
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 721–739
PSFGA: Parallel processing and evolutionary
computation for multiobjective optimisation

F. de Toro Negro a,*, J. Ortega b, E. Ros b, S. Mota b,
B. Paechter c, J.M. Mart�ın a

a Department of Electronic Engineering and Computer Science, University of Huelva, E.P.S. La Rabida,

Crtra Huelva – La Rabida s/n, 21047 Huelva, Spain
b Department of Computer Technology and Computer Architecture, ETSI inform�atica, c/Daniel Saucedo

Aranda, University of Granada, 18071 Granada, Spain
c School of Computing, Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, Scotland, UK

Received 10 November 2003; accepted 15 December 2003

Available online 20 May 2004

Abstract

This paper deals with the study of the cooperation between parallel processing and evolu-

tionary computation to obtain efficient procedures for solving multiobjective optimisation

problems. We propose a new algorithm called PSFGA (parallel single front genetic algo-

rithm), an elitist evolutionary algorithm for multiobjective problems with a clearing procedure

that uses a grid in the objective space for diversity maintaining purposes. Thus, PSFGA is a

parallel genetic algorithm with a structured population in the form of a set of islands. The per-

formance analysis of PSFGA has been carried out in a cluster system and experimental results

show that our parallel algorithm provides adequate results in both, the quality of the solutions

found and the time to obtain them. It has been shown that its sequential version also outper-

forms other previously proposed sequential procedures for multiobjective optimisation in the

cases studied.
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1. Introduction

Most real-world optimisation problems are multiobjective in nature, since they

normally have several (usually conflicting) objectives that must be satisfied at the

same time. These problems are known as MOP (multiobjective optimisation prob-
lems) [1]. The notion of optimum has to be re-defined in this context, as we no longer

aim to find a single solution; a procedure for solving MOP should determine a set of

good compromises or trade-off solutions, generally known as Pareto optimal solu-

tions from which the decision maker will select one. These solutions are optimal

in the wider sense that no other solution in the search space is superior when all

objectives are considered.

Evolutionary algorithms (EAs) have the potential to find multiple Pareto optimal

solutions in a single run and have been widely used in this area [1–3]. After the first
studies on multiobjective optimisation evolutionary algorithms (MOEAs) in the mid-

1980s, a number of Pareto-based techniques were proposed [4–6]. These approaches

did not explicitly incorporate elitism [2]: recently, however, the importance of this

concept in multiobjective searching has been recognized and supported experimen-

tally [2,7,8].

EAs are naturally prone to parallelism since most variation operators can be eas-

ily undertaken in parallel [9]. Much work has been reported about the performance

of parallel EAs applied to single objective optimisation problems [10], but little in-
sight has been given about the behaviour of these algorithms in multiobjective opti-

misation problems.

The development of parallel evolutionary algorithms for multiobjective problems

involves the analysis of different paradigms for parallel processing and their corre-

sponding parameters. Thus, this is not a simple question and not many publications

have appeared dealing with the topic. In [11] a generic formulation for parallel mul-

tiobjective evolutionary algorithms (pMOEA) is provided and questions related with

migration, replacement and niching schemes in the context of pMOEA are discussed.
In this way [11] is a very good reference for a complete insight of the pMOEA field.

It is possible to speed up a multiobjective evolutionary algorithm by distributing

the work involved in the evaluation of the fitness functions for the individuals in the

population. In the case of multiobjective evolutionary algorithms we have a high

amount of parallelism, not only considering that we have a set of solutions to eval-

uate in the population, but also taking into account the set of objectives to optimise.

Nevertheless, in this paper we are not interested in this kind of parallelism that, of

course, allows a very good way to accelerate the optimisation algorithm. Here, we
consider another parallel approach based on a spatial decomposition of the popula-

tion across the set of processors in the computer, not only to get a faster optimiser

but also to obtain solutions with better quality.

