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Proinsulin is a misfolding-prone protein, making its bio-

synthesis in the endoplasmic reticulum (ER) a stressful

event. Pancreatic b-cells overcome ER stress by acti-

vating the unfolded protein response (UPR) and reducing

insulin production. This suggests that b-cells transition

between periods of high insulin biosynthesis and UPR-

mediated recovery from cellular stress. We now report

the pseudotime ordering of single b-cells from humans

without diabetes detected by large-scale RNA sequenc-

ing. We identified major states with 1) low UPR and low

insulin gene expression, 2) lowUPR and high insulin gene

expression, or 3) high UPR and low insulin gene expres-

sion. The latter state was enriched for proliferating cells.

Stressed human b-cells do not dedifferentiate and

show little propensity for apoptosis. These data suggest

that human b-cells transition between states with high

rates of biosynthesis to fulfill the body’s insulin require-

ments to maintain normal blood glucose levels and UPR-

mediated recovery from ER stress due to high insulin

production.

b-Cells of the endocrine pancreas produce large amounts

of insulin, which is secreted in a finely regulated manner to

maintain blood glucose levels within a narrow range. In-

sulin biosynthesis accounts for .10% of total protein

production under basal conditions and increases up to

50% in the stimulated state (1,2). Proinsulin is a misfolding-

prone protein because up to 20% of initially synthe-

sized proinsulin fails to reach its mature conformation

(3–6). Misfolded proinsulin is refolded or degraded. Under

conditions of high insulin demand, proinsulin misfolding

can exceed the capacity of the b-cells to handle the

misfolded protein load. This puts pressure on the endo-

plasmic reticulum (ER) and results in accumulation of

misfolded proinsulin and cellular stress. The large demand

for proinsulin biosynthesis and folding makes b-cells

highly susceptible to ER stress (7–9).
b-Cells are metabolically active, relying on oxidative

phosphorylation for ATP generation (10). This generates

reactive oxygen species (ROS) and can result in oxidative

stress. b-Cells have low antioxidant defense, further in-

creasing their susceptibility to stress (11,12). ER stress and

oxidative stress can enhance each other, because protein

misfolding results in the production of ROS, and these

species can perturb the ER redox state and cause damage

to nascent proteins (13).

To counteract stress conditions, the b-cells activate

a network of signaling pathways termed the unfolded

protein response (UPR). This is composed of three parallel

pathways that are initiated by the ER transmembrane

proteins IRE1, PERK, and ATF6 (14). These regulators

trigger a signaling cascade that enhances protein folding

activity, reduces ER workload, and promotes clearance of

misfolded proteins. Once cellular stress is cleared and

homeostasis restored, this stress sensor program is deac-

tivated to prevent harmful UPR hyperactivation that could

otherwise lead to apoptosis (14).

b-Cell heterogeneity is well established at the functional

level. Proteome and transcriptome studies confirmed the

heterogeneous nature of mouse and human b-cells and

revealed genes and pathways characterizing these subpop-

ulations (15). b-Cell heterogeneity likely represents dy-

namic states rather than stable and distinct subpopulations

because functional studies have shown that b-cells transition
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between periods of activity and rest. The transitions are not
synchronized between b-cells within individual islets (15).

In this study, we applied large-scale RNA sequencing

(RNAseq) to single human pancreatic islet cells from

donors without diabetes. The b-cells were ordered accord-

ing to their pseudotime. This was obtained by projecting

each cell onto a trajectory, and the ordered sequence of the

cells was used to study dynamic changes in gene expres-

sion. This provides a higher resolution view of the gene
expression landscape due to their dynamic and heteroge-

neous nature and helps understand the complex biolog-

ical processes governing b-cell function. We identified

distinct states with low UPR and low or high insulin gene

expression as well as cells with high UPR activation and

low insulin expression. The gene signatures and enriched

pathways for each state are described.

