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Abstract

Image blur is caused by a number of factors such as mo-

tion, defocus, capturing light over the non-zero area of the

aperture and pixel, the presence of anti-aliasing filters on a

camera sensor, and limited sensor resolution. We present an

algorithm that estimates non-parametric, spatially-varying

blur functions (i.e., point-spread functions or PSFs) at sub-

pixel resolution from a single image. Our method handles

blur due to defocus, slight camera motion, and inherent as-

pects of the imaging system. Our algorithm can be used to

measure blur due to limited sensor resolution by estimating

a sub-pixel, super-resolved PSF even for in-focus images.

It operates by predicting a “sharp” version of a blurry in-

put image and uses the two images to solve for a PSF. We

handle the cases where the scene content is unknown and

also where a known printed calibration target is placed in

the scene. Our method is completely automatic, fast, and

produces accurate results.

1. Introduction

Image blur is introduced in a number of stages in a cam-

era. The most common sources of image blur are motion,

defocus, and aspects inherent to the camera, such as pixel

size, sensor resolution, and the presence of anti-aliasing fil-

ters on the sensor.

When blur is undesirable, one can deblur an image using

a deconvolution method, which requires accurate knowl-

edge of the blur kernel. In applications where blur is de-

sirable and essential, such as shape from defocus, it is still

necessary to recover the shape and size of the spatially vary-

ing blur kernel.

Recovering a PSF from a single blurred image is an in-

herently ill-posed problem due to the loss of information

during blurring. The observed blurred image provides only

a partial constraint on the solution, as there are many com-

binations of PSFs and “sharp” images that can be convolved

to match the observed blurred image.

Prior knowledge about the image or kernel can disam-

biguate the potential solutions. Early work in this area sig-

nificantly constrained the form of the kernel [6], while more

recently, researchers have put constraints on the underlying

sharp image [3]. In our work, we take the latter approach;

however, instead of using statistical priors, we leverage our

prior assumption more directly. Specifically, we present an

algorithm for estimating regions of a sharp image from a

blurry input—if one can estimate the sharp image, recover-
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Figure 1. Sharp Edge Prediction. A blurry image (top left) and the

1D profile normal to an edge (top right, blue line). We predict a

sharp edge (top right, dashed line) by propagating the max and min

values along the edge profile. The algorithm uses predicted and

observed values to solve for a PSF. Only observed pixels within a

radius R are used. (bottom left) Predicted pixels are blue and valid

observed pixels are green. (bottom right) The predicted values.

ing the blur kernel is possible.

The key insight of our work is that with certain types of

image blur, the location of image features such as edges are

detectable even if the feature strength is weakened. When

the scene content is unknown, we detect edges and predict

the underlying sharp edges that created the blurred obser-

vations, under the assumption that detected edge was a step

edge before blurring. Each pair of predicted and blurred

edges gives information about a radial profile of the PSF.

If an image has edges spanning all orientations, the blurred

and predicted sharp image contain enough information to

solve for a general two-dimensional PSF.

For situations where the scene content can be controlled,

we have designed a printed calibration target whose image

is automatically aligned with a known representation of the

target. We then use this pair to solve for an accurate PSF.

Our method has several advantages over previous ap-

proaches: it measures the entire PSF of an image system

from world to image, it is fast and accurate, and it can solve

for spatially varying PSFs at sub-pixel resolution using only

a single image.

We show results for both unknown scenes and images

of our calibration target. We present deconvolution results

using the recovered PSFs to validate the blur kernels and

show a synthetic experiment to further evaluate the method.
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Figure 2. Image Formation Model. The imaging model consists of two geometric transforms as well as blur induced by motion, defocus,

sensor anti-aliasing, and finite-area sensor sampling. We solve for an estimate of the continuous point-spread function at each discretely

sampled (potentially blurry and noisy) pixel.

We also show that by solving for spatially varying, per-color

channel PSFs combined with per-channel radial distortion

corrections, we can remove chromatic aberrations artifacts.

2. Related Work

The problem of blur kernel estimation and more gener-

ally blind deconvolution is a longstanding problem in com-

puter vision and image processing. The entire body of pre-

vious work in this area is beyond what can be covered here.

For a more in depth study of much of the earlier work in

blur estimation, we refer the reader to the survey paper by

Kundur and Hatzinakos [6].