In this sense, some of the authors proposed the SFGA [12], an elitist multiobjec-

tive evolutionary algorithm that has been successfully used in real-world optimisa-

tion applications [13–15] and the PSFGA [12], a pMOEA based on SFGA.

Among the different four major paradigms for pMOEA [11] (master-slave, island, dif-

fusion, or hybrid), PSFGA uses the island paradigm.
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In [11] four basic pMOEA based on the island paradigm are described: (1) islands

execute the same MOEA; (2) islands execute different MOEA; (3) each island eval-

uates a different subset of objective functions; and (4) each island considers a differ-

ent region of the search domain. Taking into account this classification, PSFGA can

be included in the fourth group. In order to provide an adequate cover of the search
space and to provide a balanced workload to reach good levels of efficiency, migra-

tion of solutions among processors should be implemented. In PSFGA, this is done

through communication between the processors that execute each island and a cen-

tral or master processor that executes a number of serial generations and redistribute

the population according to the known Pareto front.

This paper reviews SFGA and PSFGA and extend previous work [12] by adding

new experimental results that explore the benefits of the parallel scheme and its per-

formance in a cluster system.
In this paper, Section 2 introduces the MOPs and reviews the single front genetic

algorithms. Section 3 is devoted to the experimental results. This section covers the

comparison between SFGA (the sequential version of PSFGA), SPEA [7], one of the

state-of-the art elitist MOEAs (multiobjective optimisation evolutionary algorithm)

and PSFGA. The concluding remarks are summarized in Section 4.
2. Evolutionary multiobjective optimisation and the single front genetic algorithms

A multiobjective optimisation problem (MOP) can be defined [1] as one of finding

a vector of decision variables x 2 U � Rn that satisfies a set of constraints and opti-

mises a vector function:
f ðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fkðxÞ�T ð1Þ

whose elements represent the objectives. These functions form a mathematical

description of performance criteria, and are usually in conflict with each other. The

meaning of optimum is not well defined in this context, so it is difficult to have a

vector of decision variables that optimises all the objectives at the same time in these
problems. Therefore, the concept of Pareto-optimality is used. Thus, a point

x� 2 U � Rn is defined as Pareto optimal (for minimization problems) if the fol-

lowing condition is satisfied:
8x 2 U; 9i 2 f1; . . . ; kg=fiðx�Þ < fiðxÞ ^ 8j 6¼ i 2 f1; . . . ; kgfjðx�Þ6 fjðxÞ ð2Þ

This means that x� is Pareto optimal if no feasible vector x exists that would decrease

one criterion without causing a simultaneous increase in at least one of the others.

The notion of Pareto optimum almost always gives not a single solution, but rather a

set of solutions called non-inferior or solutions. This set of solutions is known as the
Pareto front. As, in general, it is not easy to find an analytical expression for the

Pareto front, the usual procedure is to determine a set of Pareto optimal points that

provide a good approximate description of the Pareto front.

Evolutionary algorithms are stochastic optimisation procedures which apply a

transformation process, inspired in the species natural selection, to a set (population)



Fig. 1. General functioning of an evolutionary algorithm: A selection procedure select a subset of individ-

uals from the population to the mating pool by using a (set of) fitness function(s). Individuals from the

mating pool are transformed by applying variation operators (crossover and mutation) and then the off-

spring set is obtained. Finally next population is obtained using best solutions from the offspring set and

the Mating pool. The procedure continues till an stop condition is satisfied (e.g. some iterations are com-

pleted).

724 F. de Toro Negro et al. / Parallel Computing 30 (2004) 721–739
of coded candidate solutions (individuals) of the problem (Fig. 1). These procedures

are especially suited for multiobjective optimisation because they are able to capture

multiple Pareto-optimal solutions in a single run, and may exploit similarities of

solutions by recombination. Indeed, some research suggests that multiobjective opti-

misation might be an area where EAs perform better than other search strategies.
The considerable amount of research related to MOEAs currently reported in the lit-

erature is evidence of present interest in this subject. A completed repository of re-

search publications in the field of multiobjective optimisation evolutionary

algorithms (MOEAs) can be found in [14].