RESEARCH DESIGN AND METHODS

Human Islets

Islets from 12 donors without diabetes were obtained

from Prodo Laboratories (Supplementary Table 1). Donor

information and diabetes status were obtained from the

patient’s medical record and, if available, the hemoglobin

A1c. Islets were digested at 37°C (10 min) using TrypLE
Express (Life Technologies). Cells were filtered (30-mm),

centrifuged, and resuspended (13 PBS containing 0.04%

BSA). Trypan blue staining revealed 91.2 6 3.3% (n = 12)

cell viability.

RNA Fluorescence In Situ Hybridization

Dissociated cells were placed on slides using Cytospin and

fixed (10% neutral buffered formalin) for 35 min. Islets

were fixed in the same way, embedded in paraffin, and
cut (6-mm sections). Cells and islet sections were permea-

bilized and hybridized with mRNA probes (INS and DDIT3,

FTL, HSPA5, or SQSTM1), according to the manufacturer’s

instructions (Advanced Cell Diagnostics). A fluorescent kit

was used to amplify the mRNA signal, and fluorescein, Cy3,

and Cy5 were detected using a microscope slide scanner

(Axio-Scan.Z1; Zeiss). Fluorescence intensities were de-

termined using the HALO image software module for
RNA fluorescence in situ hybridization (FISH) analysis

(Indica Laboratories).

Single-Cell RNAseq and Read Mapping

Cells were loaded on a Chromium Single Cell Instrument

(10x Genomics). RNAseq libraries were prepared using

Chromium Single Cell 39 Library, Gel Beads & Mutiplex

Kit (10x Genomics). Sequencing was performed on the

Illumina NextSeq500 using Read-1 for transcript read
and Read-2 for three indices, I7 index for cell barcode, I5

index for sample index, and unique molecular identifier

(UMI). Cell Ranger Single-Cell Software Suite (v1.1.0; 10x

Genomics) was used for sample demultiplexing, align-

ment, filtering, and UMI counting. Human B37.3 Genome

assembly and the University of California, Santa Cruz gene

model were used for alignment. Single-cell sequencing data

described in this study can be found within the Gene

Expression Omnibus database using accession number
GSE114297.

Single-Cell Data Analysis

Cells were removed if the number of detected genes was

,500, total number of UMI was,3,000, or viability score

was .0.2 (16). Viability score was defined by the ratio

between the sum of MT-RNR2, MT-ND1, MT-CO1, MT-

CO2, MT-ATP8, MT-ATP6, MT-CO3, and MT-CYB expres-

sion (UMI) and total UMI. A high score indicates low

viability. Mclust (R package) was used to assess cell-

cell contamination and identify islet endocrine cell types.

DensityMclust function estimated bimodal distribution of

GCG, INS, SST, PPY, and GHRL expression, namely, high-

expression and low-expression modes. Cells with more

than one hormone in the high-expression mode were

excluded (e.g., GCGhigh and INShigh). Cells with a single-

hormone in the high-expression mode were identified as

GCG+ (a), INS+ (b), SST+ (d), PPY+ (PP), and GHRL+ (e)

cells. With the retained single-hormone endocrine and

nonendocrine cells, expression data were normalized by

the total UMI and scaled by a factor of 10,000 at cell level.

Seurat package identified cell clusters, cell-type subpop-
ulations, and cluster-enriched genes. A total of 1,166

variable genes were used for the principal component

analysis. Cell clusters were identified using FindClusters

(19 principal components and 0.8 resolution). The first

two t-Distributed Stochastic Neighbor Embedding di-

mensions were used to visualize cell clusters. Enriched

genes for each cluster were identified by FindMarkers

(.25% cell detection; P , 0.05 and log-scale fold change

.0.25). b-Cell subpopulation markers were defined as

enriched genes in one subpopulation over the rest of

the subpopulations, as described above. Enriched endo-

crine genes were obtained by comparing endocrine cells

(a-, b-, d-, PP-, and e-cells) with the nonendocrine cells,

as described above.
The alignment analysis of human islet cells between

this study and three previous studies (17–19) was performed

by Seurat using canonical correlation analysis. The union of

the top 2,000 variable genes of this study and one published

islet study were used to correlate and integrate data from

the two studies. Common cell types and subpopulations

were aligned between the two studies and visualized in two

t-Distributed Stochastic Neighbor Embedding dimensions.

