usually at no additional programming

expense (only computational) the parametric representations if is), gis)) and

(/(*)» gis)> Hs)) are employed, where s is some parameter monotone with the as-

signed ordering of the data points.  Although now the available procedure is called
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PSEUDOSPLINE INTERPOLATION FOR SPACE CURVES 59

on two and three times, respectively, the resulting method makes no distinction

between functional and arbitrarily varying curves.  It is in the folklore to most com-

monly use accumulated chord length for s, perhaps because of the obvious interpre-

tation of it as an approximation (posterior) to the intrinsic parameter (arc length) of

the interpolant itself.  This parametrization using linear cubic spline interpolants for

the coordinate functions was recommended by Ahlberg in [2] and recently Cline [4]

combined it with Schweikert's spline in tension method [13].  Among other approaches

which are closer in spirit to the one described below we mention the parametric or

vector-valued cubic splines in which the interpolating curve is represented by cubic

polynomial coordinate functions in a variable u between every pair of data points

iu varying between 0 and 1). The imposition of C2 continuity requirements does not

determine this parametrization uniquely but only up to certain normalization factors

for each segment which, when varied, give rise to different cubic spline interpolants

[5], [6], [11].
As a departure from the above philosophy, A. H. Fowler and C. W. Wilson in

an earlier unpublished laboratory report [7] describe a C2 planar curve fitting algo-

rithm based on a nonlinear interpolation method, what we have called pseudospline

interpolation in [2], which uses cubic polynomials in local coordinate systems.

As is well known, linearized cubic spline interpolation is derivable from the

theory of the slight bending of thin beams via the interpretation of /y"2 dx as a good

approximation to the line integral f n2ds (where n is the curvature as a function of

arc length).  The cubic polynomial provides a minimum of the first integral, and sub-

ject to the interpolatory and C2 smoothness conditions, the linearized cubic spline

results as the solution of a simpler variational problem (cf. [ 1 ] ).  Fowler-Wilson's

use of the rotated system of cubic polynomials more fully exploits the optimum

variational property of a basic cubic polynomial in that large variations in slope from

one end of the curve to the other are removed.  Thus, not only are arbitrarily varying

curves well modeled but, roughly, one expects the "strain energy" in a Fowler-Wilson

interpolant to be more accurately represented by 2fy"2dx than in its linearized

counterpart even to the same interpolatory conditions.  Although effecting the inter-

polation depends on solving a set of nonlinear rather than linear equations, these are

of a special type, and the computational process is still very rapid when compared

with true nonlinear spline interpolation recently considered, for example, by Forsythe

and Lee in [9].  In this author's opinion the Fowler-Wilson method has proven to be

a usable and competitive approach to planar curve fitting of the type which exhibits

the mechanical spline syndrome.

In this note we describe a direct extension of their basic scheme to points in

space, detailing the relevant formulas and offering some remarks on the resulting

method.  The reader can review planar pseudospline interpolation as a special case of

the discussion given below.

Let P0, Pj, . . . , Pn he an ordered sequence of points with coordinates (x¿, y¡,

Z/).  Let tangent vectors f0, fn be prescribed at P0 and Pn.  Each segment of the

curve between points Pt_v P¡ will be described in the parametric form (|, 77(C), f¡(%))

where n(£), Tf(|) are cubic polynomials of £ relative to Cartesian coordinates with
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60 D. H. THOMAS

£-axis parallel to the chord P¡_,P¡. These cubics are determined by requiring con-

tinuity of tangent and curvature vectors at each joint (i.e., interior point).  The detailed

description of the scheme is divided into a number of steps and is most conveniently

given in the language of vector analysis.

2.  Constants for Local Coordinate Systems.  One of the main problems in es-

tablishing local orthogonal systems stems from their nonuniqueness, specifically, the

n, Tj coordinate directions, which are unique only up to a plane rotation.  The follow-

ing choice of coordinate systems seems to have the most computational merit.  Let

u¡ be i, j, or k, the unit vector in the direction of the component of 8¡ = (x¿ - x¡_,,

y¡ - V,_i, z¡ - z,_,) of least magnitude.  Define r¡t, f¡. by the equations

(la) V¡ = u. xd./C. x 5.11

and

(lb) t^. = §. xi?.,      i=\,2,...,n,

where "x" denotes vector or cross product and "II II" denotes ordinary Euclidean

length.  The system 8¡, r¡¡, r¡¡ then represents three mutually orthogonal unit vectors,

i.e. a local Cartesian coordinate system with origin at ÍP¡_1 + P¡)/2.  By construc-

tion, u¡ always makes an angle of at least 60° with 8¡.  Hence, the vector products in

(1) are mathematically (and numerically) well defined for any given set of distinct

points P0, Pj, . . . ,P„.

