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Abstract

In the past decade, a growing body of literature has reported promising results for prostate-specific membrane antigen
(PSMA)-targeted radionuclide imaging and therapy in prostate cancer. First clinical studies evaluating the efficacy of ['7"Lu]
Lu-PSMA radioligand therapy (PSMA-RLT) demonstrated favorable results in prostate cancer patients. [!”’Lu]Lu-PSMA is
generally well tolerated due to its limited side effects. While PSMA is highly overexpressed in prostate cancer cells, varying
degrees of PSMA expression have been reported in other malignancies as well, particularly in the tumor-associated neovas-
culature. Hence, it is anticipated that PSMA-RLT could be explored for other solid cancers. Here, we describe the current
knowledge of PSMA expression in other solid cancers and define a perspective towards broader clinical implementation of
PSMA-RLT. This review focuses specifically on salivary gland cancer, glioblastoma, thyroid cancer, renal cell carcinoma,
hepatocellular carcinoma, lung cancer, and breast cancer. An overview of the (pre)clinical data on PSMA immunohisto-
chemistry and PSMA PET/CT imaging is provided and summarized. Furthermore, the first clinical reports of non-prostate
cancer patients treated with PSMA-RLT are described.

Keywords Solid tumors - Prostate-specific membrane antigen (PSMA) - Radioligand therapy - PET/CT imaging - [*® Ga]
Ga-PSMA - ['""Lu]Lu-PSMA

Introduction

Prostate-specific membrane antigen (PSMA) is a trans-

membrane protein that is encoded by the FOLHI (folate
hydrolase 1) gene and was first discovered in prostate can-
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might be involved in cancer-related angiogenesis by degrad-
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To date, most clinical research on PSMA focuses on

This article is part of the Topical Collection on Oncology—
General

Department of Medical Oncology, Radboud Institute

for Health Sciences, Radboud University Medical Center, prostate cancer due to its exceptional high level of PSMA
Nijmegen, The Netherlands expression by tumor cells. Clinical studies evaluated the
2 Department of Medical Imaging, Nuclear Medicine, potential of PSMA imaging using radiolabeled PSMA anti-
Radboud Institute for Molecular Life Sciences, Radboud bodies (ProstaScint®, J591) and ligands (namely [%® Ga]
University Medical Center, Nijmegen, The Netherlands Ga-PSMA-11 and [ISF]F_PSMA_1007) mainly by pOSitI'OIl
*  Department of Medical Imaging, Nuclear Medicine, emission tomography (PET), revealing higher tumor detec-

Radboud Institute for Health Sciences, Radboud University

. . tion rates and higher tumor-to-background ratios compared
Medical Center, Nijmegen, The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-021-05433-w&domain=pdf

European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:4350-4368 4351

to conventional imaging modalities [9—12]. Subsequently,
PSMA targeting antibodies (J591) or ligands (PSMA-617
or PSMA-1&T) were labeled with therapeutic radionu-
clides such as lutetium-177 (!”’Lu) or actinium-225 (**Ac)
respectively [13—19]. Driven by the favorable binding fea-
tures and pharmacokinetics of ligands compared toavailable
antibodies (low bone marrow toxicity due to faster clear-
ance), PSMA ligands are currently the main focus for PSMA
therapy in prostate cancer patients [13, 19]. Yet, comparative
studies are still lacking. ['""Lu]Lu-PSMA-617 has demon-
strated promising results in prostate cancer patients in one
prospective study, as well as several retrospective stud-
ies and compassionate use programs worldwide [14-16].
A phase II trial on ['""Lu]Lu-PSMA in heavily pretreated
progressive prostate cancer showed efficacy, i.e., a PSA
decline > 50%, in 57% of patients and a progression-free
survival of 7.6 months [13]. Moreover, a phase III regis-
tration trial (VISION) in advanced prostate cancer patients
completed recruiting and final results are awaited at the end
of 2021 (NCT03511664).

Since PSMA radioligand therapy (PSMA-RLT) demon-
strated remarkable therapeutic efficacy in prostate cancer
patients, the question arises whether PSMA-RLT could also
achieve beneficial effects in other cancers expressing PSMA
on the tumors cells themselves, or in the tumor-associated
neovasculature.

The aim of this review is to assess which other solid can-
cers could potentially benefit from PSMA-RLT, based on
PSMA expression levels and PSMA imaging data. Poten-
tial challenges and differences compared to prostate cancer
are discussed. Additionally, the results of the first clinical
reports of PSMA-RLT in solid tumors other than prostate
cancer are presented.

Methods
Search strategy

The selection of cancer types for this review was based on
a combination of PSMA expression analysis and electronic
library searches. First, the FOLHI gene expression levels (this
gene encodes PSMA) of all cancers included in the TCG Pan-
Cancer Atlas were obtained from cBioPortal (Fig. 1) [20, 21].
Second, literature was searched by universal PubMed searches
(see supplementary 1) for the fifteen cancers with the highest
PSMA expression level on the PanCancer Atlas. Solely can-
cers with a substantial (>20) amount of PubMed results were
included in this review.

