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Pseudostate description of diatomic-molecule scattering from a hard-wall potential
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A collinear scattering of a structured particle from a hard wall is studied with consideration of vibrational

transitions initiated by the collision. It is shown that this problem can be solved analytically in the framework

of the source-function method. With the use of the continuum discretization technique we are able to take into

account both discrete and continuum states. No approximations of the interatomic potential is required. We

illustrate our approach for the case of a hydrogen molecule bound by the realistic Morse potential.
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I. INTRODUCTION

Controlling motion of individual atoms and molecules is

of importance for pure science and technology. This level

of control is required for realization of the most ambitious

modern-day technological projects such as quantum infor-

mation processing and quantum simulation [1]. One way of

mastering the quantum world is to utilize the dependence of

the transport properties of atoms and molecules on their inner

degrees of freedom [2]. Superconductivity and laser cooling

of atoms are classical examples that demonstrate how vital the

intrinsic degrees of freedom can be.

Diatomic-molecule–like composite particles have recently

attracted attention due to the peculiar intrinsic structure de-

pendence of their transport properties resulting in anomalous

diffusion in random potential fields [3–5], resonant tunneling

of molecules through potential barriers [6–9], and resonant

tunneling of molecules in one-dimensional lattices [10]. Being

of a general nature, such phenomena do not belong solely to

the domain of molecular physics. The same principles work

in other branches of quantum science. Indeed, phenomena

similar to resonant tunneling [6] can be seen at the internuclear

level [11,12].

Thus far, the approaches used in the description of the

above scattering processes have been very simplistic. They

are limited to generally the one-dimensional case with the use

of unrealistic interaction potentials that allowed for analytical

evaluation. In these problems the molecular energies are small,

which should require a quantum-mechanical treatment of both

the internuclear and molecular motion. The analysis relies

upon the direct solution of the Schrödinger equation with the

chosen simplified potentials. Generally, the molecular contin-

uum (breakup) is not taken into account in such calculations.

In this paper we will deal with scattering of a composite

particle (molecule) from a hard-wall potential. Without loss of

generality we will consider the one-dimensional case where the

direction of the molecule translational motion is collinear with

the diatomic molecular axis. Also, we assume that the molecule

velocity is normal to the surface. Previously, a similar problem

was studied numerically by Sato and Kayanuma [13] for the

case of the harmonic binding potential and analytically by

Kavka et al. [9] for a molecule bound by a δ-function potential.

These studies revealed some unexpected behavior for such
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simple systems. The results by Sato and Kayanuma [13]

indicate that the initial molecule ground state cannot survive

after the collision when the energy difference between this

state and the first-excited state goes to zero. Contrarily, Kavka

et al. [9] show that an arbitrarily weakly bound molecule

scattering from an arbitrarily high step potential remains in

the ground state with probability equal to unity. Moreover, the

molecule center of mass cannot get closer to the hard wall

than ξ0 ln(V0/Ein) where ξ0 is a constant of order of the mean

distance between the atoms, V0 is the potential barrier heights

and Ein is the molecule impact energy. The case where the

hard wall is infinitely high is particularly interesting because

the molecule reflects from the surface at an infinitely large

distance from the surface.

In the next section we present the general analytical solution

to the problem of interest for case where V0 is infinite. Our

approach requires no approximations on the form of the

interparticle interaction. To illustrate our theory we give a

numerical example in Sec. III. In the conclusion we present

the summary of the results.

II. THEORETICAL MODEL

In this section we study theoretically how a diatomic

molecule scatters from a hard-wall barrier. The molecule is

treated as two atomic particles, each one of them having mass

m, bound together with some potential Va . We limit our study

to the case where the interatomic motion and motion of the

molecule as a whole are aligned and perpendicular to the

surface, reducing the problem to just one spatial dimension.

Such assumptions are readily relaxed. The position of the

molecule as a whole is specified with x = (x1 + x2)/2 where xi

is the coordinate of the ith atom with respect to the hard wall.

The interatomic separation is ξ = x1 − x2. We assume that

the molecule is initially in the vibrational state with quantum

number νin with energy ǫνin
. The total energy of the system is

E = Ein + ǫνin
, where Ein = k2

in/(2M), kin and M = 2m are

the impact energy, the initial wave number, and the mass of

the molecule, respectively. Atomic units are used throughout

unless specified otherwise.