The 3x3 matrices A¡ with columns given by the components of the vectors

S¡, rj¡, r¡¡, i.e.,

A1   i,1   n}\

(2) ÀA*1    1?    *?   )>      '=1.2, ...,«,

V   nf  «?/

are orthogonal transformation matrices.  Any vector ü with coordinates (cYj, a2, a3)

given in the original system is represented in the ith local coordinate system with

coordinates (ß1, ß2, j33) given by

(3) d3j,ß2,/33) = (aj,a2,a3)^..

The matrices A¡ are needed later to represent evaluated points (off the space curve)

in the original coordinate system and hence, should be retained, once computed, as

a part of the final complete description of the interpolating curve.

In order to obtain coupling conditions at joints, it is also convenient to compute

the n — 1 3 x 3 matrices B¡ defined by the matrix equations

(4) B.=A'.Ai+v      1=1,2.n-1,

(where A'¡ is the transpose of A¡) which relate conditions in one local coordinate sys-

tem (the r'th) with those of the immediately adjoining system (the («' + l)st).
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3.  Coupling Equations from Continuity Conditions.   Let R be the position vector

of points on the intended space curve relative to the given local coordinate system.

Thus, as before, R has the form

(5) r = (t T?(a m)%

where 77(£), t?(£) are cubic polynomials of £.  The unit tangent vector dR/ds  (where

x is arc length) is given by

« -f^Sf)/MfHf)T
and the curvature vector, d2R/ds2, by (cf. [14] )

d2R

.2
(7) k=— = HR R)R - iR R)R] HR ■ R)2

ds2

where # = dR/d%, R = d2R/d%2 and the notation (w -u) denotes the inner or dot

product of vectors u, U.

Relations (6) and (7) will now be used to obtain two functionally independent

conditions for each interior point of interpolation.  As in [2], the conditions that

n = t?(£) and r¡ = r¡(%) be cubic functions of % are satisfied by setting

(8a) m=(s2-cfxaii-+ßi),   m<cr

and

(8b) m = i? - c))(à.i + ß.),    iti < c.,

where the constants a,., &¡, ßt, ßt determine the tangent vectors at the (/ - l)st and

rth points and c¡ = lÇll/2.  If we define X,., X(-, p¡, p¡ by

(9a) f(-',) = \>      |(-CP = \-
and

(9b) |(c.)^r      |(c,.) = M,.(

then these constants depend linearly on X¡, p¡, X¡, p¡ and are explicitly given by

, „ . p. + \. p. - X.

'       4c. '        4c.
and

/x. + X. /Û. - X.
(10b) 0=-*-^-,      ¡5. = -4—L
v     ' '       4c2 '       4c.

i i

At the i'th interior point the condition of tangent vector continuity means that the

vector represented by

(Ha) 7¡_=il,prp.)/il-rn2 +p2yi2

in the ith coordinate system is one and the same as the vector represented by
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(nb) ?,+ -o.\+A+»>«i + »?+1+V+i)1/a

in the (i + l)st local system.  Therefore, (lia) and (lib) are related by the orthogonal

matrix B¡, i.e.,

(12) r._=7.+ -B..

Equation (12) is a vector equation equivalent to three scalar equations, of which only

two, however, are independent.   Equating the ratios of the second to the first com-

ponents in (12), one obtains

(13a) p.

(the b'lk, I, k = 1, 2, 3 are the elements of B¡).  Similarly, equating the ratios of the

third to the first components in (12) gives

(13b) p. = —;-;-r^-.

This pair of fractional linear transformations connecting the p¡, p¡ to the X(+ x, Xi+ j

is the exact analogue of the single bilinear transformation in [2, Eq. 11].  By virtue

of these relations, (13a) and (13b), the original set of 4n - 4 unknown parameters

have been reduced to half that number.  The remaining 2« - 2 parameters X2, X2,

X3, X3, . . . , X„, X„ are now considered as "the unknowns" to be computed by

requiring continuity of the curvature vector.  This latter condition leads to 2« — 2

nonlinear determining equations which we now derive.

Relation (7) for the curvature vector may be rewritten in terms of the cubic

polynomials t?(£), tj(£) in ^ne i°rm

-       [-(i?}?  + f?f?), 7?(1   + f?2) — 77T777, (1  + TJ2)T? - T?f}t?]
<14)        "=-0+«■+*>)»-

(the dots denote differentiation with respect to £).  From (8)—(10) we obtain (cf.

[2, Eq. 13])

(15a) t?(- Cj) = (2/i, + \j)lci,      vi-c¡) = (2/i, + X.)/c.

and

(15b) niCj) = - (2X. + p¡)¡c¡,     nie,) = - (2X. + Pj)lc¡.