This resulted in the inclusion of glioblastoma, thyroid can-
cer, renal cell carcinoma, hepatocellular carcinoma, lung can-
cer, and breast cancer. Additionally, we included salivary gland

cancer. Although this rare tumor entity is not included in the
TCG PanCancer Atlas, several relevant PSMA-related studies
were conducted for this cancer type.

For each type of cancer, the PubMed results were screened
for papers or case reports which investigated PSMA expression
levels through immunohistochemistry, PSMA imaging (e.g.,
PET/CT scans), or reports on PSMA-RLT. Both preclinical
and clinical studies were included. The last search was per-
formed on the 23rd of October 2020.

PSMA immunohistochemistry

All articles reporting on PSMA immunohistochemistry
(IHC) of the above-mentioned seven solid cancer types were
included. No selection was made based on the type of antibody
used for IHC staining, since there is no golden standard for
PSMA THC. Antibodies targeting the intracellular and extra-
cellular domains of PSMA were included. A distinction was
made between IHC staining on the tumor cells and the neo-
vasculature. For each tumor type, the percentage of tumors
which are PSMA positive on the IHC staining was described.

PSMA PET/CT imaging

Although mRNA and PSMA THC data provide relevant infor-
mation on PSMA expression levels, in clinical practice, eligi-
bility for PSMA-RLT in prostate cancer is based on in vivo
tracer uptake revealed by PSMA PET/CT, semi-quantitatively
expressed as standardized uptake values (SUV). According
to the European Association of Nuclear Medicine (EANM)
guideline based on the phase II trial on [!""Lu]Lu-PSMA-617,
the required maximum SUV (SUVmax) at dominant sites of
tumor involvement should be at least 1.5-fold higher than the
baseline mean SUV (SUVmean) of the liver on PET/CT (using
renally excreted ligands such as [*® Ga]Ga-PSMA-11) to qual-
ify for therapy [13, 22]. Therefore, we looked at the tumor/liver
ratio; if this was not reported, we used a SUVmean of 4-8 for
liver as reported in the literature [23, 24]. This suggests that
a tumor uptake (SUVmax) of at least 12 might be considered
sufficient to explore PSMA-RLT.

Results
Salivary gland cancer

Salivary gland cancer (SGC) is a rare and complex disease
with an annual incidence of 2 per 100,000, consisting of 22
subtypes each with different clinical behaviors and progno-
ses [25, 26]. PSMA-related research has solely been con-
ducted for adenoid cystic carcinoma (ACC) and salivary
duct carcinoma (SDC).
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Fig.1 FOLH]I expression levels of cancers included in TCGA PAN-
CAN Atlas studies. This figure was adapted from cBioportal.org.
Cancers are sorted based on median. Negative values are the result
of the log(2) scale, where expression of 0 up to 1 in log(2) scaling
results in negative values. Overall expression of mRNA in other can-
cers is considerably lower (log scale) than that in prostate cancer. All
cancers show a large variation in FOLHI expression levels. Abbre-

Healthy salivary glands show high physiological tracer
uptake on PSMA PET scans [9]. Interestingly, unlike pros-
tate cancer cells, the uptake of PSMA ligands by the salivary
glands does not seem to be completely mediated by PSMA;
at least part of the uptake is aspecific [27, 28].

PSMA expression has been examined using IHC for both
ACC and SDC in primary tumor material as well as metas-
tases (details can be found in Table 1). The majority of ACC
express PSMA on the tumor cells (91%—145/159 patients),
while none of the tumors showed PSMA expression in the
vasculature. In contrast, in SDC, the majority of the vessels
express PSMA (90%—9/10), and some of the tumor cells
express PSMA (40%—4/10) [29-33].

PSMA tracer uptake in ACC, as visualized with PSMA
PET/CT, was first described in several case reports. Some
patients demonstrated high PSMA uptake (SUVmax: 23.3)
in metastatic lesions, compared to other patients who only
showed low to modest tracer uptake in the tumor cells (SUV-
max: 1.2) [31, 32, 34, 35]. This variation in uptake was con-
firmed in larger studies (van Boxtel et al. also included SDC

@ Springer

viations: ACC adrenocortical carcinoma, AML acute myloid leuke-
mia, DLBC diffuse large b-cell lymphoma, pRCC papillary renal cell
carcinoma, RCC renal cell carcinoma, PCPG pheochromocytoma and
paraganglioma, Uterine CS uterine carcinosarcoma, GBM glioblas-
toma multiforme, LGG lower grade glioma, ccRCC clear cell renal
cell carcinoma

patients), also describing a large variation of PSMA tracer
uptake between patients (Fig. 2) [29, 30]. Even within a
patient, a relatively large inter-metastatic variation in tracer
uptake was detected [29]. van Boxtel et al. reported a tumor/
parotid ratio, which was <1 in the vast majority of cases
[29]. Therefore, PSMA PET/CT imaging might be of limited
value for detecting primary tumors or local recurrences, but
could be useful for detecting lymph node or distant metas-
tases. Overall, SUVmax values ranged from 1.1 to 30.2 in
ACC patients and from 0.3 to 25.9 in SDC patients. This
suggests that PSMA-RLT might be of interest for a subset of
salivary gland cancer patients, since some patients showed
lesions with a SUVmax > 12.