In order to maximize the knowledge of the search space the Pareto-optimal solu-

tions have to be uniformly distributed along the Pareto front, so MOEAs have to

incorporate diversity preservation methods [1]. In addition, the use of elitism in a

controlled way in this algorithms is becoming the cornerstone of the current research
in the field [1].

On the other hand, it has been reported [9] that the use of parallel structured-pop-

ulation EAs may lead not only to a faster algorithm––with regard to the sequential

version––but also to a superior numerical performance. However, little work has

been reported about the performance of this kind of algorithms when applied to mul-

tiobjective optimisation problems. In what follows, both SFGA and PSFGA are de-

scribed. For further details about these algorithms [12] should be consulted.

2.1. SFGA (single front genetic algorithm)

The SFGA [12], is an elitist Pareto-based algorithm for multiobjective optimisa-

tion (Fig. 2). In SFGA, all non-dominated solutions from the population are copied



Fig. 2. Pseudo-code for the single front genetic algorithm.
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to both the mating pool and the offspring set. The rest of individuals necessary for

the offspring set to meet the size of the population are obtained from the application
of variation operators to the mating pool (individuals). Finally the offspring set re-

place the previous population and the process goes on. To avoid the stagnation of

the evolution (the number of solutions become equal to the size of the population

so no new solutions are created) a clearing procedure is introduced (see pseudo-code

in Fig. 3). This procedure eliminates some individuals, so only one representative

solution remains in each area of the objective space (Fig. 4). Furthermore, the clear-

ing procedure function as a diversity preservation method [1] encouraging the dis-

similarity between the solutions in terms of distance in the objective space.

2.2. PSFGA (parallel single front genetic algorithm)

In PSFGA [12], the population is sorted with respect to one of the components of

the vector function (Eq. (1)) and divided into subpopulations of equal size. In each



Fig. 3. Pseudo-code for the clearing procedure integrated in SFGA.
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subpopulation, the SFGA (Fig. 2) is executed. After some generations, all individu-

als are gathered and SFGA is applied to the whole population for some further gen-

erations. Then, individuals are sorted by a different component of the vector function

and redistributed again. Thus, the PSFGA has alternate sequential iterations with

the whole population and parallel iterations within the subpopulations.

Thus, PSFGA has a two-level mechanism to maintain the diversity in the popu-
lation: at high-level PSFGA presents a structured-population island model that

minimizes the recombination between individuals from different subpopulations; at

low-level, the clearing procedure prevents the crowding of the individuals in each

subpopulation. Both mechanisms are applied in the objective space.

PSFGA uses a Pareto-local selection scheme [1]during the parallel iterations. Be-

cause the condition of Pareto-optimality is applied locally, some individuals may

be locally but globally dominated (see Fig. 8). However, the Pareto-local selection

scheme is only applied in parallel iterations, and the impact on the overall perfor-



Fig. 4. Clearing procedure depiction (objective space) in a biobjective problem.
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mance may be inferior to the benefits in time execution when a parallel hardware to

execute the algorithm is used. In addition to this and as mentioned before, the

Pareto-local selection scheme helps to preserve diversity in the population, so an

empirical performance analysis is needed in order to find out the influence of these
different effects.
3. Experimental results

Zitzler benchmark functions [7] (see Appendix A) have been used to evaluate the

algorithms. These functions were selected by taking into account a wide range of fea-

tures that may cause difficulties for an MOEA such as convexity (function ZDT1),
non-convexity (ZDT2), discreteness (ZDT3), multimodality (ZDT4), and non-uni-

formity (ZDT6).

For performance comparison, the hyperarea metric [1,7] has been used. The hy-

perarea for minimization problems is the volume of the objective domain that is
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no dominated by a given set of individuals. In SFGA, the clearing radius is set to

0.01 and the clearing threshold to 0.8 (the clearing procedure is only activated when

more than 80% of individuals are ones).

