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Abstract—Clustering is an efficient topology control approach
for maximizing the lifetime and scalability of Wireless Sensor
Networks (WSNs). Many cluster-based routing techniques have
been proposed in the literature. However, in most of the proposed
protocols, the communication between a sensor node and its
designated cluster head (CH) is assumed to be single-hop. Multi-
hop communication can be used when the communication range
of the sensor nodes is limited or the number of sensor nodes is
very large in a network. Moreover, they used a predetermined
percentage of CHs regardless of the network density or the
number of live nodes.
Clustering is known to be non-deterministic polynomial (NP)-
hard problems for a WSN. Particle Swarm Optimization (PSO)
is a swarm intelligent approach that can be applied for finding fast
and efficient solutions of such problems. In this paper, we propose
a novel centralized PSO protocol for Hierarchical Clustering
(PSO-HC) in WSNs. Our objective is to maximize the network
lifetime by minimizing the number of active CHs and to maximize
the network scalability by using two-hop communication between
the sensor nodes and their respective CHs. The effect of using a
realistic network and energy consumption model in cluster-based
communication for WSN was investigated. Extensive simulations
show that PSO-HC outperforms the well-known cluster-based
sensor network protocols in terms of average consumed energy
and throughput.

Keywords—PSO, Cluster Head, WSN, RSSI, Energy Model,
Hierarchical Clustering.

I. INTRODUCTION

Wireless Sensor Network (WSN) has emerged as a power-
ful technological platform with tremendous and novel applica-
tions. It has become an important technology in realizing many
applications including both simple phenomena monitoring ap-
plications and heavy-duty data streaming applications such as
military operations, environment monitoring and surveillance
systems.

There are some factors that affect designing and operating
WSN. These factors include energy efficiency and awareness,
connection maintenance, minimum resource usage limitation,
low latency, network coverage and load balancing in terms of
energy used by sensor nodes. Due to these unique inherent
characteristics it is a challenging task to select or propose a
new routing or communication algorithm for a specific WSN
application [1].

Using clustering techniques in WSN can help solving
some of those concerns, by organizing the network nodes
into smaller clusters and elect a cluster head (CH). In cluster-
based protocols, the network operating time is divided into

rounds. Each round consists of two phases, the set-up phase
and the steady-state phase. In the set-up phase, the network is
configured. The CH nodes and the clusters are determined, and
each CH assigns a member node to a slot in order to create
time-division multiple-access (TDMA) schedule. In the steady-
state phase, each member node sends its data to its respective
CH at the assigned time slot and the CH aggregates the data
and forward it to a central Base Station (BS) [2].

The election of CHs depends on several factors such as its
residual energy and neighbour density. Since the CH has to stay
active during the entire round, it may drain its energy earlier
than the other members of the cluster. So the role of cluster
head is periodically rotated among the sensor nodes to ensure
balanced energy consumption. Since the CHs are constantly
active during the entire round, minimizing the number of CHs
will in turn reduces the energy consumption and increase the
network lifetime. Therefore, the number of elected CHs is an
important factor that affects the network lifetime significantly.

The objective of clustering is to search among a group of
sensor nodes to find a set of nodes that can act as cluster-
heads. For a given network topology, it is difficult to find the
optimal set of CH nodes. For N sensor nodes, there are 2N−1
different combination of solutions, where in each solution, a
sensor node is either elected as CH or non-CH [3]. This has
been proved to be a Non-deterministic Polynomial (NP)-hard
optimization problem [3].

Solutions to NP-hard problems involve searches through
huge spaces of possible solutions. Swarm intelligence ap-
proaches have been applied successfully to a variety of NP-
hard problems.

Particle swarm optimization (PSO) is a swarm intelligence
based optimization method. PSO has many advantages over
other alternatives optimization techniques like Genetic Algo-
rithms (GA). For example, ease of implementation on hardware
or software, high-quality solutions because of its ability to
escape from local optima and quick convergence [4] [5].
Because of its effectiveness in solving NP-hard problems, PSO
has been adopted to optimize the CH election by several cen-
tralized clustering protocols. Clustering is a repeated process;
therefore, the simpler the optimization algorithm, the better the
network efficiency is. This is another reason PSO is a popular
choice for WSN clustering.