Pseudotime Trajectory Reconstruction

b-Cell subpopulation markers were used by monocle v2.4

(R package) to construct single-cell pseudotime ordering

using the default setting. The b-cell trajectory includes two

branch points, and branch-dependent significant genes

were identified by the BEAM function in monocle. Three

sets of genes were derived to capture differential expres-

sion between the following branches: INSloUPRhi and

INShiUPRlo, INSloUPRlo and INShiUPRlo, and INSloUPRhi

and INSloUPRlo. Significant genes were defined (q, 1210).

Cells from two donors were excluded in the pseudotime
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analysis, because an initial analysis including these cells
identified a skewed root state formed almost exclusively

by these cells (Supplementary Fig. 1A and B). Cells from

10 other donors exhibited relatively uniform distribution

in the trajectory (Supplementary Fig. 1C).

Biological Process Score Calculation

Gene sets of UPR, apoptosis, senescence, and cell cycle

were obtained from IPA Ingenuity, SABiosciences (https://
www.qiagen.com/us/search/rt2-profiler-pcr-arrays/) and

Dominguez et al. (20) (Supplementary Table 2). A score

for each process was average of scaled UMI of all genes in

the gene set. Score distribution was estimated by random

selection of the same number of genes for the specific gene

set with 1,000 iterations. The empirical P value was

calculated against the distribution of each score.

Pathway Enrichment

Cell markers and branch-dependent genes were analyzed

for pathway enrichment with GO, KEGG, and REACTOME

by clusterProfiler (R package). Top enriched gene sets were

selected based on the P value.

RESULTS

Human b-Cell Subpopulations

Islets isolated from 12 donors without diabetes underwent

single-cell RNAseq analysis (Supplementary Table 1).

b-Cells were identified based on their INS expression, as

detailed in the RESEARCH DESIGN AND METHODS. Clustering

of the b-cells according to their transcriptome profiles

revealed four subpopulations (Fig. 1A). Three of the sub-

populations were similar to each other with only a small

number of uniquely enriched genes in each subpopulation:
18 in subpopulation 1, 33 in subpopulation 2, and

18 in subpopulation 3 (Supplementary Table 3). The fourth

subpopulation (5.1% of the b-cells; n = 363) was more

distinct, with 431 enriched genes. In total, 488 genes were

enriched in the subpopulations (Supplementary Table 3).

Pathway analysis revealed that genes involved in protein

folding and ER stress response are highly enriched in the

fourth subpopulation (Fig. 1B). Three other single-cell
RNAseq studies (17–19) have also identified clusters of hu-

man b-cells with an enriched UPR signature (Supplemen-

tary Fig. 2). To exclude the possibility that subpopulation

4 represents artificially stressed cells that arose during the

single-cell isolation process, we performed RNA FISH on

intact islets and dissociated single cells for DDIT3, FTL,

HSPA5, and SQSTM1 that were highly enriched in this

subpopulation. We identified subsets of INS-positive cells
with high expression of these genes at similar frequencies

in the intact islet and dissociated single cells (Supplemen-

tary Fig. 3). This suggests that induction of the stress

response and UPR program is unlikely to originate from

the single-cell dissociation process.

In addition to the b-cells described above, we identified

310 cells (4.4%) that clustered with them but express low

INS in all four subpopulations (17% on average of b-cells)

(Fig. 1C). The existence of low INS-expressing cells (5.6%
[n = 34,575]) was confirmed by RNA FISH (Fig. 1D and E).

The INSmRNA level was lower in the fourth subpopulation

(P = 3.1 3 10258), because 30% of the cells are low INS-

expressing cells. Conversely, INS expression was higher in

the third subpopulation (P = 2.4 3 10212) compared with

the rest of the b-cells (Fig. 1C and Supplementary Table 3).

We investigated the differentiation state of the b-cells

and found that highly enriched endocrine genes were

equally expressed in subpopulation 4 and the other b-cell

populations (Fig. 1F). Collectively, these data show that

human b-cells segregate into four subpopulations. The

cells are fully differentiated, but a subpopulation is char-

acterized by lower INS expression and high levels of UPR-

related genes.