3.1. SPEA–SFGA comparison

The mutation probability per gene used was 0.01. The algorithms were executed

30 runs for each experiment. The size of the external archive of SPEA was set to 80

and the crossover probability used was 0.6. In Tables 1 and 2 the results of the per-

formance comparison (hyperarea) between SFGA and SPEA are shown for different

number of evaluations (10 000, 20 000 and 40 000). As can be seen, SFGA obtains

better results (lower hyperareas) than SPEA in most of the cases. Furthermore,

SPEA has showed a severe variability in the results for ZDT4 and ZDT6 functions.
Fig. 5 shows the Pareto-optimal solutions obtained by both algorithms using the

same initial population.

3.2. SFGA–PSFGA comparison

The pseudo-code of PSFGA is shown in Figs. 6 and 7. The tasks of the algorithms

have been organized in two different algorithms. The master algorithm (Fig. 6) runs

SFGA on the whole population and distributes the individuals. The worker algo-
rithm (Fig. 7) runs SFGA on the subpopulation.

The total number of function set evaluations performed by PSFGA in each epoch

of the algorithm (a parallel computing on the subpopulations followed by a serial

computing on the whole population, an a population redistribution) is given by
Table 1

Hyperarea of the Pareto-optimal solutions obtained by SFGA

Test function Hyperarea (10 000) Hyperarea (20 000) Hyperarea (40 000)

ZDT1 0.554± 0.082 0.442±0.053 0.398± 0.042

ZDT2 1.042± 0.263 0.854±0.043 0.812± 0.046

ZDT3 0.173± 0.162 0.113±0.045 0.082± 0.035

ZDT4 5.242± 3.124 2.483±1.643 1.967± 1.123

ZDT6 3.858± 0.623 3.523±0.532 3.245± 0.520

Table 2

Hyperarea of the Pareto-optimal solutions obtained by SPEA

Test function Hyperarea (10 000) Hyperarea (20 000) Hyperarea (40 000)

ZDT1 0.602± 0.086 0.445±0.057 0.395± 0.024

ZDT2 1.153± 0.356 0.853±0.825 0.823± 0.723

ZDT3 0.256± 0.133 0.123±0.052 0.092± 0.042

ZDT4 6.823± 6.234 2.924±1.654 1.945± 1.245

ZDT6 4.123± 4.023 3.334±3.102 3.128± 0.923
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Fig. 5. Pareto-optimal solutions to the test problems (executions with the same initial population) found

by SFGA and SPEA. The known Pareto front is also represented as a reference of the quality of the solu-

tions.
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Eq. (3), where genser is the number of iterations performed with the whole popula-

tion, genpar is the number of iterations performed in subpopulations, and n_workers

is the number of subpopulations.



Master Process

01 Initiate algorithm parameters

02 Initiate random population P of size pop_size 

03 Create n_workers slave processes

04 obj ← 0

05 Rank individuals in P according to objective function fobj

06 for  i:=1 t on_workers

07 Create subpopulation SP [i] of size subpop_size

08 for  j:=1 to subpop_size

09               SP[i][j] ← P[subpop_size*(i-1)+j]

end for

10 Send parameters to i-slave process 

11 Send subpopulation SP [i] to i-slave process 

end for

12 for  k:=1to n_epoch     

13 for  i:=1 to n_workers

14 Receive subpopulation SP [i] from i-slave process 

endfor

15 for  j:=1 to subpop_size

P[subpop_size*(i-1)+j] ← SP[i][j]

endfor

16 Execute SFGA on P for genser generations

18          obj ←

17 Rank individuals in P according to objective function  fobj

18 for i:=1 to n_workers

19 for  j:=1 to subpop_size 

SP[i][j]← P[sub pop_size*(i-1)+j]

endfor

20 Send subpopulation SP[i] to i-slave process

endfor

endfor

(obj++)% n_obj;

