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Abstract. Osteoporosis is a systemic skeletal disease that 
leads to increased bone fragility and susceptibility to frac-
ture. Approximately 50% of postmenopausal women develop 
osteoporosis as a result of postmenopausal estrogen defi-
ciency. To reduce fractures related to osteoporosis in women, 
previous studies have focused on therapeutic strategies that 
aim to increase bone formation or decrease bone resorption. 
However, pharmacological agents that aim to improve bone 
fracture susceptibility exhibit side effects. Current studies are 
investigating natural alternatives that possess the benefits of 
selective estrogen receptor modulators (SERMs) without the 
adverse effects. Recent studies have indicated that phytoes-
trogen may be an ideal natural SERM for the treatment of 
osteoporosis. In Chinese herbal medicine, psoralen, as the 
predominant substance of Psoralea corylifolia, is considered 
to be a phytoestrogen and is used as a remedy for osteoporosis. 
A number of studies have demonstrated the efficacy of psoralen 
in bone formation. However, the pathways and underlying 
molecular mechanisms that participate in psoralen-induced 
osteoblast formation are not well understood. In the present 
study, hFOB1.19 cells were treated with psoralen at different 
concentrations (0, 5, 10, 15 and 20 µM) for 0, 24, 36, 48 and 
72 h, respectively. Reverse transcription-quantitative poly-
merase chain reaction and western blot assays were performed 
to detect glucose transporter 3 (GLUT3) expression. A cell 
counting kit-8 assay was used to analyze cell proliferation. 
In addition the effects of mitogen activated protein kinase 
inhibitors on extracellular signal-regulated kinase (ERK), 

phosphorylated (p)-ERK, p38, p-p38, c-Jun N-terminal kinase 
(JNK) and p-JNK expressions and cell proliferation were 
measured, as was the effect of nuclear factor (NF)-κB inhibitor 
on P65 and GLUT3 expressions and cell proliferation. The 
results indicated that psoralen stimulates hFOB1.19 cell prolif-
eration in a dose-dependent manner (P<0.05). Phospho-ERK, 
p38 and JNK were markedly increased by psoralen compared 
with the control group (P<0.05), and the specific inhibitors of 
ERK (SCH772984), p38 (SB203580) and JNK (SP600125) 
reversed the stimulatory effects of psoralen on signal marker 
phosphorylation (P<0.05). The rate of psoralen-induced cell 
proliferation was significantly suppressed by inhibitors of 
ERK, JNK and p38 compared with psoralen treatment alone 
(P<0.05). In addition, psoralen stimulated osteoblast prolifera-
tion via the NF-κB signaling pathway. Therefore, the present 
findings suggest that psoralen may be a potential natural 
alternative to SERMs in the treatment of osteoporosis and 
fractures.

Introduction

Osteoporosis is a systemic skeletal disease characterized by 
low bone mass and poor quality bone tissue, which leads to 
increased bone fragility and susceptibility to fracture (1). 
Osteoporosis is a leading chronic disease, and the fracture 
risk associated with osteoporosis increases exponentially 
with age. (2) In the current aging society, osteoporosis has 
become a substantial burden for healthcare services and 
individuals. In 2005, 17 billion dollars was required for the 
treatment of incident fractures in the United States, in which 
women accounted for 71% of fractures and 75% of costs (3). 
Additionally, ~50% of postmenopausal women may have 
osteoporosis and sustain an osteoporotic fracture as a result of 
postmenopausal estrogen deficiency (4).

Osteoporosis treatment for women has developed over 
recent years. To reduce the rate of osteoporosis-related frac-
tures in women, current therapeutics principally focus on 
increasing bone formation or decreasing bone resorption (5). A 
number of medicines also aim to restore bone loss by inducing 
osteoblasts to form new bone tissue (6). Bisphosphonates and 
related therapeutics have been demonstrated to reduce the risk 
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of fractures and are currently the most widely-used agents 
for the treatment of osteoporosis (7). Postmenopausal women 
with osteoporosis may also be treated with hormone replace-
ment therapy (HRT). Drugs including tamoxifen, raloxifene 
and levormeloxifene are types of HRT that target estrogen 
receptors (ERs) or exert direct effects on the bone to reduce 
fracture and breast cancer risk (8). The positive effects of 
raloxifene on the quality and mass of bone have been indicated 
in a number of preclinical studies (9-11). In a long-term study, 
Delmas et al (12) demonstrated that long-term treatment with 
raloxifene induced a significant reduction in vertebral frac-
tures in women with osteoporosis. However, HRTs, as selective 
estrogen receptor modulators (SERMs), exhibit side effects, 
and have been associated with an increased risk of coronary 
heart disease, venous thromboembolic events and exacerba-
tion of menopausal symptoms (13). It has been documented 
that a consistent number of women taking SERMs exhibit 
gynecologic symptoms, such as endometrial hyperplasia (14). 
Therefore, natural alternatives that exert the therapeutic effects 
of SERMs without the associated side effects are of current 
interest.