Let the molecule propagate from x = −∞ to the hard-wall

barrier Vhw at x = 0. The Hamiltonian of the system is

H = −
1

2m

∂2

∂x2
1

−
1

2m

∂2

∂x2
2

+ Va(|x1 − x2|)

+Vhw(x1) + Vhw(x2). (1)
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Alternatively, it can be written as

H = −
1

2M

∂2

∂x2
−

1

2μ

∂2

∂ξ 2
+ Va(|ξ |)

+Vhw

(

x +
ξ

2

)

+ Vhw

(

x −
ξ

2

)

, (2)

where μ = m/2 is the reduced mass of the molecule. The

initial state wave function

�in(x,ξ ) = φνin
(ξ ) exp[ikinx] (3)

is an eigenfunction of the unperturbed Hamiltonian

H0 = −
1

2M

∂2

∂x2
−

1

2μ

∂2

∂ξ 2
+ Va(|ξ |). (4)

In Eq. (3), the function φν describes the vibrational state of

the molecule. The plane-wave term describes the molecule

propagation as a whole.

Hamiltonian H is invariant under mutual permutations of

x1 and x2. This results in the fact that the solution ψ of the

Schrödinger equation

(H − E)ψ(x1,x2) = 0 (5)

must be symmetric [ψ(x1,x2) = ψ(x2,x1)] if φνin
(ξ ) is an even

function of ξ or asymmetric [ψ(x1,x2) = −ψ(x2,x1)] if φνin
(ξ )

is odd.

To find the system wave function ψ satisfying the boundary

condition (3) we transform Eq. (5) to the integral form

ψ (±)(x,ξ )

= φ(±)
νin

(ξ )eikinx +
∑

∫

ν

∫ ∞

−∞
dk

Fν(k)φν(ξ )eikx

E+ − ǫν − k2/(2M)
, (6)

where

Fν(k) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx1φ

∗
ν (x1 − x2)e−ik(x1+x2)/2

× [Vhw(x1) + Vhw(x2)]ψ(x1,x2) (7)

=
∫ ∞

−∞
dx1

∫ ∞

−∞
dx1[φ∗

ν (x1 − x2) ± φ∗
ν (x2 − x1)]

× e−ik(x1+x2)/2Vhw(x1)ψ (±)(x1,x2), (8)

and where the subscript (±) indicates the wave function

symmetry. The sum over ν in Eq. (6) includes both discrete and

continuum states. The factor [φ∗
ν (ξ ) ± φ∗

ν (−ξ )] in the integrand

of the matrix element (8) ensures that only the states with

the symmetry of the initial state survive in the wave function

expansion (6).

In order to solve Eq. (6) we employ the source-function

method developed initially by Masel et al. [14] for the problem

of structureless-particle scattering from a corrugated hard-wall

potential. It was generalized for the case of a structured atomic

particle scattering from the hard-wall potential by Lugovskoy

and Bray [15]. Following this approach we assume that the

product Vhw(x1)ψ (±)(x1,x2) is nonzero only when the particle

with the coordinate x1 is at the barrier (x1 = 0). At this point

the potential changes from zero to infinity. Thus we set

Vhw(x1)ψ (±)(x1,x2) = f (x2)δ(x1), (9)

where f (x) is the source function to be found. In addition we

assume that

f (x2) = 0 when x2 > 0, (10)

since we assume that when one atom stops, both stop. With

the use of Eqs. (9) and (10) the double integral of Eq. (8) can

be reduced to the one-dimensional integral

Fν(k) =
∫ 0

−∞
dξ [φ∗

ν (−ξ ) ± φ∗
ν (ξ )]e−ikξ/2f (ξ ). (11)

To calculate f (ξ ) we will use the fact that the molecule can-

not penetrate the hard-wall-barrier. This means that ψ(x,ξ ) =
0 when x > 0. Using this condition one can calculate the

integral over k in Eq. (6) analytically. After some algebra

we get

ψ (±)(x > 0, ξ ) =
∑

∫

ν

φν(ξ ) exp[ikνx]

×
(

δν,νin
−

2Mπi

kν

Fν(kν)

)

= 0, (12)

where kν =
√

2M(E − ǫν). Note that summation in Eq. (12)

[and (13)] is carried out over both open (E > ǫν) and closed

(E < ǫν) states including continuum states. By multiplying

Eq. (12) by φ∗
ν (ξ ) and integrating the product over ξ one obtains

exp[ikνx]

(

δν,νin
−

2Mπi

kν

Fν(kν)

)

= 0. (13)

For Eq. (12) to be satisfied for any x > 0, we must have

Fν(kν) = −
i

2π

kν

M
δν,νin

, (14)

which is a set of integral equations for f (ξ ) [see Eq. (11)].