The remainder of this paper is organized as follows. Section
2 reviews the related work on clustering protocols and the
associated drawbacks. The proposed system model is presented
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in section 3. Section 4 provides a brief summary of PSO.
Section 5 provides a detailed description of the proposed
protocol. Simulations results will be illustrated in section 6.
Finally, we concluded our work and highlighted a few future
directions in Section 7.

II. RELATED WORK

Clustering protocols have been studied extensively to im-
prove the performance of WSN [6] [2]. However, all the
clustering protocols proposed so far present some drawbacks.

Low energy adaptive clustering hierarchy (LEACH) [7] [8]
is one of the most popular distributed cluster-based routing
algorithms in WSN that has been proven to be an effective
approach to prolong the network lifetime. LEACH uses a time
division multiple access (TDMA) principle to avoid collisions,
and in order to maintain a balanced energy consumption, sug-
gests that each node probabilistically becomes a cluster head.
However, the cluster heads are selected without considering
the residual energy or the other properties of the sensor nodes.
This random mechanism of selecting the cluster heads does
not guarantee even distribution of clusters over the network
[9].

LEACH-centralized (LEACH-C) [8] is a centralized ver-
sion of LEACH. Unlike LEACH, where nodes self-configure
themselves into clusters, LEACH-C uses the BS for cluster
formation. Initially, each node sends its information (location
and energy level) to the BS, which will use this information
to find a predetermined number of cluster heads and configure
the network into clusters. The clusters are chosen to minimize
the energy required for non-cluster head nodes to transmit
their data to their respective cluster heads. It yields better
results than LEACH in terms of packet delivery rate and energy
consumption.

Hybrid energy-efficient distributed Clustering (HEED) [10]
is another distributed clustering protocol that is an extension
of LEACH. Cluster formation is achieved with an iterative
approach. Cluster heads selection in this protocol is primarily
based on the residual energy of each node. To increase energy
efficiency and further prolong network lifetime, a secondary
clustering parameter considers intra-cluster “communication
cost” is introduced which can be a function of neighbour
proximity or cluster density. The main objectives of HEED are
to distribute energy consumption to prolong network lifetime,
minimize energy during the CH selection phase, and reduce
the control overhead of the network. The improvement over
LEACH is that HEED can evenly distribute the cluster heads
in the sensing area by local competition.

Energy-Efficient Clustering Scheme (EECS) [11] is another
distributed clustering protocol. EECS extends LEACH algo-
rithm by dynamic sizing of clusters based on cluster distance
from the BS. In the cluster head election phase, the cluster
head is elected by localized competition and its no iteration
property makes it differ from HEED. This competition involves
candidates broadcasting their residual energy to neighbouring
candidates. If a given node does not find a node with more
residual energy, it becomes a cluster head. However, the
EECS protocol does not consider the structural characteristics
of network topology and thus cluster heads are elected on
the basis of residual energy. Furthermore, because the set

of candidate nodes in the competition are selected randomly
before the competition, this may result in non-optimal CH
selection.

An energy-aware clustering for WSNs using PSO algorithm
(PSO-C) is a centralized clustering protocol implemented at
the BS [12]. It considers both energy available to nodes and
physical distances between the nodes and their CHs. This
protocol defines a cost function which tries to minimize both
the maximum average euclidean distance of nodes to their
associated CHs and the ratio of total initial energy of all nodes
to the total energy of the CH candidates. It also ensures that
only nodes with sufficient energy are selected as CHs. PSO-
C outperforms both LEACH and LEACH-C in terms of the
network lifetime and the throughput. Authors in [13] showed
that PSO-C outperforms GA and K-means-based clustering
protocols as well in terms of convergence time, network
lifetime and data delivery.

All these protocols try to extend the network lifetime, using
some parameters for the CHs selection and cluster formation.
They use a predetermined number of CHs. However, there
is a trade-off between the number of CHs elected and the
network lifetime. Since the CHs are constantly active during
the entire round, minimizing the number of CHs will in turn
reduces the energy consumption and increase the network
lifetime. Moreover, using a predetermined number of CHs does
not guarantee to cover the whole network. However, using
multi-hop communication between the sensor nodes and their
respective CHs will create more scalable WSNs and solve the
problem of the limited transmission range.