In the computer vision literature, classical shape-from-

defocus [10] addresses PSF estimation using a parametric

model for blur that is either a “pillbox” or 2D Gaussian

function with a single parameter for the PSF size, i.e., fo-

cal length or kernel radius. For more complex blurs, such

as motion blur, many recent single-image estimation tech-

niques model blurs as a collections of 1D or 2D box blurs

and use segmentation techniques to handle multiple mo-

tions [7, 4, 2]. Shan et al. [12], on the other hand, use a

low-parameter model to remove motion blur due to an ob-

ject translating and rigidly rotating about an axis parallel

to the camera’s optical axis. In contrast with this previous

work, we do not use a parametric model for the PSF and

solve for spatially varying kernels without performing any

explicit segmentation.

There is significantly less work in the area of single im-

age blur estimation using non-parametric kernels. The work

by Fergus et al. [3] is perhaps the most notable method of

this type. Fergus et al. use natural image statistics to derive

an image prior that is used in a variational Bayes formula-

tion. In contrast, we leverage prior assumptions on images

to directly predict the underlying sharp image. We consider

our approach complementary to that of Fergus et al., as our

method excels at accurately computing smaller kernels, and

it can be used for lens and sensor characterization. Their

method is not as well suited to these applications, but excels

at computing large kernels due to complex camera motion,

which is outside the scope of our work.

Our work is conceptually most similar to slant-edge cal-

ibration [11, 1]. These methods recover 1D blur profiles by

imaging a slanted edge feature and finding the 1D kernel

normal to the edge profile that gives rise to the blurred ob-

servations of the known step edge. Reichenbach et al. [11]

note that one can combine several 1D sections to estimate

a 2D PSF. We take a similar approach philosophically to

slant-edge techniques, with three major differences: we ex-

tend the method to directly solve for 2D PSFs, we solve

for spatially varying PSFs, and we present a blind approach

where the underlying step edge is not know a priori.

A related area is modulation transfer function (MTF)

estimation for lenses that uses images of random dot pat-

terns [8]. In theory, infinitesimal dot patterns are useful for

PSF estimation, but in practice, it is not possible to create

such a pattern. In contrast, creating sharp step edges is rela-

tively easy and thus generally preferable [11]. An additional

advantage of our work relative to using dot patterns is that

by using a grid-like structure with regular, detectable cor-

ner features, we can compute a radial distortion correction

in addition to estimating PSFs.

3. Image Formation Model

We now give a brief overview of relevant imaging and

optics concepts needed for PSF estimation. As illustrated

in Figure 2, the imaging model consists of two geomet-

ric transforms: a perspective transform (used when pho-

tographing a known planar calibration target) and a radial

distortion. There are several sources of blur induced by mo-

tion, defocus, sensor anti-aliasing, and pixel sampling area

(fill factor and active sensing area shape). We model all

blur as a convolution along the image plane and account for

depth dependent defocus blur and 3D motion blur by allow-

ing for the PSF to be spatially varying.

Our method estimates a discretely sampled version of

the continuous PSF by either matching the sampling to the

image resolution (which is useful for estimating large blur

kernels) or using a sub-pixel sampling grid to estimate a

detailed PSF, which captures effects such as anti-aliasing

of the sensor and allows us to do more accurate image

restoration. In addition, by computing a sub-pixel PSF, we

can perform single-image super-resolution by deconvolving

up-sampled images with the recovered PSF.

Geometric Transformations: The world to image

transformation consists of a perspective transform and a



radial distortion. With the blind method, we ignore the

perspective transform and operate in image coordinates.

With the non-blind method, where we photograph a

known calibration target, we model the perspective trans-

formation as a 2D homography to map known feature loca-

tions F k on the grid pattern to detected feature points from

the image F d. We use a standard model for radial distor-

tion: (F ′

x, F ′

y)T = (Fx, Fy)T (a0+a1r
2(x, y)+a2r

4(x, y)),

where r(x, y) =
√

F 2
x + F 2

y is the radius relative to the im-

age center.

Given a radial distortion function R(F ) and warp

function which applies a homography H(F ), the full

alignment process is F d = R(H(F k)). We compute the

parameters that minimize the L2 norm of the residual

||F d − R(H(F k))||2. Computing these parameters cannot

be done simultaneously in closed form. However, the

problem is bilinear, and thus we solve for the parameters

using an iterative approach.