Equation (14) shows that Fν(kν) is a pure imaginary number

for ν = νin, otherwise it is zero. Different channels are coupled

with each other through the source function f (ξ ). By using

Eq. (14) one can show that f (ξ ) takes generally complex

values. These equations can be solved by expanding f (ξ ) over

some basis set [15]. In Sec. III we will consider a numerical

example.

As soon as f (ξ ) is calculated one is able to reconstruct

ψ (±)(x,ξ ) for x < 0 with the use of Eqs. (6) and (11).

Explicitly, it is

ψ (±)(x,ξ ) = φ(±)
νin

(ξ ) exp[ikinx] − 2Mπi
∑

∫

ν

φν(ξ )

×
[

eikνx

kν

∫ 2x

−∞
dξ [φ∗

ν (−ξ ) ± φ∗
ν (ξ )]e−ikνξ/2f (ξ )

+
e−ikνx

kν

∫ 0

2x

dξ [φ∗
ν (−ξ ) ±φ∗

ν (ξ )]eikνξ/2f (ξ )

]

.

(15)

If x tends to −∞ the first integral in the square brackets of

Eq. (15) disappears and

ψ (±)(x,ξ ) → φ(±)
νin

(ξ ) exp[ikinx]

−
∑

∫

ν:Im(kν )=0

Cν(kin)φν(ξ ) exp[−ikνx], (16)
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where Cν(kin) = 2MπiFν(−kν)/kν is a function of kin (or

Ein). Summation in Eq. (16) is carried out over the open states

only. Finally, with the use of the asymptotic form (16) one

can define the partial cross sections for the considered one-

dimensional case as follows:

σν(Ein) ≡ |Cν(kin)|2kν/kin = 4M2π2 |Fν(−kν)|2

kνkin

. (17)

The conservation of the flux before and after the collision

results in the relation [15]

∑

∫

ν:Im(kν )=0

σν(Ein) = 1. (18)

Note that the cross sections (17) are dimensionless in our

case.

III. NUMERICAL EXAMPLE

In this section we apply the theory developed in Sec. II to

describe normal collinear scattering of a hydrogen molecule

from a chemically inert solid surface, e.g., LiF. At low impact

energies the molecule-surface interaction can be well approx-

imated with the hard-wall potential [16]. The interatomic

potential is taken to be the Morse potential [17]

Va(|ξ |) = De(e−2a(|ξ |−ξ0) − 2e−a(|ξ |−ξ0)), (19)

where De = 0.1745 a.u., a = 0.979 a.u., and ξ0 = 1.4 a.u.

In the one-dimensional case this potential is symmetric with

respect to the transformation ξ → −ξ where ξ can take values

from −∞ to ∞. It results in the fact that the eigenfunctions

are either even or odd.

The Morse potential (19) supports both discrete and

continuum states. In this work we take all of them into

account on an equal footing in the framework of the continuum

discretization technique. This method was adopted from the

theory of electron-atom collisions [18]. Within this method

the intermolecular state is described with the finite set {φN
ν }

of pseudostates φN
ν where the number of pseudostates, N , is a

variable parameter.

The pseudostates φN
ν and corresponding pseudoenergies ǫN

ν

are obtained upon diagonalization of the Hamiltonian

Hm = −
1

2μ

d2

dξ 2
+ Va(|ξ |) (20)

in some truncated orthogonal basis {χn}N of size N . That is,

they satisfy
〈

φN
ν

∣

∣ Hm

∣

∣φN
ν ′

〉

= ǫN
ν δν,ν ′ , (21)

where

φN
ν =

N
∑

κ=1

Cν,κχκ (ξ ), (22)

with χκ (ξ ) being a basis function and Cν,κ being unknown

coefficients to be calculated from Eq. (21). In this work we

use the Hermite basis set with

χκ (ξ ) =
√

λ

π1/22κκ!
Hκ (λξ ) exp

[

−
(λξ )

2

]

, (23)
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FIG. 1. (Color online) The plot of the interatomic potential

together with the densities of the pseudostates calculated with N = 30

and λ = 2. Each pseudostate density|φN
ν |2, shown with the filled

curves, is positioned at the corresponding pseudoenergy ǫN
ν . The

dark (gray) area is the classically inaccessible region.

where Hκ (λξ ) is the orthogonal Hermite polynomial of degree

κ and λ is an arbitrary parameter.