In addition to the previously mentioned problems and up
to our best knowledge, all the clustering protocols that were
proposed so far use the energy consumption model suggested
in [8], an energy model fundamentally flawed for modelling
radio power consumption in sensor networks. It ignores lis-
tening energy consumption, which is known to be the largest
contributor to expended energy in WSN. Moreover, most of
the link quality-based clustering protocols proposed, such as
[8], [11], [12], [14], assume that each node is equipped with
self-locating hardware such as a GPS. Though this is a simple
solution, the resulting cost renders that solution inefficient and
unrealistic [15]. Furthermore, several studies has shown that
link quality in WSN is not correlated with distance [16]–[19].

Based on the above discussions, in this paper we propose
a novel and realistic centralized PSO-based hierarchical clus-
tering protocol (PSO-HC) for WSNs. The objective of the
protocol is to find the optimal number of CHs to minimize
the average energy consumption. Furthermore, the protocol
tries to maximize the network coverage and scalability by
constructing two-hop clusters. Moreover, we investigated using
a realistic network and energy consumption model in our
proposed protocol.

III. THE SYSTEM MODEL

Our proposed protocol relies on the following key realistic
assumptions regarding the Wireless Sensor network:

A. The WSN model

A set of sensor nodes is randomly spread throughout a
two-dimensional square field. Additionally, no assumptions are



made about the network density. We consider the following
properties of the sensor network:

• The sensor nodes are static; in the majority of appli-
cations, sensor nodes have no mobility.

• Initially all sensor nodes are charged with the same
amount of energy.

• Communication links are bidirectional.

• The computation and communication capabilities are
the same for all network nodes.

• The sensor nodes are unaware of their location.

B. The energy consumption model

In the proposed approach, we used a realistic energy
consumption model based on the characteristics of the Chipcon
CC2420 radio transceiver data sheet [20]. The total energy
consumed by node i, Ei, is calculated as follows [21]:

Ei =
∑

statej

Pstatej × tstatej +
∑

Etransitions (1)

The index statej refers to the energy states of the sensor:
sleep, reception, or transmission. Pstatej is the power con-
sumed in each statej, and tstatej is the time spent in the
corresponding state. Moreover, the energy spent in transitions
between states, Etransitions, is also added to the node’s
total energy consumption. The different values of Pstatej and
Etransitions can be found in [20].

IV. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a stochastic pop-
ulation based optimization algorithm that was introduced by
[22] and inspired by social behaviour of bird flocking or fish
schooling.

The basic PSO comprises a swarm of S particles (potential
solutions), which fly through a D-dimensional problem search
space in search of the global optimum position that produces
the best fitness of an objective function [22].

Initially, each particle i is randomly assigned a position
xid and a velocity vid (i = 1, 2, ..., S), and d = (1, 2, ..., D).
In every iteration, each particle adjusts its velocity to follow
two best solutions. The first is the cognitive part, where the
particle follows its own best solution found so far. This is the
solution that produces the lowest cost (has the highest fitness).
This value is called pbesti (particle best). The other best value
is the current best solution of the swarm, i.e., the best solution
by any particle in the swarm. This value is called gbest (global
best).

After finding the two best values, particle i then updates
both its position and velocity iteratively with the following
equations:

vid(t+ 1) = w × vid(t)+

c1 × r1 × (pbesti(t)− xid(t)) + c2 × r2 × (gbest(t)− xid(t)) (2a)
xid(t+ 1) = xid(t) + vid(t+ 1) (2b)

The parameters, c1 and c2 are two positive constant named
as learning factors, usually set as c1 = c2 = 2. r1 and r2

are random variables between [0, 1]. w is a weight factor that
control the velocity of the particle.