Phytoestrogen are a class of non-steroidal compounds that 
are of plant origin or obtained from the metabolism of precur-
sors present in plants (15). Phytoestrogens are considered to be 
an ideal natural SERM and have been demonstrated to stimu-
late osteoblast formation in vitro (16,17). In epidemiological 
findings, Cassidy (18) observed that natural isoflavones, as a 
subclass of phytoestrogens, had protective effects against the 
development of osteoporosis. In Chinese herbal medicine, 
psoralen, as the primary substance of Psoralea corylifolia, has 
been identified as a phytoestrogen and is used as a remedy 
for osteoporosis (19). Several studies have demonstrated the 
stimulatory effects of psoralen in bone formation. For instance, 
Miura et al (20) observed that crude fractions of P. corylifolia 
seeds stimulated rat bone calcification and increased bone 
quality in vivo. In vitro, the crude ethanol extract of P. coryli‑
folia stimulated osteoblast-like differentiation of the UMR-106 
osteosarcoma cells (21). Furthermore, Wong and Rabie (22) 
documented that psoralen was able to promote local novel 
bone formation in vivo. However, the pathways and underlying 
molecular mechanisms that participate in osteoblast formation 
are not well understood. In the present study, human fetal 
osteoblastic 1.19 (hFOB1.19) cells were treated with psoralen 
in vitro to identify the function of psoralen on osteoblasts and 
the signaling pathways involved.

Materials and methods

hFOB1.19 cell culture and treatment. hFOB1.19 cells 
purchased from American Type Culture Collection (Manassas, 
VA, USA) were cultured as described previously (23). Briefly, 
1x105 cells were plated into 96-well plate and incubated 
in medium composed of 1:1 Dulbecco's Modified Eagle's 
Medium (DMEM; Sigma-Aldrich; Merck KGaA, Darmstadt, 
Germany) and Ham's F12 (Gibco; Thermo Fisher Scientific 
Inc., Waltham, MA, USA) supplemented with 0.3 mg/ml 
geneticin (EMD Millipore, Billerica, MA, USA) and 10% 
fetal bovine serum (FBS, Atlas Biologicals, Fort Collins, CO, 
USA) in a humidified atmosphere containing 5% CO2 at 37˚C 
for 24 h. Different concentrations of psoralen (0, 5, 10, 15 and 

20 µM; Sigma-Aldrich; P8399) were used for a cell prolif-
eration assay. For time course assays, 1x105 cells were seeded 
into 96-well plate in 1:1 DMEM/Ham's F12 with 0.3 mg/ml 
geneticin and 10% FBS at 37˚C. Cells were treated with PBS 
(control group) or 15 µM psoralen for 0, 24, 36, 48 and 72 h 
at 37˚C in a humidified atmosphere containing 5% CO2. 
In mitogen-activated protein kinase (MAPK) signaling 
analysis, cells (1x105) were seeded into 6-well plates in 1:1 
DMEM/Ham's F12 with 0.3 mg/ml geneticin and 10% FBS at 
37˚C. Cells were treated with the working concentration 10 µM 
p38 inhibitor (SB203580) for 30 min, 10 µM ERK inhibitor 
(SCH772984) for 16 h, 5 µM JNK inhibitor (SP600125) for 
12 h or 5 µM nuclear factor (NF)-κB inhibitor (PDTC; all 
from Sigma-Aldrich; Merck KGaA) for 12 h in DMEM: Ham's 
F12 medium.