Pseudostates mimic true eigenstates in the vicinity of the

equilibrium bond distance, ξ0 [19]. What is important is that

the set of generated pseudo wave functions forms a finite

orthonormal basis {φN
ν }. With increasing N , negative-energy

pseudostates converge to true negative-energy eigenstates

of the Hamiltonian (20). The parameter λ from Eq. (23)

determines the rate of convergence. The spectrum of positive

pseudoenergies does not show any signs of convergence. It

gets more dense and spans a wider energy region for larger

values of N . The size of the region depends on the parameter

λ. Also, it increases with N [19]. All physical processes which

we are able to describe with the pseudostate approach have to

occur in this region.

In this work we assume that the molecule is initially in

the ground vibrational state with the quantum number ν = 0.

Figure 1 shows the pseudostate density |φN
ν=0|2 together with

the densities of the other states which can be found in the

wave function expansion (6). They were calculated by solving

numerically Eq. (21) with N = 30 and λ = 3. Comparison

of the found pseudoenergies with the vibrational energies of

molecular hydrogen calculated by others [20,21] shows that

the relative error is less than 0.5% for the two low-lying states.

One can expect that the source function f (ξ ) is localized in

the vicinity of ξ = −ξ0, where ξ0 is the equilibrium distance

between the atoms in the molecule. To compute f (ξ ) we use

the set of pseudo wave functions {φNsf
ν } calculated with the

use of the Hamiltonian diagonalization technique as described

above. The basis parameters λsf and Nsf were different from

those used in the molecular structure calculations. This gave

us flexibility to ensure the fastest convergence of the results.

So we write f (ξ ) as

f (ξ ) =
N/2
∑

ν=0

aνφ
Nsf

ν (ξ ), (24)

substitute this expansion into Eq. (11), and solve Eq. (14)

numerically with respect to the unknown coefficients aν for
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FIG. 2. Source function f (ξ ) calculated for four different values

of the initial wave number kin as indicated in the figure legends. The

solid (broken) line corresponds to the real (imaginary) part of the

function, Re(f ) and Im(f ). The basis parameters were N = 60 and

λ = 2 for the molecular structure and Nsf = 30 and λsf = 3 for the

source function.

each impact energy Ein. Note that both even and odd solutions

of Eq. (21) must be used in Eq. (24) due to the fact that the

expansion basis has to be complete.

Figure 2 shows several solutions of Eq. (14) obtained with

the use of the basis with N = 60. The panel with kin = 9 corre-

sponds to the case where only elastic scattering is possible. The

other three panels illustrate the cases where only one (kin =
15), two (kin = 18), or three (kin = 21) vibrational states can

be excited due to the collision. The parameters of the used

basis sets are given in the caption. As expected the calculated

source functions f (ξ ) are centered around ξ ≈ −ξ0 = −1.4.

We see that f (ξ ) becomes more oscillatory for larger kin.

Also, the region where f (ξ ) is significantly different from

zero increases with kin. In calculations with a limited number

of expansion functions this leads to the fact that numerical

solution of Eq. (14) is inaccurate when kin (or Ein) is too large.

To illustrate this we present, in Fig. 3, the elastic cross

section σN
ν=0 of a hydrogen molecule scattered from the

hard-wall potential calculated with the use of three different

basis sets of sizes N = 40, 50, and 60, with λ = 2. The basis

parameters used to compute the source function are given in

the caption. We see that all calculated cross sections are on

top of each other when the incident energy Ein is less than

∼1.4 eV. For larger energies σN=40
ν=0 deviates from the cross

sections calculated with bigger basis sizes. These two are in

good agreement for the incident energy Ein up to 2.1 eV. One

should note that Eq. (14) changes significantly when different

basis sets for the molecular structure are used. This is due to

the fact that generated positive-energy pseudostates are very

different from set to set. Nevertheless, we see that our solution

is basis independent when the sufficient number of basis states

is taken into consideration.

Having established the robustness of the method, we finally

discuss the physical side of our numerical solution. Figure 4

shows the elastic cross sections σN=60
ν=0 together with the

excitation cross sections σN=60
ν=2 , σN=60

ν=4 , and σN=60
ν=6 [note that

only excitation to the states with even ν is possible due to

N = 60

N = 50

N = 40

Incident energy Ein (eV)

Wave number ki (a.u.)
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la

st
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ct
io
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FIG. 3. Cross sections σN
ν=0 of a hydrogen molecule reflecting

from a hard-wall potential. Calculations were conducted with three

different bases of sizes N = 40, 50, and 60 used to represent the

molecular pseudostates. Parameter λ = 2 in all three cases. The basis

parameters used for computing the source function f (ξ ) were Nsf =
30 and λsf = 3.