Regarding clinical studies on PSMA-RLT (Table 2),
one patient with stage IV ACC received a single dose of
["""Lu]Lu-PSMA (7.5 GBq) [34]. Treatment was well
tolerated with no side effects and some pain relief was
reported. Whole-body [!"’Lu]Lu-PSMA SPECT/CT imag-
ing after therapy showed intense uptake in the metastases.
A planned second cycle of ['7’Lu]Lu-PSMA was canceled
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Fig.2 Four example PSMA PET/CT whole-body images of patients
with salivary gland cancer, thyroid cancer, hepatocellular carcinoma,
and breast cancer. A Patient with adenoid cystic carcinoma (salivary
gland cancer) showing PSMA ligand uptake in lung metastases with a
mean SUVmax of 10.0 and tumor-to-liver ratio of 2.5. B Patient with
papillary thyroid carcinoma where PSMA PET/CT showed medium—
high PSMA uptake in pulmonary metastases (median SUVmax 8.0).
Additionally, new hotspots were seen on PSMA PET/CT (compared
to ['"®FJFDG PET) in the left cervical lymph nodes (SUVmax 3.33)
and liver (SUVmax 7.2). C Patient with hepatocellular carcinoma
showing focal uptake with an SUVmax of 17.6 and tumor-to-liver
ratio of 4.0, as well as a tiny lesion in the cutting line with an SUV-
max of 8.4. D Patient with breast cancer where PSMA PET/CT imag-
ing demonstrated multiple osseous metastasis and a primary right
breast cancer. Patient A was originally published in van Boxtel et al.,
[ Ga]Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic

due to malignancy-induced hypercalcemia, and the patient
deceased soon after. Another study stated that one ACC
patient was undergoing ['"’Lu]Lu-PSMA treatment, but
details on the dose, toxicity, and therapeutic effect were not
reported [30]. Currently, a prospective phase II pilot study of
["""Lu]Lu-PSMA-I&T for ACC and SDC patients is recruit-
ing (NCT04291300) offering a maximum of four cycles con-
taining 7.4 GBq, every 6 weeks.

Glioblastoma

Glioblastoma is the most frequently occurring type of brain
cancer, with an annual incidence of 5 per 100,000 and is
highly aggressive [36]. Glioblastomas are known to be
highly vascularized tumors [37].

The first reports on immunohistochemical staining in
glioblastoma tumors observed PSMA expression only
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Hepatocellular carcinoma Breast cancer
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carcinoma and salivary duct carcinoma: a phase 2 imaging study,
Theranostics 2020, Ivyspring International Publisher© [33]. Patient
B was originally published in de Vries et al., [*® Ga]Ga-PSMA PET/
CT in radioactive iodine-refractory differentiated thyroid cancer and
first treatment results with [!"’Lu]Lu-PSMA-617. EJNMMI Research
2020, Springer Nature© [57]. Patient C was originally published in
Kunikowska et al., [*® Ga]Ga-Prostate-Specific Membrane Antigen
PET/CT: a novel method for imaging patients with hepatocellular
carcinoma. Eur J Nucl Med Mol Imaging, Copyright 2020, Spinger
Nature© [99]. Patient D was originally published in Sathekge et al.,
[® Ga]Ga-PSMA-HBED-CC PET imaging in breast carcinoma
patients. Eur J Nucl Med Mol Imaging, 2017, Springer Nature©
[122]. These PSMA PET/CT images of four example patients were
reprinted from open access articles distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creat
ivecommons.org/licenses/by/4.0/)

in the neovasculature and not in the tumor cells [38—40].
Therefore, subsequent IHC studies primarily focused on the
PSMA expression of the neovasculature [41-44]. Overall,
72% (92/128) of the glioblastoma tumors express PSMA in
the neovasculature (Table 1). Two reports also quantified the
vasculature staining by scoring the percentage of PSMA-
positive vessels and staining intensity [41, 44]. Wernicke
et al. [41] reported that in 69% of the tumors > 50% of the
vessels were PSMA positive, while this was only the case in
32% of the tumors in Mahzouni et al. [44].