Modeling the Discrete Point-Spread Function: The

equation for the observed image B is a convolution of a

kernel K and a potentially higher resolution sharp image

I , plus additive Gaussian white noise, whose result is

potentially down-sampled:

B = D(I ⊗ K) + N, (1)

where N ∼ N (0, σ2). D(I) down-samples an image by

point-sampling IL(m, n) = I(sm, sn) at a sampling rate s
for integer pixel coordinates (m, n). In our formulation, the

kernel K models all blurring effects, which are potentially

spatially varying and wavelength dependent.

4. Sharp Image Estimation

The blurring process is formulated as an invertible linear

system, which models the blurry image as the convolution

of a sharp image with the imaging system’s PSF. Thus, if

we know the original sharp image, recovering the kernel is

straightforward. The key contribution of our work is a re-

liable and widely applicable method for predicting a sharp

image from a single blurry image. In the following sec-

tion, we present our methods for predicting the sharp im-

age. In Section 5, we discuss how to formulate and solve

the invertible linear system to recover the PSF. In the fol-

lowing discussion, we consider images to be single channel

or grayscale; in Section 6, we discuss color images.

4.1. Blind Estimation

For blind sharp image prediction, we assume blur is due

to a PSF with a single mode (or peak), such that when an

image is blurred, the ability to localize a previously sharp

edge is unchanged; however, the strength and profile of the

edge is changed, as illustrated in Figure 1. Thus, by localiz-

ing blurred edges and predicting sharp edge profiles, locally

estimating a sharp image is possible.

We assume that all observed blurred edges result from

convolving an ideal step edge with the unknown kernel.

Our algorithm finds the location and orientation of edges

in the blurred image using a sub-pixel difference of Gaus-

sians edge detector. It then predicts an ideal sharp edge by

finding the local maximum and minimum pixel values, in

a robust way, along the edge profile and propagates these

values from pixels on each side of an edge to the sub-pixel

edge location. The pixel on the edge itself is colored accord-

ing to the weighted average of the maximum and minimum

values according to the distance of the sub-pixel location to

the pixel center, which is a simple form of anti-aliasing (see

Figure 1).

To find the maximum value, our algorithm marches

along the edge normal, sampling the image looking for a lo-

cal maximum using hysteresis. Specifically, the maximum

location is the first pixel that is less than 90% (as opposed to

strictly less than) of the previous value. Once this value and

location are identified, we store the “maximum” value as

the mean of all values along the edge profile that are within

10% of the initial maximum value. An analogous approach

is used for the minimum.

Since we can only reliably predict values near edges, we

only use observed pixels within a radius of the predicted

sharp values. These locations are stored as valid pixels in a

mask, which is used when solving for the PSF, as discussed

in Section 5. At the end of the prediction process, we have

a partially estimated sharp image, as shown in Figure 1.

4.2. Non-Blind Estimation

For non-blind sharp edge prediction, we want to com-

pute the PSF given that we know the sharp image. Since

we anticipate using this technique in a controlled lab setup,

we designed a special calibration pattern for this purpose

(Figure 3). We take an image of this pattern and align

the known grid pattern to the image to get the sharp/blurry

pair needed to compute the PSF accurately. The grid has

corner (checkerboard) features so that it can be automati-

cally detected and aligned, and it also has sharp step edges

equally distributed at all orientations within a tiled pattern,

so that it provides edges that capture every radial slice of

the PSF. (Alternatively, we can say that the calibration pat-

terns provides measurable frequencies at all orientations.)

Furthermore, we represent the grid in mathematical form

(the curved segments are 90◦ arcs), which gives us a very

precise definition for the grid, which is advantageous for

performing alignment.

For non-blind prediction, we continue to assume that ker-

nel has no more than a single peak. Thus even when the

pattern is blurred, we can detect corners on the grid with a

sub-pixel corner detector. Because our corners are actually

balanced checkerboard crossings (radially symmetric), they

do not suffer from “shrinkage” (displacement) due to blur-



Figure 3. Non-Blind Estimation. (left) The tiled calibration pat-

tern, (middle) cropped section of an image of a printed version of

the grid, and (right) the corresponding cropped part of the known

grid warped and shaded to match the image of the grid.

ring. Once corners are found, the ground truth pattern is

aligned to the acquired image. To obtain an accurate align-

ment, we correct for both geometric and radiometric aspects

of the imaging system.