Pseudotime Ordering of Human b-Cells

Although cell clustering is useful to identify subtypes,
reconstructing cell states in continuous processes is diffi-

cult. We therefore used a trajectory analysis to derive

pseudotime of the b-cells. To guide construction of the tra-

jectory, we used the 488 subpopulation markers obtained

from unbiased clustering. The trajectory constitutes two

decision points and five states named by their key features:

1) root (n = 1,079), 2) average INS (n = 317), 3) high INS-

low UPR (INShiUPRlo; n = 2,399), 4) low INS-low UPR

(INSloUPRlo; n = 1,028), and 5) low INS-high UPR (INSloUPRhi;

n = 1,418) (Fig. 2A and B). Expression analysis identi-

fied genes whose expressions are different between the

branches at decision points 1 and 2 (Supplementary Table

4). Figure 2C–E shows heat maps of the scaled expression

of all differentially expressed genes for each branch and

pathways with enriched gene sets (Supplementary Tables

5–7). Branch-dependent transcription factor expression

and the function of key pathways are described below.

Transcription Factor Expression in Human b-Cell

Pseudotime States

We detected 1,316 transcription factors (1,637 annotated)
in human b-cells. Figure 3 shows transcription factors

with differential expression in at least one branch, and

their associated gene cluster names are shown in Fig. 2C–E.

We detected transcription factors associated with ER stress

and UPR regulation (ATF3, ATF4, DDIT3, XBP1, and

CREB3) (14,21,22), important for b-cell maturation and

insulin expression (ISL1, PDX1, MAFA, MAFB, NEUROD1,

NKX2-2, and SIX3) (23–28), ribosomal biogenesis (GTF3A),

and mitochondrial biogenesis (TFB2M) (29,30). We also

found that NFE2L2, which is better known as NRF2 and

a master regulator of the antioxidant response, is differ-

entially expressed between the INSloUPRlo and INShiUPRlo

branches (31). Interestingly, NRF2 protects b-cells from

oxidative stress, lipotoxicity, and DNA damage (31,32).

Insulin Biosynthesis and Stress Recovery Defines

Human b-Cell States

INS expression was significantly different between the

three pseudotime branches: q = 6.6 3 102117 between

diabetes.diabetesjournals.org Xin and Associates 1785
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INShiUPRlo and INSloUPRhi, 2.6 3 10260 between

INShiUPRlo and INSloUPRlo, and 1.9 3 10228 between

INSloUPRlo and INSloUPRhi (Supplementary Table 4).
The INShiUPRlo state constitutes 38% of all pseudotime-

ordered b-cells. Within this state, INS expression was

higher than in the other states and increased from 16 to

67% along the branch. At the tip of the branch, we detected

extreme expressing cells with up to twofold higher INS

expression than the average of the state (Fig. 4A). An

important event to consider in single-cell studies is the

possible capture of doublet cells. Such an event would be
expected to have a higher distribution of gene number and

total UMI compared with singlets. Supplementary Fig. 4A

and B shows that b-cells in the INShiUPRlo do not have

such higher gene number distribution compared with

cells in the rest of the states. Therefore, the extreme INS

expression is unlikely to reflect the capture of doublets.
Among the established activators of insulin biosynthesis,

we found MAFA was significantly expressed between the

branches (q = 5.1 3 10214 between INSloUPRlo and

INSloUPRhi and 2.3 3 10213 between INShiUPRlo and

INSloUPRhi) (Fig. 3A and B and Fig. 4B). The MAFA

expression pattern confirms its importance for regulation

of INS expression.

Genes used to reflect UPR activity were significantly
expressed along pseudotime branches, including ATF4,

CALR, DDIT3, EIF2A, HSP90B1, HSPA5, HSPH1, NFE2L2,

PPP1R15A, VCP, and XBP1 (Supplementary Table 4). To

Figure 1—Human b-cell subpopulations. A: Human b-cells segregated into four subpopulations (b-sub1, b-sub2, b-sub3, and b-sub4).