The curvature vector (T¿ at the /th point may now be computed in two distinct ways:

namely, in the /th coordinate system by substituting (9b) and (15b) into (14), and

then in the (z + l)st system by substituting from (9a) and (15a) (with i replaced by

/ + 1) into (14).  The results of these substitutions are

(16a) k._ = iy\, y\, y\)\c.i\ + p] + p2)2
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PSEUDOSPLINE INTERPOLATION FOR SPACE CURVES 63

and

(16b) ïï.+ =(x'j,x2,x'3)/c(.+ j(1+X2+1+X2+1)2,

where the y',, y'2, y\ and x'j, x'2, x'3 are given by

(17a) y\ = 2p) + 2jQ2 + Xtp. + X.p.,

(17b) y\ = -(2u. + X. - u.X.jÛ. + \.p2),

(17c) y3 = - (2/Î, + X. - Ái.X.u. + p2\)

and

(18a) x'j = - (2X2+ j + 2X2+, + u,.+, X.+ .+ßi+. X.+, ),

(18b) x2 = 2\.+ l +uf+1 -M.+ 1X.+ 1X(.+ j +u.+ ,X2+1,

(18c) 4 = 2Vi + ¿/+i -"wiViVi +^+i^+i'

respectively.  As before, (16a) and (16b) are related by an orthogonal transformation:

(19) «,-_ = k,+  B.,      i= 1, 2, ...,«- 1.

Each of the « - 1 vector equations in (19) expresses only two functionally independ-

ent conditions (not three). It is again advantageous to select these conditions by first

equating the ratios of the second to the first components in (19), and then the ratios

of the third to the first components. The fourth degree polynomial factors

Cjil + p2 + p2)2 and c(+ j(l + X2+1 + X2+ j)2 thereby drop out of the equations

(and hence out of consideration). After this has been done and the equations ration-

alized, one obtains

(20a)   fJ-y^X +b\2x2 + b\¿3) - y\ib2lx\ + ¿<2x< + ¿23x3) = 0

and

(20b)   G, =y3(*'n*,1 + b\2x2 + b\^) -yiib^xi + b\2x\ + b'33x'3) = 0

for i = 1, 2, . . . ,n — 1. This pair of nonlinear equations, (20a) and (20b), for each

interior point of interpolation is the desired analogue of the single nonlinear equation

per point in [2, Eq. 16].

4.  The Nonlinear Equations and the Interpolation Problem.   The system to be

solved consists of the 2n - 2 nonlinear equations of (20a) and (20b) which may be

written (after the p¡, p¡ have been substituted for from (13)) in the form

(21a) F = F(X       X       XXX       X     ï = 0y        J .       i .y/\¡_ j , l\._ j , A., A., 4\.+ j , Af+ , )       u

and

(21b) C. = G.(V1,A,1,\.,VX,1)\+1) = 0,

or in vector form as

(21c) í = ¥l-i-VVi) = 0
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for i- 1, 2.n — 1, with four end conditions specified (X0, X0, X„, X„); i.e., the

two end tangent vectors.  This vector "tridiagonal" system is the nonlinear analogue

of the simple tridiagonal linear system one associates with ordinary cubic spline inter-

polation [1].

The author is unable to offer a general theorem on existence and/or uniqueness

of solution of this system.  Moreover, real solutions of the equations may or may not

lead to the determination and uniqueness of an actual C2 interpolating curve.   In order

to gain some insight into the complications that arise, consider the situation depicted

in Figure 1.

.P3

Figure 1

P., P, and P, are three points a unit distance apart with end tangent vectors given
,      ,i        -► ->

parallel to PjP2 and P3P2, respectively; and 9 is the turning angle between PjP2 and
->
P2P3  (- tt < 9 < tt).  The system of nonlinear coupling equations reduces to the

single cubic equation

(22) (u sin 9 - cos 0)2(u cos 9 - sin 0) + p = 0

for the slope p (at P2) referenced in the first coordinate system.

At 0 = ± tt any real p satisfies the coupling condition but, obviously, no C2

interpolant exists.  For 0 = 7r/2 (— tt/2) the coupling condition leads to essentially

three possibilities for u: 0, °°, and 1 (0, °°, -1).  The first two possibilities do not

lead to a proper interpolant as one of the cubics is undefined, leaving p - 1 (ju = - 1)

as the only candidate which does, in fact, determine a C2 interpolant.  For arbitrary

0 the three solutions of (22) are given explicitly by

p = tan 0/2,

(23) * - [O - 2 cos 0) cot 0/2 ± \/\;3JsOS/]/2 cos 9.