We perform geometric alignment using the corrections

discussed in Section 3. We fit a homography and radial dis-

tortion correction to match the known feature locations on

the grid pattern to corners detected with sub-pixel precision

on the acquired (blurry) image of the printed grid.

We also must account for the lighting and shading in the

image of the grid. We do this by first aligning the known

grid to the image. Then, for each edge location (as known

from mathematical form of the ground truth grid pattern),

the algorithm finds the maximum and minimum values on

the edge profile and propagates them just as in the non-blind

approach. We shade the grid for pixels within the blur ra-

dius of each edge. By performing the shading operation,

our algorithm has corrected for shading, lighting, and radial

intensity falloff. Figure 3 shows the results of the geometric

warp and shading transfer.

5. PSF Estimation

Once the sharp image is predicted, we estimate the PSF

as the kernel that, when convolved with the sharp image,

produces the blurred input image. We formulate the estima-

tion using a Bayesian framework solved using a maximum a

posteriori (MAP) technique. In MAP estimation, one tries

to find the most likely estimate for the blur kernel K given

the sharp image I and the observed blurred image B, using

the known image formation model and noise level.

We express this as a maximization over the probability

distribution of the posterior using Bayes’ rule. The result is

minimization of a sum of negative log likelihoods L(.):

P (K|B) = P (B|K)P (K)/P (B) (2)

argmax
K

P (K|B) = argmin
K

L(B|K) + L(K). (3)

The problem is now reduced to defining the negative log

likelihood terms. Given the image formation model (Equa-

tion 1), the data term is:

L(B|K) = ||M(B) − M(I ⊗ K)||2/σ2. (4)

(The downsampling term D in (1) will be incorporated in

Section 5.1.) M(.) is a masking function such that this term

is only evaluated for “known” pixels in B, i.e., those pixels

that result from the convolution of K with properly esti-

mated pixels I , which form a band around each edge point,

as described in Section 4.1.

The remaining negative log likelihood term, L(K), mod-

els prior assumptions on the blur kernel and regularizes the

solution. We use a smoothness prior and a non-negativity

constraint. The smoothness prior penalizes large gradients

and thus biases kernel values to take on values similar to

their neighbors: Ls(K) = λγ||∇K||2. λ controls the

weight of the smoothness penalty, and γ = (2R + 1)2 nor-

malizes for the kernel area (R is the kernel radius). Since

the kernel should sum to one (as blur kernels are energy

conserving) the individual values decrease with increased

R. This factor is needed to keep the relative magnitude of

kernel gradient values on par with the data term values re-

gardless of kernel size.

We minimizing the following error function:

L = ||M(B) − M(I ⊗ K)||2/σ2 + λγ||∇K||2, (5)

subject to Ki ≥ 0, to solve for the PSF using non-negative

linear least squares using a projective gradient Newton’s

method. We currently estimate the noise level σ using a

technique similar to that of Liu et al. [9], and we have em-

pirically found λ = 2 to work well.

5.1. Computing a Super-Resolved PSF

By taking advantage of sub-pixel edge detection for

blind prediction and sub-pixel corner detection for non-

blind prediction, we can estimate a super-resolved blur ker-

nel by predicting a sharp image at a higher resolution than

the observed image.

For the blind method, in the process of estimating the

sharp image, it is necessary to rasterize the predicted sharp

edge-profile back onto a pixel grid. By rasterizing the sub-

pixel sharp-edge profile onto an up-sampled grid, we can es-

timate a super-resolved sharp image. In addition, at the ac-

tual identified edge location (as before), the pixel color is a

weighted average of the minimum and maximum, where the

weighting reflects the sub-pixel edge location on the grid.

For the non-blind method, we also must rasterize the

grid pattern at a some desired resolution. Since we detect

corners at sub-pixel precision, the geometric alignment is

computed with sub-pixel precision. Using the mathemati-

cal description of our grid, we can choose any upsampled

resolution when rasterizing the predicted sharp image. We

also perform anti-aliasing, as described in Section 4.2.