The PSO algorithm is shown below:

Algorithm 1 PSO Algorithm
1: for each particle do
2: initialize particle
3: end for
4: while target fitness or maximum epoch is not attained do
5: for each particle do
6: calculate fitness
7: if current fitness value better than (pbest) then
8: pbest = current fitness
9: end if

10: end for
11: set gbest to the best one among all pbest
12: for each particle do
13: update velocity using (2a)
14: update position using (2b)
15: end for
16: end while

V. THE PROPOSED PROTOCOL

In this paper, we adopt a centralized and PSO-based
clustering protocol to create hierarchical cluster structure for
the sensor nodes.

In the proposed clustering protocol, the network operating
time is divided into rounds. Each round consists of two phases,
the set-up phase and the steady-state phase.

A. The Set-up Phase

The main goal of this phase is to find the optimal set of
CHs and form the clusters.

The set-up phase starts with neighbour discovery where
each sensor node in the network broadcasts a HELLO packet
that includes its ID. A sensor node that receives this HELLO
packet will update its neighbour table with the ID included in
the packet along with the Received Signal Strength Indicator
(RSSI) value in the received packet.

After the neighbour discovery ends by all the sensor nodes,
the protocol uses flooding method to transfer the control data
to the BS. Each node broadcast the following data about itself:
ID, residual energy and it neighbour table data. A node that
receives this packet will rebroadcast it till it reaches the BS.

Based on the information the BS received, the BS will
computes the average energy level of all nodes. Only nodes
with an energy level above the average are eligible to be a
CH candidate for this round to ensure that only nodes with
sufficient energy are selected as CHs. Next, the BS runs PSO
algorithm to find the best K CHs. A particle is represented as
a sequence of candidate CHs ID’s.

1) Particle Initialization: In the proposed protocol, each
particle’s position vector that represents the CH nodes
IDs is initialized with random integer values in the range
[1, networksize−1] where node ID 0 represents the BS. Only
nodes with an energy level above the average are eligible to



be a CH candidate for this round to ensure that only nodes
with sufficient energy are selected as CHs.

The particle size is equal to the upper bound on the number
of CH candidates. It should be noted that the velocity update
by (2a) gives non-integer velocity values, which are converted
to the nearest integer in the implementation. In the case that
a particle generates duplicate ID’s while initialization or after
position update, the unique ID’s generated are used as CH
candidates.

Fig. 1 shows an example of two different particles; that has
an upper bound on the number of CHs equals to 5, and the
CH candidates generated from them.
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(a) A particle position vector that has no duplicates; number of
CHs = 5
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(b) A particle position vector that has duplicates; number of
CHs = 4

Fig. 1. Example of two different particles and their respective CH candidates,
upper bound = 5, red nodes are CHs

2) Cluster Formation: The cluster formation phase is done
at the BS after generating the CHs from the particle. We aim
at designing two-tier clusters with the objective of improving
the network scalability and minimizing the number of active
CHs during each round.

The BS constructs the first tier clusters by assigning each
non-CH node to a CH according to the RSSI value for the
link between them. In the case of multiple CHs, the node
will become a member of the CH having the maximum RSSI
strength. Any CH in the first tier is called Primary CH (PCH)
and has to stay active during the entire round without any sleep
schedule.

The second tier is constructed by the BS by clustering all
the non-CHs nodes that remained un-clustered from the first
tier. The BS assigns each non-CH node in the second tier to a
node in the first tier according to the RSSI value for the link
between them. A node in the first tier that has members from
the second tier is called Secondary CHs (SCH) and does not

need to be active during the entire round and is set to sleep
after it transmits both its own data packets and its members’
data packets.

After the cluster formation ends, a node in the network can
either be a PCH, SCH, a cluster member (CM) or un-clustered
node (UN). The cluster formation process is illustrated in Fig.
2.

(a) Construction of the first tier

(b) Construction of the second tier

PCH SCH CM UN

Fig. 2. Cluster Formation Process for the PSO-HC

3) Objective Function: The best CHs are selected such that
they optimize the combined effect of the following properties:
energy efficiency and link quality.

1) Energy Efficiency:
To achieve an energy efficient clustering protocol, less
number of CHs need to be active during each round.
To achieve that, the protocol needs to minimize the
number of CHs. Minimizing the following function
will achieve that objective:

EEp =
K

D
(3)

K is the total number of CH candidates generated
from particle p after removing all duplicates IDs. D
is the upper bound on the number of CHs.