Other human islet cells are shown in gray. B: Top 5 pathways enriched for b-sub4 subpopulation–enriched genes (P , 1210). C: Boxplot

of INS expression in the b-cell subpopulations. Each gray dot represents an individual b-cell. Each orange dot represents an individual low

INS-expressing cell, with a total of 310 cells (b-sub15 81, b-sub25 116, b-sub35 12, and b-sub45 101). The difference of INS expression

in each b-cell subpopulation was tested by comparing one subpopulation with the other three. INS had significant higher expression in

b-sub3 (P = 2.43 10212) and significantly lower expression in b-sub4 (P = 3.13 10258).D: Representative RNA-FISH image of INS (white) and

DAPI (blue). Cells with low levels of INS are indicatedwith a white arrow. E: Histogram of INS log10 fluorescence intensity determined by RNA-

FISH analysis. Two thresholds (mean 2*SD and mean 4*SD) were used to define b-cells with normal (b) or low INS expression (b-low). F: Heat

map of highly expressed endocrine cell markers showed no differences in expression between the four b-cell subpopulations. Nonendocrine

cells are shown for reference.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ia
b
e
te

s
jo

u
rn

a
ls

.o
rg

/d
ia

b
e
te

s
/a

rtic
le

-p
d
f/6

7
/9

/1
7
8
3
/5

4
1
2
8
1
/d

b
1
8
0
3
6
5
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0365/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0365/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0365/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0365/-/DC1


investigate how UPR activation was related to INS

expression, we plotted a UPR score along the pseudo-

time. Surprisingly, the UPR score revealed an inverse

expression pattern to INS along the branches with

extremes at the tip of the states (Fig. 4C). This was

unexpected, given that insulin is the major secretory

load in the b-cells that may cause ER stress and UPR

activation. However, UPR is a protective mechanism of

the cell to cope with stress, and we hypothesize that the

INSloUPRhi state reflects recovery from stress coupled

Figure 2—Pseudotime analysis identifies five b-cell states. A: Pseudotime trajectory was reconstructed in the 6,241 b-cells, which contains

two branch points. Cells are highlighted by pseudotime ranging from 0 to 8.9. B: States within the pseudotime trajectory are emphasized by

different colors. The number of cells per state are indicated. Analysis of branch-dependent genes is presented for INSloUPRhi and INSloUPRlo

branches (C), INShiUPRlo and INSloUPRhi branches (D), and INShiUPRlo and INSloUPRlo branches (E). Each heat map presents genes

differentially expressed between two branch comparisons, and each row represents the expression level of a gene along the branch

trajectory. Enriched pathways are summarized for each gene cluster. GPCR, G-protein–coupled receptor; TCA, tricarboxylic acid.
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with downregulation of insulin expression. A comparable

stress-coping mechanism of UPR activation leading to

downregulation of insulin gene expression has been shown

in mouse b-cells (33).

Consistent with this notion, we failed to observe upreg-

ulation of apoptosis markers in the INSloUPRhi state,

arguing against the presence of chronic stress with neg-

ative consequences for the b-cells. Overall, apoptosis was

Figure 3—Transcription factors significantly expressed in each pseudotime branch. Transcription factors differentially expressed in each

gene cluster are presented for INSloUPRhi and INSloUPRlo branches (A), INShiUPRlo and INSloUPRhi branches (B), and INShiUPRlo and

INSloUPRlo branches (C ). The gene cluster names are consistent with those shown in Fig. 2C–E.
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negligible, with only two b-cells in the INSloUPRhi state

and one cell in the UPRloINSlo and root states exhibiting

high scores (Fig. 4D). Viability of the cells was also assessed

using a score as previously described (16) and further

supported the previous findings (Supplementary Fig. 4C).

Lastly, we explored the possibility that the pseudotime

states reflect the b-cell’s age. No evidence was found to

support this because cellular senescence was not increased
overall (Fig. 4E). Collectively, the data suggest that b-cells

undergo cycles of insulin biosynthesis and stress recovery.