From (23) we see that for |0| > cos-1 (1/3) there will be three distinct real

solutions of (22).  A more careful examination will reveal that for 'Very large"

turning angles, namely, in the range tt/2 < |0| < tt only p = tan 0/2 defines a legiti-

mate C2 interpolant.  The other two solutions for p lead to curves with cusps at P2

(although the segments have the same right- and left-handed curvature at P2).   For

"large" turning angles, specifically, in the range cos-1(l/3) < |0| < 7r/2 it can be

verified that each of the three roots leads to a distinct C2 interpolant.   Finally, for

any "reasonable" turning angle, defined here to be in the range 0 < |0| < cos- 1(l/3),

p = tan 0/2 is the only real root, and it (happily) leads to the existence and uniqueness
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of solution to the interpolation problem.  As one perturbs the end slopes and unit

spacing of Figure 1, a similar situation occurs although conditions on the data are

accordingly more complicated.   For N points (A > 3) we have a concrete existence

and uniqueness result in the trivial case of all points lying in a straight line (albeit

with arbitrary end slopes given).  In this situation the equations in (21) specialize to

the familiar linear ones determining an ordinary cubic spline interpolating zero values

and the given end conditions.  Combining this observation with the local considerations

above, it follows by a continuity argument that existence and uniqueness also holds

for data perturbed from a straight line.  Although these results are of limited interest,

they suggest that more generally one might anticipate existence and uniqueness if the

data are organized in an "agreeable" way, meaning, for example, when the points are

regularly spaced, and turning angles between neighboring points and planes are suf-

ficiently small.  Computational experiments tend to support this loosely worded con-

jecture.  However, in practice, the method seems to be applicable to more bizarre

data configurations than might be expected from what we have just stated.  As matters

stand, the author knows of no procedure for a given data set, of resolving the question

other than by obtaining the real solutions of the algebraic system in (21) and then,

subsequently, examining their validity.

In spite of the nonlinearity and reservations on the question of existence and

uniqueness, the method has a number of practical merits.  Numerical experimentation

suggests the system is rapidly solvable by ordinary Newton iteration once reasonably

good initial estimates for the{X(} have been made.  This is true even for large numbers

of points because the basic iterative step involves only a banded (6-diagonal) linear

system.  Moreover, for this particular system of equations there is a geometrically

natural way of obtaining good initial estimates for the unknown parameters, namely

through local interpolation methods.   For example, for data exhibiting reasonable

smoothness the author has found adequate estimates obtained from local interpolation

with circles as follows:

P~P P~P~T,
(24) ?° =     '-1 f    +     ' <+'      IIP.   ,P.II2      IIPP.     II2

i-1 i r (+i

is the tangent vector at P¡ to the circle interpolating to three points P,_ j, P¡, P.+ j.

This vector should be represented in the (i + l)st coordinate system (by multiplying

its components relative to the original system by the transformation matrix A,.,).

After this has been done the tangent vector in (24) will have components u\,u2, u'3.

The initial X,-, \ are now given by

(25a) Vl=">i

and

(25b) X.+ 1 =ui3/u\    for i=l,3, ...,«- 1.

Once the X,-, X; have been found that satisfy (21a) and (21b), the p¡ and ¡L can

be obtained from (13).  The a¡, ß{, á¡, ß( and hence the cubics 77,., fj¡ are then deter-
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mined by means of (10).   The final numerical description (output) of the interpolated

curve consists of the coordinates of the original points of interpolation, P0, P., . . . ,

Pn, the 2w cubic polynomials (i.e., the parameters a,-, /?,-, a,., p\-, c¡, i = 1, 2, . . . , n),

and the n  3x3 orthogonal matrices A¡ given by (2).

5. Discussion.  The salient features (both good and bad) of this generalization

are comparable to those of the plane curve method.  Briefly, it is a class C(2) method

which is invariant under translations and rotations of the data (and, more generally,

the Euclidean group).  The well-known practical and visual advantages of cubic spline

curves have been preserved, as "cubics" are used exclusively and in a highly intrinsic

way.  The nonlinear equations involved are somewhat more complicated than what one

might expect from [2], but are still rapidly solved by the usual iterative techniques.

Moreover, the method has the ability to interpolate through arbitrarily bent and

twisted data point configurations (one of the main advantages in resorting to the para-

metric and nonlinear techniques).  Finally, if points all lie in a plane, the method (and

any computer program) reduces to planar pseudospline interpolation.

This interpolation scheme may also be considered related (loosely) to the three-

dimensional elástica with clamped end conditions.  This interpretation rests on the

validity of the representation of "localized strain energy" by the expressions

¡iv"2 + y"2)d%.  This connection with the elástica can perhaps be more fully exploited

in the data smoothing problem.  Specifically, the question of approximation (rather

than interpolation) has not been addressed here.  However, the method described

above could conceivably be made the basis of a general fitting and smoothing pro-

cedure in much the same manner that the Fowler-Wilson code [7] "fits" points rather

than interpolates them.  Individual point movement based on minimizing certain func-

tionals related to the "strain energy" is a natural way in which this might be accom-

plished.  In general, such a functional involves both curvature, p, and the torsion, t,

and in its simplest form is given by the line integral fiAp2 + Br2)ds [3].
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