2) Link Quality:
The aim of this sub-objective is to maximize the link
quality between the cluster members and their respec-
tive CHs in order to maximize the Packet Delivery
Rate (PDR). RSSI, strength of the received RF signal,
is one fundamental indicator of link quality. RSSI is
a register in the CC2420 transceiver that is used to
measure the receiver-side link quality. Several studies
proved that RSSI can provide a quick and accurate
estimate of whether a link is of very good quality
[16]–[19].
Let LQ(ni,nextHop) be an indicator of the link quality
between cluster member ni and its next Hop (which
could be PCH or SCH). It can be calculated using:

LQ(ni,nextHop) =
RSSI(ni, nextHop)

minRSSI
(4)

RSSI(ni, nextHop) is the RSSI for the link from ni

to nextHop and minRSSI is the worst RSSI value
among all communicating pairs. The higher the value
of LQ, the worse is the link quality.
Let t refers to tier number t. In the proposed protocol,
the maximum value of t, T , is 2. If T = 1, this means
that the whole network nodes were clustered using
one tier only.
To maximize the cluster quality in terms of link qual-
ity, the following sub-objective is used to minimize
the sum of the worst link qualities among all the tiers:

CQp =

T∑
t=1

max
∀ni∈tiert

LQ(ni,nextHop) (5)

After calculating the previous sub-objectives, the final
objective function that needs to be minimized is:

wc1 × EEp + wc2 × CQp (6)

wc1 and wc2 are weight coefficients that specify the contribu-
tion of each sub-objective in the main objective function.

4) TDMA Scheduling: The BS creates a schedule based on
TDMA to allocate time slots for the cluster members according
to the cluster size.

Each CM, whether it is in the first tier or the second tier,
is assigned a unique TDMA turn and slot. To illustrate this,
Fig.3 depicts an example of TDMA assignment on a given
cluster. In this example, each node is labelled in the form
Node ID/TDMA turn. Node A is the first node to transmit its
data, after its finishes its time slot, it goes into sleep mode to
save its energy. The next node to transmit its data is B. Since
B is an SCH, it has to wait in RX (Receive) mode till node
C transmit its data. After C transmits its own data, it goes to
sleep mode then node B goes to sleep mode since it has no
more members. This process continues until the last node, I ,
transmit its data and go to sleep mode. The process is repeated
from node A again till the round ends.

PCH

D/3

C/2

B/1

A/0

H/6

E/5

J/4
K/7

I/8

PCH SCH CM

Fig. 3. TDMA Schedueling

After the BS finishes the network configuration, the BS
uses flooding again to transfer the configuration to all the
nodes. It broadcasts a packet containing that configuration.
Each node that receives that packet will modify its status to
either a PCH, SCH, CM or UN. A cluster member will update
its respective PCH or SCH and TDMA schedule. A node that
is not CM or PCH or SCH is set to sleep to save its energy.

B. The Steady-up Phase

In the steady-state phase, each member node uses its
TDMA schedule to transmit its data to its next hop. When a
non-CH node (a CM or an SCH) finishes its data transmission
slot, it enters the sleep state to save its energy. Fig. 4 shows the
schedule of set-up and steady-state phases in a given round,
in PSO-HC.

. . .

Round 1 Round 2 Round R

Cluster Formation Slot for CM 1 Slot for CM 2 Slot for CM 3 . . . Slot for CM M

Set-up Steady-up

Slot for CM 3-1 Slot for CM 3-2 Slot for CM 3-3 . . . Slot for CM 3-N

Fig. 4. Schedule of set-up and steady-state phases in a given round, in
PSO-HC

VI. SIMULATIONS AND RESULTS

In this section, the performance of PSO-HC is investigated
against the well known protocols LEACH, LEACH-C and
PSO-C. Simulations were carried on Castalia [23], which is
based on the OMNeT++ platform and can be used to test WSN
protocols in realistic wireless channel and radio models, with
a realistic node behaviour.