PSMA ligand uptake by glioblastoma tumors has been
observed with different diagnostic radiotracers [40, 42,
45-51]. Bertagna et al. previously published a systematic
review with a focus on the possible diagnostic role of PSMA
PET/CT imaging, including most of these studies [52]. They
concluded that glioblastomas are PSMA-avid tumors and
that PSMA PET/CT imaging could be a useful diagnostic
tool in glioblastoma. Articles published since then are in line
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with these conclusions [49-51, 53-55]. Regarding the diag-
nostic value, a major advantage of PSMA PET/CT imaging
over ['®F]FDG PET/CT imaging is the lower background
uptake, since normal brain parenchyma shows physiologi-
cal ['8F]FDG uptake but no physiological PSMA uptake. In
glioblastoma, ['*F]FLT PET/CT is regularly performed, but
no studies comparing this tracer with PSMA PET/CT are
known. Overall, SUVmax in glioblastoma ranged between
2.1 and 24.6. Kunikowksa et al. reported tumor/liver ratios
after [*® Ga]Ga-PSMA-11 PET [54]; 40% (6/15 patients) of
the glioblastoma patients showed a tumor/liver ratio > 1, and
13% (2/15) had a tumor/liver ratio > 1.5. This suggests that at
least part of the glioblastoma patients might have sufficient
uptake to be considered for PSMA-RLT.

Kunikowska et al. published the first case report of
PSMA-RLT in a glioblastoma patient (Table 2) [53]. This
patient had a glioblastoma recurrence after prior treatments
of surgery and chemo-radiotherapy. On [*® Ga]Ga-PSMA-11
PET, the patient had a SUVmax of 10.3 with homogenous
tumor PSMA uptake. The patient received a single dose
of 8.4 GBq ['"'Lu]Lu-PSMA. Although the report did not
mention clinical outcome, intra-therapeutic serial SPECT
imaging showed tracer accumulation in the tumor over time,
with a calculated absorbed radiation dose of 14 Gy within
the tumor. Recently, Kumar et al. reported about a patient
who received PSMA-RLT which resulted in tumor shrink-
age. This patient was pretreated with surgery, radiotherapy,
and temozolomide before receiving 3 cycles of 3.7 GBq
(every 8 weeks) of ['7’Lu]Lu-PSMA-617. Post-therapy MRI
showed a partial response with a tumor shrinkage (from 18
to 5.4 mL) and importantly improvement of quality of life
[55].

Thyroid cancer

Thyroid cancer is an endocrine malignancy with an annual
incidence of 2-6 per 100,000 [56]. The most common
subtype is differentiated thyroid carcinoma (DTC), which
includes papillary thyroid carcinoma (PTC) and follicular
thyroid carcinoma (FTC) [57]. Other rare subtypes of thy-
roid cancer are medullary thyroid carcinoma (MTC) and
anaplastic thyroid carcinoma (ATC) that have a dismal
prognosis.

In thyroid cancer, the available literature did not report
any PSMA expression on tumor cells itself in any of the
subtypes [58, 59]. Immunohistochemical PSMA expres-
sion on the neovasculature has been examined for all
thyroid carcinoma subtypes; details are shown in Table 1
[58-62]. Overall, PSMA expression in the neovascu-
lature was observed in PTC (61%—134/220 patients),
FTC (56%—43/77), MTC (83%—104/126), and ATC
(63%—12/19). Of the PTC and FTC tumors that became
dedifferentiated (so-called radio-iodine (RAI)-refractory),

neovascular PSMA expression was reported in 63% of
tumors (15/24) [59]. Interestingly, Sollini et al. found that
PSMA expression levels in DTC patients contributed to
the prediction of tumor aggressiveness and patient out-
come [62].

PSMA tracer uptake on PET/CT imaging of thyroid can-
cer has been described in several case reports and subse-
quent larger prospective studies (Fig. 2) [63-75]. Overall, in
DTC patients, PSMA tracer uptake seemed to differ between
primary/recurrent lesions and metastatic lesions. SUVmax
of primary/recurrent tumors ranged between 1.4 and 13.7,
whereas in metastatic lesion the SUVmax range was 0.9 to
101.8. Therefore, especially metastatic DTC patients might
have sufficient tracer uptake to be eligible for PSMA-RLT.
PSMA uptake in ATC and MTC patients was only described
in few patients, with relatively low SUVmax values (primary
tumor uptake 4.5-6) [69—73]. Of these, Arora et al. reported
a tumotr/liver ratio > 2 in some MTC patients, indicating the
possible eligibility of these patients for PSMA-RLT [69].

Regarding PSMA-RLT, literature reports on three
treated thyroid cancer patients (Table 2) [76, 77]. Assadi
et al. treated a progressing metastatic RAl-refractory DTC
patient with [!"’Lu]Lu-PSMA [76]. The patient previously
received RAI therapy, sorafenib therapy for 6 months, and
radioligand therapy targeting the somatostatin receptor using
[""7Lu]Lu-DOTATATE (1 cycle, 7.4 GBq). Thereafter, 1
cycle of 7.4 GBq [!""Lu]Lu-PSMA was given. Post-ther-
apy whole-body SPECT imaging revealed higher uptake of
['""Lu]Lu-PSMA compared with whole-body SPECT imag-
ing following ['”’Lu]Lu-DOTATE treatment; PSMA-RLT
therapy is therefore more likely to be effective in this patient.
Two weeks after ['"’Lu]Lu-PSMA therapy, the patient
deceased unexpectedly due to cardiac arrest. In the study
of de Vries et al., five patients with RAI-refractory DTC
underwent PSMA PET/CT to determine their eligibility for
["""Lu]Lu-PSMA therapy [77]. Three patients were consid-
ered eligible for PSMA-RLT, of whom two were treated with
2 cycles of 6 GBq [!""Lu]Lu-PSMA-617. One of the patients
did not respond to therapy and showed disease progression
on ['®F]FDG PET/CT after 1 month. Interestingly, the sec-
ond patient did have a partial response of lung and liver
metastases on imaging, and a transient decrease of the tumor
marker thyroglobulin from 17 to 9 pg/L. Seven months post
treatment, disease progression was observed on imaging and
the thyroglobulin level increased to 14 pg/L. Both of these
DTC case reports did not report on side effects of PSMA-
RLT [76, 77].