Cell counting kit‑8 (CCK‑8) assay. A CCK-8 assay was 
performed to determine the effects of psoralen on hFOB1.19 
cell proliferation, according to the manufacturer's instruc-
tions. Briefly, hFOB1.19 cells (2x103 cells/well) were seeded 
in 96-well plates in the medium composed of 1:1 DMEM and 
Ham's F12 supplemented with 0.3 mg/ml geneticin and 10% 
FBS in a humidified atmosphere containing 5% CO2 at 37˚C. 
Cells were treated with different concentrations of psoralen (0, 
5, 10, 15 and 20 µM) for 36 h, The same amount of medium 
served as the control group. Cells were washed with cold 
phosphate buffered saline (PBS), and 10 µl cell counting 
kit-8 (CCK-8: WST-8 Dojindo Molecular Technologies, Inc., 
Rockville, MD, USA) was added to each well and incubated 
for 2 h at 37˚C. Absorbance was measured at 450 nm using a 
microplate reader.

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) was used to extract total RNA from hFOB1.19 
cells from the proliferation assay, time course assay and 
MAPK signaling assay groups. cDNA was acquired using a 
Revert Aid First Strand cDNA Synthesis kit (Thermo Fisher 
Scientific Inc.). The thermocycling conditions were 25˚C 
for 5 min, 42˚C for 60 min and 70˚C for 10 mins. qPCR 
was performed using an ABI PRISM 7500 Real-Time PCR 
system with SYBR Premix Ex TaqTM (Takara Biotechnology 
Co., Ltd., Dalian, China). Thermocycling conditions were as 
follows: 95˚C for 30 sec followed by 40 cycles of 95˚C for 5 sec 
and 60˚C for 34 sec. The glucose transporter 3 (GLUT3) gene, 
which is closely related to cell proliferation, was amplified 
with the following specific primers: Forward, 5'‑CGG CTT 
CCT CAT TAC CTT C-3' and reverse, 5'-GGC ACG ACT TAG 
ACA TTG G-3', as described previously (24). For, amplification 
of GAPDH, which was used as a stably expressed internal 
control (25), the following primers were used: Forward 5'-TGC 
CAA ATA TGA TGA CAT CAA GAA-3' and reverse, 5'-GGA 
GTG GGT GTC GCT GTT G-3'. The relative levels of mRNA 
expression were calculated using the 2-ΔΔCq method normalized 
to GAPDH (26). All experiments were repeated three times.

Western blotting. Cells from the control group (treatment with 
equivalent PBS) and treatment group were lysed with radioim-
munoprecipitation assay buffer (Sigma-Aldrich; Merck KGaA), 
according to the manufacturer's instructions. A bicinchoninic 
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acid assay kit was used for the detection of protein concen-
trations. Proteins (40 µg) were separated by 10% SDS-PAGE 
and transferred to 0.2-µm nitrocellulose membranes using 
a Semi-Dry Blotting system (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA). Membranes were blocked with 5% skim 
milk for 2 h at room temperature and incubated with respec-
tive primary antibodies at 4˚C overnight. The membranes 
were subsequently washed using TBST (Tris-Buffered Saline 
and Tween-20), and incubated with horseradish peroxidase 
labeled secondary anti-mouse or anti-rabbit IgG antibodies 
(1:1,000, anti-mouse, cat. no. SC-2005; 1:1,000, anti-rabbit, 
cat. no. SC-2004; both from Santa Cruz Biotechnology, Dallas, 
TX, USA) at room temperature for 2 h. Blots were washed 
again with TBST and visualized using an enhanced chemilu-
minescence substrate kit (GE Healthcare Life Sciences, Little 
Chalfont, UK) and an LAS 4000 mini luminescent image 
analyzer (LAS-4000 mini; Fuji Film, Tokyo, Japan). GAPDH 
was used as a loading control. The related primary antibodies 
were anti-GAPDH (1:2,000; sc-35448-PR; Santa Cruz 
Biotechnology), anti-p65 (1:1,000; cat. no. ab76026; Abcam, 
Cambridge, UK), anti-ERK (1:2,000; cat. no. ab36991; Abcam), 
anti-p-ERK (1:500; cat. no. ab76165; Abcam), anti-GLUT3 
(1:1,000; cat. no. ab41525; Abcam), anti-p38 (1:1,000; cat. 
no. ab31828 Abcam), anti-p-p38 (1:1,000; cat. no. 9215; Cell 
Signalling Technology, Inc., Danvers, MA, USA) anti-JNK 
(1:1,000; cat. no. ab7949; Abcam), anti-p-JNK (1:1,000; cat. 
no. ab124956 Abcam).