the factor [φ∗
ν (ξ ) + φ∗

ν (−ξ )] in the integrand of the matrix

element (8)]. As one can expect no excitation occurs for

Ein < ǫν=2 − ǫν=0 ≈ 0.5 eV. For larger Ei excitation becomes

possible and the flux is divided into two channels so that

the unitarity condition (18) holds. The elastic cross section

σN=60
ν=0 drops down while the excitation cross section σN=60

ν=2

rises up with increasing Ein up to the excitation threshold

of the ν = 4 state. At the threshold σN=60
ν=2 has a cusp-like

maximum. For larger energies σN=60
ν=0 increases slightly for the

whole energy range shown in Fig. 4 while σN=60
ν=2 decreases

gradually. The behavior of σN=60
ν=4 is similar to the behavior

of σN=60
ν=2 , but with a cusp-like maximum shifted to the

next level excitation threshold Ein = ǫν=6 − ǫν=0 ≈ 1.4 eV.

The other cross sections (σN=60
ν=6 , σN=60

ν=8 , and σN=60
ν=8 ) are

small in comparison with σN=60
ν=0 and σN=60

ν=2 . Note that

21.510.5

25201510

1.0

0.8

0.6

0.4

0.2

0.0

ν = 10
ν = 8
ν = 6
ν = 4
ν = 2
ν = 0
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C
ro

ss
se

ct
io

n
σ

N
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6
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FIG. 4. Elastic cross section σN
ν=0 and excitation cross sections

σN
ν of states with ν = 2, 4, 6. and 8 versus Ei . The basis parameters

were the same as for Fig. 2. The vertical grid lines show the position

of the vibrational excitation thresholds.
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similar cusp-like features at the threshold energies were

found for the harmonic interatomic potential by Sato and

Kayanuma [13].

One can see from Fig. 4 that the elastic cross section σN=60
ν=0

dominates over the other cross sections over the whole range

of energy. It rises steadily after reaching the minimum at

the threshold energy Ein = ǫν=4 − ǫν=0 ≈ 0.95 eV. This is

qualitatively different from what was reported by Sato and

Kayanuma [13]. They found that the ground state can be

completely depopulated due to the collision of a molecule

with the hard wall of a finite height for sufficiently large energy

(≈0.6 eV). The dominant contribution to the total flux was due

to the excited channels. One should also mention the results

by Kavka et al. [9] for the case of the infinite zero-range

binding potential which supports only one weakly bound state

and an infinite number of continuum states. Kavka et al. [9]

demonstrated that such a molecule “survives” a collision with

probability equal to unity when breakup is energetically pos-

sible. Thus, we see that our problem of interest demonstrates

surprising variability of solutions depending on the choice of

the binding potential. This variability is due to the complex

interplay of the molecular states coupled by Eq (14). The

important point is that a large number of states is required to

get a convergent solution even when only a few vibrational

channels are open [13].

IV. CONCLUSIONS

In this paper we studied collinear reflection of a diatomic

molecule from a hard-wall potential at the normal angle

of incidence. Our method of solution is based on the

source-function method developed initially by Masel et al. [14]

for the problem of structureless particle scattering from a

corrugated hard-wall potential and modified for the description

of structured particle excitation due to the collision with the

flat hard-wall potential [15]. The second key ingredient of

our approach is the continuum discretization technique which

allows systematic accounting of both discrete and continuum

states of the two-atom system. No approximations for the

interatomic interaction potential is required in this method. Our

approach can be generalized to treat more complex situations

where all six degrees of freedom of a diatomic molecule

are taken into account without any simplifications and the

hard-wall potential is corrugated.

We have conducted calculations for the case of a molecule

bound by the Morse potential. Convergence with increasing

basis size is readily demonstrated, establishing the proof of

principle of the method. In contrast to what was reported by

Sato and Kayanuma [13] for a similar system we found that the

elastic cross section has a minimum at Ein = ǫν=4 − ǫν=0 ≈
0.95 eV. It poses an interesting question about the behavior of

the elastic cross section when the incident energy tends to infin-

ity: To what extent is it possible to depopulate the initial ground

state of the molecule? Presently, we do not know the answer

to this question. The previous publications on the topic [9,13]

deal with two different binding potentials and predict com-

pletely different outcomes. The method reported here is very

general but it requires numerical solution of the integral equa-

tion (14). This becomes problematic for large energies. The

Born approximation, which is usually valid for high energies,

is not applicable for the long-ranged and divergent hard-wall

potential.
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