Renal cell carcinoma

Renal cell carcinoma (RCC) has an incidence of 4.4 per
100,000 [78]. Renal tumors are divergent and their clinical
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behavior is highly dependent on the histological subtype
[79]. Clear cell RCC is the most common subtype and
accounts for the majority of kidney cancer-related deaths
[80]. Importantly, pro-angiogenic factors (VEGF, PDGF) are
strongly upregulated in clear cell RCC, leading to high vas-
cularized tumors. Other frequently occurring RCC subtypes
include papillary RCC and chromophobe RCC.

Regarding the PSMA expression in RCC, most research
has been conducted for clear cell RCC and papillary RCC
(Table 1). PSMA expression of primary renal neoplasms
demonstrated an exclusive PSMA expression in the tumor-
associated neovasculature [5]. This holds true for clear cell
RCC, papillary RCC, chromophobe RCC, and oncocytoma.
Clear cell RCC was found to have the highest percentage of
PSMA-positive tumors and also the highest PSMA staining
intensity. In contrast, transitional cell and angiomyolipoma
showed no PSMA expression [81, 82]. Overall, seventy-nine
percent (236/299 patients) of the primary clear cell RCC
tumors showed positive PSMA staining, in contrast to 27%
(16/59) in primary papillary RCC. In addition, in metastatic
clear cell RCC, 75% (15/20) of the tumors showed PSMA
expression in the neovasculature [8§1-83]. Spatz et al. pre-
sented the largest cohort, with 257 RCC patients (including
papillary, clear cell, and chromophobe subtypes). Interest-
ingly, this cohort related stronger PSMA expression patterns
with high-grade and advanced tumors and increased staining
intensity was associated with poorer overall survival [81].

The role of PSMA PET/CT imaging in RCC has yet to
be defined, but its potential has been investigated in multi-
ple clinical studies. Due to the highest PSMA expression
in clear cell RCC, this subtype has gained the most interest
for clinical application. This consensus is reinforced by a
recent report that showed inconsistent detection of non-clear
cell RCC lesions [84]. Several explorative studies showed
heterogeneity of PSMA uptake in clear cell RCC lesions;
in primary/recurrent tumors, SUVmax ranged from 1.7 to
39.4, and in metastatic lesions, a range between 0.9 and 48
was reported [85-87, 89]. Since some of the SUVmax values
described in literature are above 12, a part of the patients
might be considered for PSMA-RLT. This is supported
by Siva et al. who also mentioned that ['7’Lu]Lu-PSMA
treatment might be feasible in a part of the recurrent RCC
patients based on the high PSMA tracer uptake [89].

To date, no RCC patients have been treated with PSMA-
RLT according to literature.

Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the most frequent
primary liver cancer with an incidence of 10.1 cases per
100,000 person-years [90].

Immunohistochemical PSMA expression has been exam-
ined in 282 primary HCC tissue samples (Table 1) [91-94].

@ Springer

Overall, PSMA expression was mostly observed in the
tumor-associated neovasculature (83%—235/282), and it
was associated with poor prognosis in patients with HCC
[91]. Only one of the studies also identified some PSMA
expression by the tumor parenchyma (41% of samples), in a
canalicular pattern [93].

Regarding PSMA-RLT (Table 2), two HCC patients
received PSMA-RLT [10]. Both patients were treated with
one cycle of ['7"Lu]Lu-PSMA-617 (activity 5.9-6.2 GBq).
Although the treatment was well tolerated, intra-therapeutic
SPECT/CT-based dosimetry revealed disappointing radia-
tion dosages. According to the authors, the PSMA-RLT dose
was at least tenfold lower than typically achieved by one
cycle of external beam radiation therapy for HCC. There-
fore, PSMA-RLT was discontinued after one cycle for both
patients.

Lung cancer

The incidence of lung cancers varies largely between coun-
tries and differs between sexes. It ranges from < 10 to > 50
per 100,000 person-years [103]. Lung cancer is generally
divided into small cell lung cancer (SCLC) or non-small
cell lung cancer (NSCLC). NSCLC can be further classified
into adenocarcinoma (most common form), squamous cell
carcinoma, and large cell carcinoma [103].