To solve for the PSF using the super-resolved predicted

sharp image IH and the observed (vectorized) blurry im-

age b, we modify Equation 4 to include a down-sampling

function according to our image model (Equation 1). We

consider b̂H = AHkH to be super-resolved sharp image

blurred by the super-resolved kernel kH , where AH is the

matrix form of IH . Equation 4 is then ||b−DAHkH ||2 (we
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Figure 4. Recovering Blur Kernels of Different Sizes and Orientations. We convolved the sharp original version of the image shown in

Figure 1 with kernels of 13 and 17 pixels for three different orientations. Each set is a side by side comparisons of the ground truth (left),

our recovered kernel (middle), and the result of running Fergus et al.’s [3] method (right).

have left out the masking function for readability). D is a

matrix reflecting the down-sampling function: B̂L(m, n) =
B̂H(sm, sn).

5.2. Computing a Spatially Varying PSF

Computing a spatially varying PSF is straightforward

given our formulation—we simply perform the MAP esti-

mation process described in the previous section for sub-

windows of the image. The process operates on any size

sub-window as long as enough edges at different orienta-

tions are present in that window. In the limit, we could com-

pute a PSF for every pixel using sliding windows. We have

found, in practice, that such a dense solution is not neces-

sary, as the PSF tends to vary spatially relatively slowly.

Our method requires enough edges to be present at most

orientations. When using the entire image, this is not usu-

ally an issue; however, when using smaller windows, the

edge content may under-constrain the PSF solution. We

have a simple test that avoids this problem. We ensure

that (a) the number of valid pixels in the mask described

in Equation 4 is greater than the number of unknowns in the

kernel, and (b) we compute a histogram of 10 degree bins

of the detected edges orientations and ensure that each bin

contains at least 100 edges. When this check fails, we do

not compute a kernel for that window.

6. Chromatic Aberration

In the previous sections, we did not explicitly address

solving for PSFs for color images. To handle color, one

could convert the image to grayscale. In many cases this is

sufficient; however, it is more accurate to solve for a PSF

for each color channel. This need arises when chromatic

aberration effects are apparent.

Due to the wavelength-dependent variation of the in-

dex of refraction of glass, the focal length of a lens varies

continually with wavelength. This property causes longi-

tudinal chromatic aberration (blur/shifts along the optical

axis), which implies that the focal depth, and thus amount

of defocus, is wavelength dependent. It also causes lateral

chromatic aberration (blur/shifts perpendicular to the opti-

cal axis). We refer the reader to the paper by Kang [5] for a

more detailed discussion of these artifacts.

By solving for a PSF per color channel, we can model the

longitudinal aberrations; we use a per-color channel radial

distortion correction to handle the lateral distortions. We

correct for lateral distortions by first performing edge detec-

tion on each color channel independently and only keeping

edges that are detected within 5 pixels of each other in R,

G, and B. We then compute a radial correction to align the

R and B edges to the G edges and then perform blind sharp

image prediction.

To correct for any residual radial shifts, we use the green

edge locations for all color channels so that all color bands

have sharp edges predicted at the same locations. One could

perform this last step without correcting radial distortion

first and allow the shifts to be entirely modeled within the

PSF; however, we have found the two stage approach is bet-

ter, as it removes some aberration artifacts even when there

is not enough edge information to compute a PSF, and by

removing the majority of the shift first, we can solve for

smaller kernels.

If we have access to RAW camera images, we can com-

pute more accurate per-channel PSFs by accounting for the

Bayer pattern sampling during PSF computation instead of

using the demosaicked color values. We solve for a PSF at

the original image resolution, which is 2x the resolution for

each color channel and use the point sampling function dis-

cussed in Section 3, where the sampling is shifted according

to the appropriate Bayer sample location.

7. Results

To validate our blind prediction method, we synthetically

blurred a sharp image with oriented Gaussian kernels of 13

and 17 pixels in diameter for three different orientations,

added Gaussian white noise with standard-deviation 0.01

(where 0=black and 1=white), and then estimated the blur

kernel using our blind method. Figure 4, shows a compari-

son of the ground truth kernels, our recovered kernels, and

the result of running Fergus et al.’s method. Our blind algo-

rithm recovers the size and shape of each kernel accurately.
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Figure 5. Defocus and Slight Motion-Blur. (a) The original blurred image and (b) the deconvolved output using our recovered PSF. (c–d)

Zoomed-in versions of the original and deconvolved image respectively. (e) The kernel recovered using the method of Fergus et al. [3] and

(f) our recovered kernel.