The simulations were performed on 6 different network
sizes ranging from 60 to 400 sensor nodes, and each network



was tested using 5 different random seeds. The sensor nodes
were deployed randomly in an area of 100m × 100m sensor
field. The protocol run for 5000 seconds (50 rounds). The
upper bound on the number of CHs was set to 5% of the
total nodes as used in [7], [8], [12]. The initial energy of a
standard node is set to E = 18720 Joules, which is the typical
energy of two AA batteries [23]. We present the results at 99%
confidence interval.

Table 1 exhibits the simulation settings summary of the
simulation environment.

TABLE I
SIMULATION SETTINGS

Parameter Value
Initial energy 18720 J
BS location (0,0)
Packets rate 1 packet/s
Network size (60 - 400) sensor nodes
Field size 100m× 100m
MAC protocol TMAC
Maximum number of CHs 5%
Simulation time 5000s
Round length 100 s
Slot length 0.4 s
Number of particles 50
Number of iterations 500
Particles topology Ring

A. Energy Efficiency

In Fig. 5, we investigate the energy efficiency of PSO-HC,
compared to the other well known clustering protocols, by
reporting the average energy consumption per node in joules
when wc1 = wc2 = 1. It is clearly shown that PSO-HC has
lower energy consumption than the other protocols. This is a
result of using less number of CHs as justified by using (3).
Moreover, the results are shown to be statistically significant
at 99% confidence interval.

Higher energy consumption was recorded in LEACH be-
cause the un-clustered nodes are left unattended without any
sleeping schedule. Theoretically, both LEACH-C and PSO-C
cluster all the network nodes and thus give each node a sleep
schedule depending on its TDMA turn to transmit. This caused
both protocols to have lower energy consumption compared to
that of LEACH.
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Fig. 5. Average Energy Consumption per Node

Fig. 6 examines the average energy consumption per node
in joules in PSO-HC when wc2 = 1 and for two different
values of wc1, wc1 = 0 and wc1 = 1. It is clearly shown that
ignoring the energy efficiency objective, justified by (3) leads
to higher energy consumption in most of the cases.
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Fig. 6. Average Energy Consumption in PSO-HC for different values of wc1

As in terms of throughput, Fig. 7 shows that the throughput,
which is defined as the total number of data packets received
by all the CHs, is not affected much with the change in wc1
value.
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B. Link Quality

In Fig. 8, we investigate the link quality in PSO-HC,
compared to the other protocols, by reporting the throughput
when wc1 = wc2 = 1 . It is clearly shown that PSO-
HC has higher throughput than the other protocols. This is
a result of maximizing the link quality as justified by using
(5). Moreover, results are shown to be statistically significant
at 99% confidence interval.
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Fig. 8. Throughput

Fig. 9 examines the throughput in PSO-HC when wc1 = 1
and for two different values of wc2, wc2 = 0 and wc2 = 1.
It is clearly shown that ignoring the link quality objective (5)
leads to minimizing the throughput in PSO-HC.
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Fig. 9. Throughput PSO-HC for different values of wc2

Fig. 10 shows that focusing only on minimizing the number
of the primary CHs leads to lower energy consumption com-
pared to taking into account the link quality objective also.
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Fig. 10. Average Energy Consumption in PSO-HC for different values of
wc2

VII. CONCLUSION AND FUTURE WORK

In this paper, a PSO-based hierarchical clustering protocol
was developed for WSNs. The protocol enhances WSN energy
efficiency by setting an upper bound on the number of CHs
and trying to minimize the number of CHs compared to that
upper bound. Furthermore, it enhances the network scalability
by using two-tier cluster structure. The protocol was developed
and tested under realistic network and energy consumption
model. Extensive simulations were conducted, and the results
show that the proposed protocol can improve the energy
efficiency and throughput of WSN.

Future research directions can be inspired from the reported
results. The protocol can be extended to allow N-tier hierarchi-
cal clusters with a threshold on the link quality between any
CM and its next hop. This may result in better clusters quality



and maximize the throughput. Furthermore, an inter-cluster
communication method can be developed for transmitting the
data packets to the BS.
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