In lung cancer, presence of PSMA is mainly observed on
the neovasculature (Table 1), with expression levels in pri-
mary tumors ranging from 45% (63/141 patients) in adeno-
carcinoma to 70% in large cell carcinoma (49/70) and SCLC
(21/30) [104, 105]. Positive staining of the tumor cells was
shown by Wang et al. in all three subtypes of NSCLC, in
approximately half of the cases [104]. However, this was
not observed by Schmidt et al. where only a small fraction
of the NSCLC cases were PSMA positive on the tumor cells
(2-12%) [105]. PSMA expression on SCLC tumor cells has
only been studied by Wang et al., who showed no PSMA
expression [104].

All literature on PSMA tracer uptake by lung cancer
derives from accidental findings of lung lesions on PSMA
PET/CT scans in patients who received PSMA imaging for
their prostate cancer [106—111]. The reported SUVmax of
lung cancer ranged from 4.8 to 5.6 in lung adenocarcinoma
(Table 1). In 9 patients with NSCLC (without further details
on subtype), SUVmax ranged from 3.7 to 7.0. However,
these lung cancers are identified due to their PSMA tracer
uptake, and most likely PSMA-negative lung cancers have
not been published. Therefore, it remains unclear which pro-
portion of lung cancer patients show PSMA tracer uptake
and to what extent (SUV values).

Case reports on PSMA-RLT for lung cancer patients were
not identified.
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Breast cancer

Breast cancer is one of the most prevailing types of can-
cer, with an incidence of 128.5 per 100,000 woman per
year [112]. The most common histopathological subtype,
accounting for 75% of all breast cancers, is invasive carci-
noma of no special type (IC-NST), formerly known as inva-
sive ductal carcinoma [113]. The second most common type
is invasive lobular carcinoma (ILC) (5-10%).

Immunohistochemical PSMA expression has been exam-
ined for both primary IC-NST and ILC tumors (Table 1).
Overall, 67% (209/312 patients) of IC-NST tumors and
42% (27/65) of ILC tumors expressed PSMA in the neo-
vasculature. Interestingly, Kasoha et al. also found weak to
moderate PSMA expression on the tumor cells in 51% of
IC-NST tumors, yet Chang et al. did not observe PSMA
expression on the tumor cells in breast cancer [38, 114]. In
metastatic breast cancer, PSMA expression was described
in two reports; 96% (22/23) of these samples were positive
for PSMA in the neovasculature [114, 115]. Remarkably,
Wernicke et al. described that PSMA expression of all tumor
metastases correlated with PSMA expression intensity of the
primary tumor. They also found that both estrogen and pro-
gesterone receptor-negative tumors were more likely to have
higher PSMA expression compared to hormone receptor-
positive tumors [115].

Reports on PSMA PET/CT imaging mainly consisted of
case reports (Fig. 2), which provided limited data on SUV-
max or tumor/liver ratios. One article reported on PSMA
imaging in 19 breast cancer patients (68% with IC-NST)
[116]. The SUVmean was 2.5+2.6 for primary or local
recurrences (n=13) and 3.2 + 1.8 for involved lymph nodes
(n=15). Distant metastases (n=53) showed a significantly
higher SUVmean of 6.9 +5.7 compared to primary tumor/
local recurrence (p=0.04) and lymph node metastases
(»=0.011). SUVmean did not show a significant correla-
tion with hormone receptor status; however, PSMA uptake
increased with tumor grading and was more often seen in
IC-NST compared to other histological subtypes. Based on
the limited literature, the SUVmax values that have been
reported in breast cancer are generally low (mean SUV-
max: 2.5-6.9) suggesting limited potential for PSMA-RLT
in breast cancer.

Interestingly, we found a preclinical PSMA-related
study in breast cancer. This study investigated the poten-
tial of PSMA-RLT in breast cancer, showing that [!"’Lu]
Lu-PSMA strongly impaired the vitality and angiogenic
capacity of endothelial cells cultured in breast cancer con-
ditioned medium [117]. Regarding the clinical application of
PSMA-RLT (Table 2), a 38-year-old female with an aggres-
sive triple-negative breast carcinoma, previously unrespon-
sive to chemotherapy and bevacizumab, received [!7'Lu]
Lu-PSMA-RLT (2 cycles 7.5 GBq) based on intense tumor

tracer uptake on PSMA imaging (SUV not reported). Post-
therapy SPECT imaging showed uptake in the tumor lesions
and the treatment was well tolerated. However, severe dis-
ease progression was seen after the second treatment cycle
and treatment was terminated [118]. No other case reports
on PSMA-RLT in breast cancer were found.

Discussion

Increasing evidence shows that PSMA-RLT is an effective
treatment for prostate cancer patients with a favorable toxic-
ity profile [13, 119]. Currently, PSMA-RLT is investigated
in a phase III trial (VISION; NCT03511664). These promis-
ing results in prostate cancer in combination with literature
showing PSMA expression and PSMA tracer uptake in other
malignancies encouraged us to assess the potential role of
PSMA-RLT for other solid cancer types [120]. We focused
on PSMA expression, PSMA PET/CT tracer uptake, and
results of clinical attempts of PSMA-RLT in seven different
solid cancers.