Fig. 6. Pseudo-code of the master process of PSFGA.
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n evaluations :¼ ðpop size � genser þ subpop size � genpar � n workersÞ ð3Þ

If the size of the population (pop_size) remains constant, then the size of the sub-

populations depends on the number of subpopulation in the following way:
subpop size ¼ pop size
n workers

ð4Þ
In this context, the work load of the algorithm, when identified with the number of

evaluations, is constant under next condition:



Fig. 8. Five subpopulations of PSFGA converging in a biobjective problem depiction: All subpopulations

have the same size. The reference solution (black) is a local non-dominated solution in subpopulation P2,

but a dominated solution in the overall population. This effect introduces an error in the non-dominated

solution set computing.

i-Slave process

21 Receive parameters from master process 

22 Receive subpopulation SP[i] from master process

23 Execute SFGA on SP [i] for genpar generations

24 Send SP[i] to master process

25 for k:=1 to n_epoch

26 Execute SFGA on SP [i] for genpar generations

27 Send SP [i] to master process

endfor

Fig. 7. Pseudo-code of the slave process of PSFGA.
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gen epoch ¼ genser þ genpar ¼ Cte ð5Þ

PSFGA has been implemented using MPI [16] and run in a Pentium II based PC

Linux cluster of 9 nodes, so one copy of the master algorithm run in one of the nodes

and every one of the n_workers copies of the worker algorithm run in a different node

of the cluster.
In order to explore the influence of the parameters genser and genpar, two differ-

ent configurations have been tried: (1) genser¼ 10 and genpar¼ 10 (labeled as

(10,10)), and (2) genser¼ 0 and genpar¼ 20 (labeled as (0,10)). The first one

(10,10) corresponds to an equal distribution of parallel and sequential iterations in

the workers nodes and in the master one respectively. The second configuration pre-

sents a higher degree of parallelism as genser¼ 0. Moreover, the first configuration
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represent a situation were the rate of migration of individual is higher than the in the

second one, due to the fact that migration (redistribution) occur whenever master

node takes control of the computing. It is important to remark that there exist redis-

tribution of the individuals (migration) even when genser¼ 0 (see PSFGA master

algorithm pseudocode in Fig. 6).
Tables 3 and 5 show the performance (hyperarea) of SFGA and PSFGA for each

of the test problem. Stop algorithm condition occurred after the complexion of

80 000 evaluations of the function set. Tables 4 and 6 show the performance of

SFGA and PSFGA when the time execution has been set to the 50% and 75%

of the SFGA time convergence.

From Tables 3–6 it is possible to derive some conclusions:

• When the execution time is fixed (Tables 4 and 6), PSFGA provides better solu-
tions than its sequential version SFGA for both (10,10) and (0,20) configurations

considered with some number of subpopulations. The best performance for fixed

running time is obtained for an average of 4.6 processors (i.e. 4 processors) in case

of (10,10) configuration, and for an average of 4.2 processors (i.e. also 4 proces-
Table 3

Hyperarea of the Pareto-optimal solutions obtained by SFGA (*) and PSFGA with (10,10 configuration)