Stress Response in Human b-Cells

b-Cells in the INSloUPRhi state showed activation of the

antioxidant defense programs. We detected increased

expression of superoxide dismutase isoenzymes, whose

function is to catalyze the conversion of superoxide anions

into hydrogen peroxide (34). In particular, SOD1 and

SOD2 were enriched in the INSloUPRhi state. Antioxidant

system genes involved in glutathione metabolism (CD44,

GCLM, GSTP1, GLRX2, GLRX3, GPX1, GPX2, GPX3, GPX4,

and SLC3A2), thioredoxin metabolism (PRDX1, PRDX2,

PRDX6, TXN, TXNL1, and TXNRD1), quinone detoxifica-

tion (NQO1), and iron storage (FTH1, FTL, and PCBP1)

were also enriched in the INSloUPRhi state and protect

against ROS (Fig. 5) (34–37).

As mentioned above, NRF2 (NFE2L2) is a master

regulator of the antioxidant response and controls the

expression of the superoxide dismutase isoenzymes and

genes involved in glutathione and thioredoxin production

and utilization as well as iron detoxification and storage

(31). Factors promoting the activation or stabilization of

NRF2 (SQSTM1, PARK7, CDKN1A, and MANF) were

enriched in the INSloUPRhi state (38–41). In addition,

expression of genes encoding the inhibitor of differen-

tiation proteins (ID1-3) showed progressive upregulation in

the INSloUPRhi state (Fig. 5B). ID1-3 are important antiox-

idant response factors crucial for b-cell survival under stress

and are associated with positive regulation of the NRF2-

interacting proteins, called small MAF proteins (42). Thus,

b-cells cope with stress by reducing insulin expression

and activating NRF2-dependent antioxidant defense

mechanisms.

INSloUPRhi State Promotes Human b-Cell Proliferation

Mouse b-cells proliferate under conditions of UPR acti-
vation and low insulin production (43,44). Because these

conditions are hallmarks of b-cells in the INSloUPRhi

state, we investigated the existence and location of pro-

liferating b-cells using a proliferation score consisting of

67 cell-cycle genes (Supplementary Table 2). Interest-

ingly, most proliferating human b-cells were found at

the tip of the INSloUPRhi state, with only few cells in the

INShiUPRlo and root states. More proliferating cells were

Figure 4—Pseudotime of human b-cells reveals dynamic states of INS expression and stress recovery. Expression pattern in pseudotime

ordering of INS (A) andMAFA (B). Composite of factors important for each of the following programs were calculated into a score and its value

plotted in pseudotime ordering: UPR (C), apoptosis (D), and senescence (E). Each dot represents a cell colored by the level of composite score.
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in the G1S than in the G2M cell cycle phase (Fig. 6A

and B). Among UPR activation and INS expression, we

found low INS expression was associated with prolifera-

tion (Fig. 6C).

NR0B1 and ZNF143 were among the enriched tran-

scription factors in this state and play important roles for

embryonic stem cell self-renewal and proliferation (Fig. 3A

and B). ZNF143 is a positive regulator of multiple cell-cycle
genes and is a component of a transcriptional network

that regulates cell proliferation (45,46). Furthermore, HES1

expression was increased in the stressed b-cells and

regulates proliferation in progenitor cells through inhibi-

tion of CDKN1B (Fig. 3B) (47). HES4 was also enriched in

this state and is associated with maintenance of stem cell

features (48). Lastly, LYAR expression was higher in the

INSloUPRhi state and is involved in the regulation of mouse

b-cell proliferation (Fig. 3B) (49). Together, these results

extend the observations in mice that low insulin expres-
sion but not UPR activation signals for human b-cells to

proliferate.

Figure 5—During stress recovery, human b-cells activate an antioxidant program. A: Schematic summarizing the different pathways

contributing to cell protection fromROS. The first is iron sequestration by ferritin light and heavy chain (FTL, FTH) and poly(rC)-binding protein

1 (PCBP1). The second is superoxide dismutases (SOD1, SOD2, SOD3). The third is glutathione production, utilization, and regeneration,

which includes the glutamate–cysteine ligase complex modifier subunit (GCLM), glutathione S-transferase (GSTP1), glutaredoxins (GLRX2,

GLRX3), glutathione peroxidases (GPX1,GPX2,GPX3,GPX4), and the system Xct structural component and stabilizer unit (SLC3A2, CD44).