In Figures 5 and 7, we show results for estimating ker-

nels for images with real, unknown blurs, where there is

both defocus and camera motion blur. Our method pre-

dicts slightly asymmetric disk-like kernels that are consis-

tent with defocus and slight motion blur.

To qualitatively validate these kernels, we deconvolve

the input images using the Lucy-Richardson algorithm. We

chose this over other methods as it produces results with

a good balance of sharpness and noise reduction. Further-

more, the method is less forgiving than some newer meth-

ods, which allows for better validation. (Deconvolution

with a incorrect kernel leads to increased ringing artifacts,

as shown in Figure 6). Our resulting deconvolved images

are significantly sharper and show relatively minimal ring-

ing artifacts, which indicates that the kernels are accurate.

In Figure 5, we also compare our recovered kernel to a

result from running Fergus et al.’s code. The kernel ob-

tained by their method has more noise than ours, does not

have a shape consistent with defocus blur, and the size of

the non-zero area of the kernel does not match the amount

of blur seen in the input image. Fergus et al.’s method

took 21 minutes, while ours took 2.5 seconds for the origi-

nal resolution and 9.5 seconds at 2x super-resolution. Our

method is significantly faster as its running time scales with

the number of edges and kernel size, while the Fergus et al.

method is a multi-resolution approach whose speed scales

with image size and kernel size. Our method is a couple

seconds faster when using regular least-squares instead of a

non-negative version; however, more smoothing is needed

to suppress large negative values. Thus we prefer to enforce

non-negativity as it produces sharper PSFs.

Figure 8 displays an image with camera motion blur. Our

recovered kernel correctly shows the diagonal motion blur

that is apparent in the input image. The deconvolved image

is much sharper with minimal ringing.

Figure 6. Kernel Size and Orientation. Image deconvolved with

(left) our kernel, (middle) our kernel scaled 20% larger, and (right)

our kernel rotated by 45
◦. The middle and right images have more

ringing (most apparent at the bottom of the word “Leicester”).

In Figure 9, we show super-resolution results where we

have taken a sharp image, bicubically down-sampled it by

4x, and then solved for a 4x super-resolved kernel from the

down-sampled input. We compare the original full resolu-

tion image to a bicubically up-sampled version of the low-

resolution image and to the upsampled image deconvolved

with our recovered kernel. The deconvolution results show

a sharpening and recovery of high-frequency texture that is

consistent with the full resolution images.

Figure 10 shows results for our calibration grid captured

with an 11 mega-pixel Canon 1Ds using a Canon EF 28-

200mm f3.5-5.6 lens at two apertures and focal lengths. For

each image, we computed spatially varying PSFs by com-

puting kernels for non-overlapping 220-pixel (the size of

one grid tile) windows across the image at 2x resolution,

i.e., two times the Bayer sampling resolution. Each PSF

is displayed according to the location of its corresponding

image window. The recovered PSFs show some interesting

properties. The PSFs should be images of the aperture, and

some kernels do show the shape of the aperture, which we

know from the lens specifications to have 6 blades. They

Figure 7. Defocus and Slight Motion-Blur. (top left) The original

blurred image and (top right) the deconvolved output with the re-

covered kernel displayed in the top right of the image (the kernel

has been enlarged by 10x for display). (bottom row) Zoomed-in

versions of the original and deconvolved image, respectively.



Figure 8. Motion Blur. (top row) The original blurred image (left)

and the deconvolved output (right) with the recovered kernel dis-

played in the top right of the image (the kernel has been enlarged

by 10x for display). (bottom row) Zoomed-in versions of the orig-

inal and deconvolved image, respectively.

also show “donut” artifacts that can occur at some settings

with lower-quality lenses. Perspective distortion across the

image plane and vignetting (clipping of the aperture) by

the lens barrel are also visible. For comparison we imaged

back-lit pinholes at the same camera settings. Imaging pin-

holes to measure PSFs has some inherent problems due to

the pinhole actually being a disk and not an infinitesimal

point and due to diffraction; however, these images validate

our recovered PSFs.