after 80.000 evaluations

Testn workers Hyperareafinal Speedup

ZDT1* 0.372± 0.005 1

ZDT1-2 0.351±0.002 1.07

ZDT1-4 0.356± 0.001 1.43

ZDT1-6 0.359± 0.004 1.48

ZDT1-8 0.356± 0.004 1.51

ZDT2* 0.723± 0.004 1

ZDT2-2 0.701±0.006 1.05

ZDT2-4 0.709± 0.005 1.40

ZDT2-6 0.711± 0.006 1.44

ZDT2-8 0.710± 0.005 1.48

ZDT3* 0.069± 0.003 1

ZDT3-2 0.065±0.010 1.03

ZDT3-4 0.070± 0.004 1.41

ZDT3-6 0.054± 0.022 1.44

ZDT3-8 0.069± 0.013 1.48

ZDT4* 0.687±0.056 1

ZDT4-2 0.795± 0.028 1.08

ZDT4-4 1.126± 0.101 1.40

ZDT4-6 0.928± 0.077 1.52

ZDT4-8 0.936± 0.076 1.56

ZDT6* 2.440±0.038 1

ZDT6-2 2.565± 0.136 1.16

ZDT6-4 2.678± 0.131 1.53

ZDT6-6 2.766± 0.073 1.60

ZDT6-8 2.740± 0.020 1.63



Table 4

Hyperarea of the Pareto-optimal solutions obtained by SFGA with (10,10 configuration) when the time

execution is set

Testn workers Hyperareað1Þ Hyperareað2Þ

ZDT1* 0.398± 0.053 0.378± 0.012

ZDT1-2 0.383± 0.006 0.366± 0.006

ZDT1-4 0.378±0.008 0.365± 0.004

ZDT1-6 0.385± 0.015 0.366± 0.003

ZDT1-8 0.382± 0.002 0.364±0.009

ZDT2* 0.812± 0.046 0.741± 0.010

ZDT2-2 0.764± 0.017 0.731± 0.012

ZDT2-4 0.746±0.018 0.720±0.008

ZDT2-6 0.754± 0.020 0.724± 0.007

ZDT2-8 0.752± 0.005 0.720± 0.008

ZDT3* 0.082± 0.035 0.069± 0.012

ZDT3-2 0.075±0.025 0.069± 0.007

ZDT3-4 0.079± 0.024 0.069±0.005

ZDT3-6 0.080± 0.020 0.076± 0.013

ZDT3-8 0.084± 0.013 0.070± 0.013

ZDT4* 1.967± 1.123 1.821± 0.375

ZDT4-2 1.894± 0.206 1.812± 0.331

ZDT4-4 1.941± 0.225 1.366± 0.041

ZDT4-6 1.540±0.165 1.068±0.037

ZDT4-8 1.852± 0.358 1.098± 0.114

ZDT6* 3.245± 0.520 3.142± 0.192

ZDT6-2 3.162± 0.078 2.958± 0.208

ZDT6-4 3.118±0.097 2.963± 0.156

ZDT6-6 3.169± 0.266 2.861±0.081

ZDT6-8 3.491± 0.590 2.995± 0.049
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sors) in the (0,20) configuration. The (0,20) configuration is the best in five cases,

while the (10,10) configuration outperforms the (0,20) one in the other five cases.

• When the number of evaluations is set as a constant (Tables 3 and 5), PSFGA

outperforms SFGA when the functions ZDT1, ZDT2 and ZDT3 are considered,

but PSFGA obtains worse solutions than SFGA for the ZDT6, and ZDT4. In this

last case, the difference between the performance of PSFGA and SFGA is higher,

and the results of PSFGA get worse as the number of subpopulations increases

(above all in the (0,20) configuration). These results seem to indicate that in prob-
lems with local Pareto fronts (Function ZDT4), the iterations that involve the

whole population (sequential iterations) make improve the convergence of the

algorithm.

• After 80 000 evaluations, the (10,10) configuration (Tables 3 and 4) provide better

results in terms of quality of solutions than (0,20) configuration (Tables 5 and 6).

This means that the iterations involving the whole population have a beneficial

effect as they provide a way, at least along a 50% of generations, to increment

the genetic diversity and to obtain global Pareto solutions instead of local Pareto
solutions.