The fourth is composed of thioredoxin production, utilization, and regeneration, which is regulated by thioredoxin (TXN), thioredoxin

reductase 1 (TXNRD1), thioredoxin like-1 (TXNL1), and peroxiredoxins (PRDX1, PRDX2, PRDX6). The fifth is quinone detoxification

by NAD(P)H quinone dehydrogenase 1 (NQO1). B: Expression heat map showing significantly expressed genes between INShiUPRlo

and INSloUPRhi branches, which are presented in A.

Figure 6—Human b-cells proliferate more in a state of low INS expression. Scores of composites of cell cycle regulatory genes were

calculated and used to identify cells in G1S phase (A) and G2M phase (B). Each dot represents a cell colored by the score of the appropriate

gene set. Percentage of cells for each cell cycle phase relative to total cells for the state is shown.C: b-Cells from all pseudotime states were

plotted against their UPR score and INS expression (UMI). Proliferating b-cells, which are highlighted in red, were identified by empirical

P , 0.001 for the G1S or G2M cell cycle scores.
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Human b-Cell Stress Recovery Is Metabolically

Demanding

A surprising observation is that b-cells in the INSloUPRhi

state had high expression of genes involved in energy

production. In particular, we found upregulation of genes

in the glycolytic pathway, tricarboxylic acid cycle, and the

electron transport chain (Fig. 7). In addition, b-cells in the

INSloUPRhi state showed upregulation of genes (G6PD,

RPIA, TALDO, and TKT) encoding enzymes in the pentose

phosphate pathway (Fig. 7A). This pathway provides

ribose-5-phosphate and NADPH for nucleic acid synthesis.
NADPH is used as a reducing agent in the synthetic steps

of fatty acids and steroid hormones along with several

detoxification systems; for example, NADPH is the limiting

substrate for glutathione reductase (50). More impor-

tantly, G6PD is the rate-limiting enzyme in the pentose

phosphate pathway and increases nucleotide production

favoring cell survival and proliferation (51,52). Mice de-

ficient in G6PD are glucose intolerant and have smaller

islets (51). These data suggest that G6PDmight play a role

in human b-cell growth and survival. Collectively, the data

suggest that b-cells in the INSloUPRhi state use more energy

than cells undertaking higher levels of INS expression. The

shift toward a more active pentose phosphate pathway is

likely advantageous for stress recovery and in providing

building blocks for cell proliferation.

DISCUSSION

In this study, we detected heterogeneity among human

b-cells. Pseudotime analysis ordered the b-cells into five

states with varying degrees of insulin gene expression and

UPR activation. Unexpectedly, we found that UPR was

activated in a subset of b-cells expressing low levels

of INS (INSloUPRhi) and appear to represent a state of

recovery from stress. The high levels of INS expression

observed in the INShiUPRlo state are likely to represent

a state of active production. Although we did not observe

many changes in the expression of factors known to par-
ticipate in its biosynthesis, it is possible that these are reg-

ulated at the posttranslational level or are not rate limiting

in this setting. We found little evidence for apoptosis and

dedifferentiation among the b-cells in the different states.

Markers of b-cell dedifferentiation, including NEUROG3,

OCT4, and NANOG, were barely detected or absent under

these nondiabetic conditions (53). Interestingly, most of

the b-cells with a high proliferation score were found in

Figure 7—Stress recovery increases metabolic demand in human b-cells. A: Heat map of significantly expressed genes between the

INShiUPRlo and INSloUPRhi branches. The genes are involved in glycolysis, lactate production, pentose phosphate pathway, or tricarboxylic

acid (TCA) cycle. B: Complexes of electron transport chain (ETC) are presented as individual clusters. C: Working model summarizing the

findings presented in A and B.
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the INSloUPRhi state. This is similar to the situation in
mouse b-cells (43,44). We also found that b-cells in the

INSloUPRhi state have higher expression of genes involved

in energy metabolism than cells in the other states. Based

on these data, we postulate that human b-cells transition

between states of high insulin production, which is likely

to cause cellular stress due to the high propensity of pro-

insulin to misfold, and states of low insulin biosynthesis

and increased UPR-mediated stress recovery (Fig. 8). Os-
cillation between periods of activity and recovery is

supported by studies demonstrating functional hetero-

geneity among b-cells (15).