We also acquired a very sharply focused image, so that

we could measure sub-pixel blur. Figure 11 shows an image

of our grid from a 6 mega-pixel Canon 1D, using a high-

quality Canon EF 135mm f/2L lens. We show recovered

PSFs at 1x, 2x, 8x, and 16x sub-pixel sampling. The PSFs

using higher sub-pixel resolution show an interesting struc-

ture that results from a combination of diffraction, lens im-

perfections, and sensor anti-aliasing and sampling.

Figure 12 shows a result for performing blind chromatic

Figure 9. 4x Super-Resolution. (left) The original image and

zoom-in, (middle) the original image bi-cubically downsampled

and re-upsampled by 4x and zoom-in, (right) the upsampled image

deconvolved using the recovered 4x super-resolved kernel (dis-

played in the top right of the image–the kernel has been enlarged

by 10x for display) and a zoom-in on the bottom.

(a) 150mm f5.6 (b) 145mm f10

Figure 10. Different Apertures and Focal Lengths. (first row)

Cropped portions of the observed blurred images, (second row)

recovered spatially varying PSFs (green channel only), (third row)

images of pinholes at the same depths and settings, and (fourth

row) our recovered PSFs convolved with a disk the size of the pin-

hole. For (a) each PSF is 33× 33 pixels and (b) they are 41× 41

pixels. The PSFs reflect the shape of the aperture and show per-

spective distortion and vignetting across the image plane.

aberration correction for a JPEG image from a Canon S60

using a 5.8mm focal length at f8. After performing radial

distortion correction and piecewise deconvolution using the

spatially varying PSF, the aberration artifacts are signifi-

cantly reduced. Figure 13 shows chromatic aberration cor-

rection for our non-blind method.

To view full resolution versions of our results, including

additional examples, visit http://vision.ucsd.edu/kriegman-

grp/research/psf estimation/.

8. Discussion and Future Work

We have shown how to recover spatially varying PSFs at

sub-pixel precision that capture blur due to motion, defo-

cus, and intrinsic camera properties. Our method is fast,

straightforward to implement, and predicts kernels accu-

rately for a wide variety of images. Nevertheless, our

method does have some limitations, and there are several

avenues for future work.

The primary limitation of our method is that we can only

solve for kernels with a single peak. This limitation is due

to our reliance on an edge detector to find a single location

for every blurred edge. In the case of a multi-peaked ker-

nel, our method will incorrectly interpret the “ghost” copies



(a) (b) (c) (d) (e)

Figure 12. Blind Chromatic Aberration. (a) Recovered spatially varying PSFs for red, green, and blue shown as a color image. PSFs are

only computed where there are enough edges observed. (b) The original image, (c) after radial correction and deconvolution the aberrations

are significantly reduced, and (d–e) zoomed-in versions and intensity profiles for (b–c).

of edges as independent edges. While we have shown

that single-peaked kernels model many commonly occur-

ring cases of blur, we would like to extend our method to

handle multi-modal kernels. One option is to group each

stronger edge with its weaker ghost edges using contour

matching. Once the ghost edges are identified, we could

perform sharp edge prediction only for the primary edges.

As each sharp edge profile gives information about a ra-

dial slice of the PSF, it is necessary for an image, or image

window, to have edges (or at least high-frequency content)

at most orientations. If some orientations are lacking, our

regularization terms can compensate; however, there is a

breaking point, and there may not always be enough edge

information to properly compute a PSF. In these cases, a

low parameter kernel model may be more appropriate, but

our sharp image prediction could still be be used to improve

more traditional parametric kernel estimation procedures.

We also plan to try using robust least squares to compensate

for erroneous edge detections or profile fits.

Lastly, we would like to characterize more lenses and

cameras. We would like to build a database that the vision

and photography community could contribute to by using

our pattern and code to take their own measurements.
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Figure 13. Chromatic Aberration. (left) The recovered spatially

varying PSFs for red, green, and blue shown as a color image.

The red and blue fringing is reflected in the PSF image and the

PSFs are larger towards the edge of the image and spread along

the direction orthogonal to the optical axis. (middle) Zoom-in on

the input image. (right) After radial correction and deconvolution

the aberrations are significantly reduced.