Table 5

Hyperarea of the Pareto-optimal solutions obtained by SFGA (*) and PSFGA with (0,20 configuration)

after 80.000 evaluations

Testn workers Hyperareafinal Speedup

ZDT1* 0.372± 0.005 1

ZDT1-2 0.368±0.005 1.51

ZDT1-4 0.378± 0.006 5.36

ZDT1-6 0.407± 0.005 9.83

ZDT1-8 0.437± 0.010 11.80

ZDT2* 0.723± 0.004 1

ZDT2-2 0.713±0.010 1.47

ZDT2-4 0.753± 0.019 5.90

ZDT2-6 0.794± 0.020 9.83

ZDT2-8 0.829± 0.012 11.80

ZDT3* 0.069± 0.003 1

ZDT3-2 0.066± 0.010 1.48

ZDT3-4 0.062± 0.010 6.20

ZDT3-6 0.059±0.016 10.33

ZDT3-8 0.076± 0.008 12.40

ZDT4* 0.687±0.056 1

ZDT4-2 1.114± 0.171 1.52

ZDT4-4 1.543± 0.244 6.09

ZDT4-6 2.401± 0.751 11.17

ZDT4-8 3.178± 0.819 13.40

ZDT6* 2.440±0.038 1

ZDT6-2 2.983± 0.013 1.67

ZDT6-4 2.945± 0.023 6.54

ZDT6-6 2.935± 0.324 12.10

ZDT6-8 3.701± 0.425 14.40
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• The best speed-up with respect to SFGA is obtained for (0,20) configuration. This

result is not surprising as the parallelism implemented is bigger in the (0,20) con-

figuration that in the (10,10) one.

Moreover, taking into account Fig. 9, it is apparent the PSFGA provides sets of

solutions that are well distributed along the Pareto front. Both configurations,

(10,10) and (0,20), behave sufficiently well in this respect. As in the comparison with

SFGA, it can be also seen that the benchmarks ZDT4 and ZDT6 are the harder to
optimise. Thus, in these cases, even after 80 000 evaluations the solutions provided

are far from the known Pareto front.
4. Concluding remarks

A parallel algorithm for multiobjective optimisation based on an elitist evolution-

ary algorithm, called SFGA, has been described and analysed in this paper. The
sequential implementation of PSFGA provides very good results, as it has been also

shown in the paper from a performance comparison between single front genetic



Table 6

Hyperarea of the Pareto-optimal solutions obtained by SFGA with (0,20 configuration) when the time

execution is set

Testn workers Hyperareað1Þ Hyperareað2Þ

ZDT1* 0.398± 0.053 0.378± 0.012

ZDT1-2 0.387± 0.009 0.373± 0.005

ZDT1-4 0.371±0.010 0.368±0.010

ZDT1-6 0.382± 0.002 0.383± 0.002

ZDT1-8 0.404± 0.007 0.404± 0.007

ZDT2* 0.812± 0.046 0.741± 0.010

ZDT2-2 0.754± 0.027 0.732± 0.011

ZDT2-4 0.730±0.021 0.731±0.020

ZDT2-6 0.740± 0.007 0.740± 0.007

ZDT2-8 0.755± 0.005 0.755± 0.005

ZDT3* 0.082± 0.035 0.069± 0.012

ZDT3-2 0.077± 0.013 0.059± 0.008

ZDT3-4 0.060±0.012 0.056±0.009

ZDT3-6 0.063± 0.012 0.060± 0.009

ZDT3-8 0.077± 0.015 0.077± 0.018

ZDT4* 1.967± 1.123 1.821± 0.375

ZDT4-2 2.295± 0.415 1.465± 0.306

ZDT4-4 2.095± 0.524 1.245±0.242

ZDT4-6 1.763±0.823 1.606± 0.658

ZDT4-8 2.844± 0.913 2.844± 0.913

ZDT6* 3.245± 0.520 3.142± 0.192

ZDT6-2 3.222± 0.148 3.062± 0.102

ZDT6-4 3.102±0.156 3.054±0.145

ZDT6-6 3.306± 0.216 3.306± 0.216

ZDT6-8 3.495± 0.345 3.495± 0.345
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algorithm (SFGA) and strength Pareto evolutionary algorithm (SPEA). Both algo-

rithms use an elitist approach to assure the maintenance of best solutions through

the iterations. In the case of SFGA, a clearing procedure helps in both controlling

the elitism and preserve diversity in the population. Experiments have been carried

out using a well-known multiobjective benchmark function set that covers a wide

range of difficulties in finding the Pareto front. Although SFGA has a very simple

design, it has shown a faster convergence rate than SPEA through the experiments.