Regarding PSMA immunohistochemistry, in the major-
ity of the solid cancers included in this review, > 70% of the
primary tumors showed PSMA expression on the tumor-
associated neovasculature. Of all included primary tumors,
medullary thyroid carcinomas and hepatocellular carcino-
mas most often expressed PSMA in the neovasculature. In
contrast, in adenoid cystic carcinoma (subtype of salivary
gland cancer) and papillary renal cell carcinoma, only few of
the tumors showed PSMA-positive staining on the neovascu-
lature. Interestingly, although most of the solid cancers did
not express PSMA on the tumor cells, it was still observed
in salivary gland tumors (especially in adenoid cystic car-
cinoma), and to minimal extent in hepatocellular, lung, and
breast cancer tissue.

On PSMA PET/CT imaging, PSMA tracer uptake dif-
fered considerably between the solid cancers. In patients
with salivary gland cancer, glioblastoma, thyroid cancer,
hepatocellular cancer, and clear cell renal cell cancer, several
patients showed relevant tumor tracer accumulation on PET
imaging (SUVmax values > 12). Extremely high SUVmax
values up to 101.8 were seen in metastatic medullary thy-
roid carcinoma. On the other hand, in several types of lung
cancer and breast cancer, tracer uptake was low to moderate
at best (SUVmax < 10). Noteworthy, in solid cancers, intra-
patient tumor heterogeneity was observed.

PSMA-RLT eligibility in prostate cancer is assessed
through PSMA PET/CT imaging, with an eligibility cutoff
tumor/liver ratio> 1.5 in [*® Ga]Ga-PSMA PET/CT accord-
ing to the EANM guideline [22]. As elaborated on in the
“Methods” section, for the aim of this review, we considered
a tumor SUVmax of > 12 sufficient to potentially investigate
PSMA-RLT. Bearing this in mind, we conclude that salivary
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gland cancer, glioblastoma, thyroid cancer (differentiated
and medullary), hepatocellular carcinoma, and renal cell
cancer (clear cell) are the most relevant tumors to further
explore the potential of PSMA-RLT. In line with this, the
first case reports on PSMA-RLT in patients other than pros-
tate cancer included salivary gland cancer, glioblastoma,
thyroid cancer, and hepatocellular carcinoma [30, 34, 53,
55, 76, 77, 102]. These nine heavily pretreated end-stage
patients received 1-2 cycles of 5.9-8.4 GBq ['"’Lu]Lu-
PSMA per cycle in compassionate use programs (Table 2).
In some of these case reports, positive treatment outcomes
were reported. In one salivary gland cancer patient, pain
reduction was observed [34]. One thyroid cancer patient
showed a partial response that lasted 7 months [77]. In a
glioblastoma patient, tumor volume decreased upon PSMA-
RLT [55]. Importantly, the treatment was generally well tol-
erated, with no or low-grade adverse events.

Despite the use of the same PSMA PET/CT-based eli-
gibility criteria as in prostate cancer patients to assess pos-
sible PSMA-RLT application, there are essential differences
between prostate cancer and the solid cancers included in
this review.

First, in prostate cancer, PSMA is expressed on the
tumor cells compared with the mainly neovascular expres-
sion in most of other solid cancers. Still, even if PSMA is
solely expressed on the neovasculature of well-perfused
tumors, PSMA-RLT could hypothetically induce a tumori-
cidal local radiation dose to the tumor cells due to the tis-
sue range (2 mm) of beta particles emitted by radionuclides
such as '7"Lu [120]. Furthermore, radiation dosages to the
neovasculature and tumor micro-environment might also
lead to a harmful effect and induce secondary immune
responses.

It has been speculated that PSMA expression solely on
the neovasculature could result in a shortened tracer wash-
out [53, 94], meaning that PSMA-RLT is not retained in the
tumor for a longer time, resulting in a lower radiation dose to
the tumor and less effective treatment. Yet, a case report on a
glioblastoma patient treated with ['7’Lu]Lu-PSMA showed
good tumor tracer retention on post-therapy imaging, result-
ing in a substantial tumor absorbed dose [53], and in another
glioblastoma patient, [!”’Lu]Lu-PSMA treatment resulted
in a decrease in tumor volume [55]. This suggests that a
sufficient radiation dose might still be reached while PSMA
expression is limited to the tumor vasculature. Nonetheless,
dedicated studies including dosimetry are required to prove
this.

Second, SUVmax values in other solid cancers are gen-
erally lower than the SUVmax (> 15-40) values in prostate
cancer [121, 122]. This suggests that lower radiation doses
in the tumor could be reached, likely leading to a lower frac-
tion of patients responding to PSMA-RLT compared to pros-
tate cancer patients.