Humans are endowed with a large number of pancre-

atic islets. Each islet contains ;50% b-cells, and each

cell expresses thousands of insulin-containing granules

(54,55). Only a small fraction of the insulin secretory

granules is typically released to maintain normal blood
glucose levels (55). This suggests spare b-cell capacity and

is supported by partial pancreatectomy studies demon-

strating that humans only start to develop impaired

glucose tolerance after removal of approximately half of

their pancreas and, consequently, half of the b-cell mass

(56,57). Assuming that the remaining b-cells oscillate

between periods of high insulin biosynthesis (activity)

and UPR-mediated stress recovery (rest), the partial pan-
createctomy studies suggest that less than half of the

b-cells are active at any given time. Furthermore, b-cells

in the active state have different glucose thresholds for

stimulation of insulin secretion (15). Collectively, these

data show that b-cells undergo periods of activity and rest,

which requires spare capacity. A snapshot of the dynamic

processes that b-cells undergo could be interpreted as

static conditions rather than transition states. This is an
important consideration when single-cell RNAseq data are

analyzed. Therefore, applying pseudotime analysis allowed us

to follow the progression of gene expression changes leading

to each of the five interconnected b-cell states. We postulate

that b-cells transition between states of activity with high

insulin expression and recovery. We provide unprecedented

insights into the human b-cell transcriptome and the gene

changes associated with these functional states.
MAFA is a transcription factor regulating insulin gene

transcription (25) and was one of few genes with increased

expression in the INShiUPRlo state. Assuming active insulin

secretion in this state, the lack of expression changes in

genes encoding the b-cell stimulus-secretion coupling and

secretory machinery indicate that they are not rate limit-

ing at the transcriptional level for the secretion of the

newly formed insulin. On the contrary, we observed many
genes with increased expression in the INSloUPRhi state. In

particular, we found genes involved in reducing cellular

stress as well as in providing energy and substrates for the

stress recovery processes. We also detected increased rates

of b-cell proliferation in the INSloUPRhi state. Interest-

ingly, our data do not support a correlation between

proliferation and UPR activity but rather with low insulin

gene expression. We did not detect dedifferentiated hu-
man b-cells, even among the lowest insulin expressing

cells. This excludes the possibility that dedifferentiation

is a trigger of b-cell proliferation.

Pseudotime analysis of single human b-cell RNAseq data

from patients with type 2 diabetes could provide valuable

information on shifts in the time that b-cells spend in the

different states and the associated changes in gene expres-

sion. It is tempting to speculate that during chronic high
blood glucose and insulin demand, b-cells spend a larger

proportion of their time in the high insulin gene expression

state and less time in the recovery state. This could lead to

chronic stress and eventually cell death. Indeed, patients

with type 2 diabetes have 20–65% reduced b-cell mass

(58). It would also be interesting to investigate the effects

of diabetes medications on the distribution of human

b-cells between the states to predict the potential for
maintenance of good glycemic control for extended peri-

ods of time or risk for b-cell exhaustion and failure.

The identification of functional states is not unique to

the b-cells among the pancreatic islet cells. In this se-

quencing effort, we found human a-cells segregated into

two closely related clusters with similar GCG expression

and UPR scores and a subpopulation with strong expres-

sion of cell cycle genes and low UPR score. The reason why
human b-cells but not human a-cells become stressed and

need to transition between states of activity and rest is an

important subject for future investigations.
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Figure 8—Human b-cells traverse through dynamic states to meet

insulin demands. Model showing that b-cells undergoing extremely

high insulin biosynthesis (INSex-hi) are likely to become stressed

and retire for a period of recovery (INSex-loUPRhi) that entails UPR

activation and low INS expression. This process is followed by

a transitioning state where INS is still low and UPR activity is

decreased (INSloUPRlo); b-cells are then ready to resume high

insulin expression (INShiUPRlo). Under these states, proliferation

was preferentially found under a state of low INS expression and

high UPR activation.
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