Moreover, SPEA has showed a severe variability in the results for ZDT4 and ZDT6
functions.

On the other hand, the experimental results retrieved on the cluster of computers

show that PSFGA can obtain better results than SFGA when a fixed execution time

is considered. For the cases studied, the benefits of the execution of PSFGA on a

parallel hardware seem to be greater than the drawback of using a Pareto-local selec-

tion scheme in the parallel iterations, so better solutions can be obtained by PSFGA

than in SFGA when the same time execution time is considered in both algorithms.

Serial iterations with the whole population seem to work well in some problems (e.g.
ZDT4) dealing with local Pareto fronts (multimodality). PSFGA configurations with

high degree of parallelisation (the number of parallel iterations are superior to the
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Fig. 9. Pareto-optimal solutions to the test problems (executions with the same initial population) found

by PSFGA with two different configurations.
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number of serial interactions) cab be useful when the optimisation problem requires

an speed-up more than an increase in the quality of the solutions. In general terms,

the results shown in this paper lead to think that PSFGA may be very competitive in

solving real multiobjective optimisation problems where the computational cost of
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the evaluation of vector function is very high, obtaining better solutions than SFGA

for a given execution time.
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Appendix A

The benchmark functions set used in this work addresses the following minimiza-

tion problem:
Minimize tðxÞ ¼ ðf1ðx1Þ; f2ðxÞÞ
with f2ðxÞ ¼ gðx2; . . . ; xnÞ � hðf1ðx1Þ; gðx2; . . . ; xnÞÞ
and x ¼ ðx1; . . . ; xnÞ:
ZDT1:
f1ðx1Þ ¼ x1

gðx2; . . . ; xnÞ ¼ 1þ 9 �
Xn
i¼2

xi

 !,
ðn� 1Þ

hðf1; gÞ ¼ 1�
ffiffiffiffiffiffiffiffiffi
f1=g

p
with n ¼ 30 and xi 2 ½0; 1�:
ZDT2:
f1ðx1Þ ¼ x1

gðx2; . . . ; xnÞ ¼ 1þ 9 �
Xn
i¼2

xi

 !,
ðn� 1Þ

hðf1; gÞ ¼ 1� ðf1=gÞ2

with n ¼ 30 and xi 2 ½0; 1�:
ZDT3:
f1ðx1Þ ¼ x1

gðx2; . . . ; xnÞ ¼ 1þ 9 �
Xn
i¼2

xi

 !,
ðn� 1Þ

hðf1; gÞ ¼ 1�
ffiffiffiffiffiffiffiffiffi
f1=g

p
� ðf1=gÞ sinð10pf1Þ

with n ¼ 30 and xi 2 ½0; 1�:



738 F. de Toro Negro et al. / Parallel Computing 30 (2004) 721–739
ZDT4:
f1ðx1Þ ¼ x1

gðx2; . . . ; xnÞ ¼ 1þ 10ðn� 1Þ þ
Xn
i¼2

ðx2i � 10 cosð4pxiÞÞ

hðf1; gÞ ¼ 1�
ffiffiffiffiffiffiffiffiffi
f1=g

p
with n ¼ 10; x1 2 ½0; 1� and x2; . . . ; xn 2 ½�5; 5�:
ZDT6:
f1ðx1Þ ¼ 1� expð�4x1Þ sin6ð6px1Þ

gðx2; . . . ; xnÞ ¼ 1þ 9 �
Xn
i¼2

xi

 ! ,
ðn� 1Þ

!0:25

hðf1; gÞ ¼ 1� ðf1=gÞ2

with n ¼ 10; xi 2 ½0; 1�:
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