@ Springer

Third, more intra-patient tumor heterogeneity in terms
of PSMA expression is seen in other solid tumors com-
pared to prostate cancer [123]. Supposedly, this is a result
of the neovasculature versus tumor cell PSMA expression,
as described above. To illustrate this, metastases with high
neo-vascularization would have higher PSMA uptake com-
pared to metastases with low neo-vascularization within a
patient. However, even in patients with heterogenous PSMA
tracer uptake, the bystander and abscopal effect known in
radiation-oncology might lead to tumor responses in PSMA-
negative tumors [124, 125].

Fourth, it has been long known that cancers vary in radio-
sensitivity [126]. Prostate cancer is generally radiosensitive
and external beam radiotherapy is effective in early-stage
disease, which provided a good rationale for PSMA-RLT
in metastatic prostate cancer [127]. In contrast, hepatocel-
lular carcinoma, for example, is considered less radiosensi-
tive [128, 129]. Therefore, some of the other solid cancers
might require higher PSMA-RLT radiation doses, compared
to prostate cancer, to achieve a clinically relevant response.

Based on this review, PSMA-RLT could potentially be
investigated for certain solid cancers (e.g., salivary gland
cancer, glioblastoma, thyroid cancer, liver cancer, and clear
cell renal cell cancer). This has also been proposed for these
cancers by other authors [29, 30, 46, 54, 76, 89, 95]. Suffi-
cient PSMA uptake on PSMA PET/CT is a crucial parameter
to consider therapy, and since a significant fraction of pros-
tate cancer patients with high PSMA PET/CT tracer uptake
do not respond to PSMA-RLT, other parameters, which are
not clearly identified yet, obviously play also a relevant role.
Hence, a good pre-selection of patients is crucial to apply
this therapy in these patients in the future.

The current literature on PSMA uptake in cancers other
than prostate cancer is scarce and prospective studies are
rare. Therefore, it is not possible to draw firm, generalized
conclusions. Furthermore, many of the papers included in
this review are case reports. It is likely that patients with
high PSMA uptake are reported, while negative results are
less likely to be published, known as publication bias. There-
fore, it may appear as if more tumors are PSMA avid, or
have higher SUV values than is actually the case. In addi-
tion, relevant data such as PSMA tracer uptake (SUVmax)
was frequently not reported [40, 49, 50, 64, 67, 69, 107,
130, 131].

Future prospective

Currently, prospective PSMA PET/CT imaging studies in
end-stage non-prostate cancer patients are lacking; conse-
quently, reliable information on PSMA uptake is missing.
In our opinion, prospective imaging studies are the key
way towards exploring PSMA-RLT for non-prostate can-
cers, especially imaging studies in patients with advanced
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disease, as PSMA-RLT is likely to be explored in end-stage
disease with limited other treatment options. This will pro-
vide essential information on PSMA uptake and enables
estimating which proportion of patients could be eligible
for PSMA-RLT.

Furthermore, when evaluating the potential of PSMA-
RLT in other cancers, preclinical studies on the therapeutic
effects of PSMA-RLT are currently lacking and would be
advisable. These could provide relevant insight into the fun-
damental questions such as PSMA tracer retention in tumors
where PSMA is limited to the neovasculature. Preclinical
studies could also provide information on the sensitivity of
non-prostate cancers to PSMA-RLT.

In a clinical setting, prospective therapeutic studies
should be performed instead of single patient reports to
prevent trial-and-error-based science. As a different PSMA
localization (tumor cell surface in prostate cancer versus
neovasculature in other solid cancers) might lead to dif-
ferent PSMA tracer kinetics, preferably these prospective
studies should include multi-timepoint post-therapy imaging
(dosimetry), to provide more information on PSMA tracer
kinetics. Currently, a prospective therapeutic study in sali-
vary gland cancer patients is recruiting (NCT04291300).
Furthermore, pending the outcome of the pivotal trial for
["""Lu]Lu-PSMA (VISION trial; NCT03511664) in prostate
cancer patients, it is anticipated that with positive results the
translation to other solid cancers may be accelerated.

Conclusion

In summary, PSMA expression in solid cancers other than
prostate cancer is primarily observed in the tumor neovas-
culature, with the exception of adenoid cystic carcinoma
(subtype salivary gland cancer), where PSMA is expressed
on the tumor cells. Although there is heterogeneity in PSMA
expression and tracer uptake, a subset of patients with
advanced salivary gland cancer, glioblastoma, thyroid can-
cer, hepatocellular carcinoma, and clear cell renal carcinoma
show sufficient PSMA PET/CT tracer uptake in the tumor.
These patients might potentially benefit from PSMA-RLT,
so future research in this setting is encouraged. To date, ten
patients with non-prostate solid cancers (salivary gland can-
cer, glioblastoma, thyroid cancer, hepatocellular carcinoma,
and breast cancer) have been treated with PSMA-RLT and
some beneficial effects were seen, making this an interesting
topic for further exploration.

Abbreviations PSMA: Prostate-specific membrane antigen; PSMA-
RLT: Prostate-specific membrane antigen radioligand therapy;
PET: Positron emission tomography; %Ga: Gallium-68; 7’Lu: Lute-
tium-177; SUV: Standardized uptake values; SPECT: Single-photon
emission computed tomography
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