Statistical analysis. Statistical significance was analyzed 
using GraphPad Prism Software v. 6.0 (GraphPad Software, 
La Jolla, CA, USA) and the SPSS 20.0 software (IBM Corp., 
Armonk, NY, USA). All data are shown as means ± standard 
deviation. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Psoralen stimulates hFOB1.19 cell proliferation in a 
dose‑dependent manner. hFOB1.19 cells, which exhibit only 
minor chromosomal translocations, are conditionally immortal-
ized human osteoblasts (27), and serve as an ideal system in the 
study of osteoblasts in vitro. In the present study, the toxicity of 
psoralen in hFOB1.19 cells was determined. RT-qPCR analysis 
indicated that the level of GLUT3mRNA expression was signifi-
cantly increased in hFOB1.19 cells treated with psoralen (0, 5, 
10, and 15 µM) in a dose dependent manner. The expression level 
of GLUT3 was significantly increased in pthe 10 µM psoralen 
treatment group compared with thr 5 µM psoralen treatment 
group (P<0.01). Treatment with 15 µM psoralen lead to a peak 
in the levels of GLUT3 expression in hFOB1.19 cells (*P<0.05 
vs. 0 µM; Fig. 1A). Furthermore, western blot analysis indicated 
that levels of GLUT3 protein expression markedly increased in a 
dose-dependent manner between 5-15 µM psoralen, while 20 µM 
psoralen notably reduced levels of GLUT3 when compared with 
the 15 µM treatment group (Fig. 1B). Collectively, these results 
indicated that 20 µM psoralen exerted toxic effects in hFOB1.19 
cells. Results of the CCK-8 assay were consistent with those of 
the western blot analysis, and indicated that cell proliferation 
was increased in a dose-dependent manner in hFOB1.19 cells 
up to a dose of 15 µM psoralen, while treatment with 20 µM 

psoralen markedly decreased the proliferation of cells when 
compared with the 15 µM treatment group (P<0.01 vs. 0 µM; 
Fig. 1C). As a result, 15 µM psoralen was chosen as the optimal 
dose for subsequent experiments.

Psoralen stimulates hFOB1.19 cell proliferation in a 
time‑dependent manner. hFOB1.19 cells treated with 15 µM 
psoralen exhibited increased levels of GLUT3 mRNA expres-
sion in a time-dependent manner between 24-48 h; however, 
treatment for 72 h decreased the levels of GLUT3 mRNA 
(P<0.01 vs. 0 h; Fig. 1D). Similar results were observed in a 
western blot analysis of GLUT3 protein expression (Fig. 1E). 
In addition, a CCK-8 assay demonstrated that treatment with 15 
µM psoralen increased cell proliferation in a time-dependent 
manner between 24-48 h, while treatment for 72 h lead to a 
decrease in cell proliferation when compared to cells treated 
for 48 h (P<0.01 vs. 0 h; Fig. 1F). These results indicated that 
15 µM psoralen for 48 h was the optimal treatment.

To verify the effect of psoralen on hFOB1.19 cell prolifera-
tion, 15 µM psoralen was administered to hFOB1.19 cells for 
48 h. Following treatment with 15 µM psoralen for 48 h, levels 
of GLUT3 mRNA were significantly increased in the psoralen 
treatment group compared to untreated controls (P=0.002641; 
Fig. 2A). Similar alterations in the levels of GLUT3 protein 
expression were observed by western blot analysis (Fig. 2B). 
Furthermore, treatment with 15 µM psoralen significantly 
promoted the proliferation of hFOB1.19 cells between 24-72 h 
compared with the control group (P<0.05; Fig. 2C).

hFOB1.19 cell proliferation depends on NK‑κB‑MAPK 
signaling. MAPK signaling pathways have been demonstrated 
to participate in osteoblast proliferation (28). Previous studies 
have demonstrated the effect of psoralen on osteoblast prolif-
eration in vitro (29,30). To elucidate the mechanism of action 
of psoralen on osteoblast proliferation, the effects of psoralen 
on three primary signaling pathways, namely extracellular 
signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) 
and MAPK, were determined by evaluating signal pathway 
activity and cell proliferation (Fig. 3). As depicted in Fig. 3A, 
after treatment with 15 µM psoralen for 48 h, levels of activated 
phospho-ERK and p65 were markedly increased compared 
with the control group. Analysis of p38 and JNK exhibited 
similar results (Fig. 3B and D, respectively). To verify whether 
MAPKs were involved in cell proliferation, hFOB 1.19 cells 
were treated with psoralen and inhibitors of p38, ERK, 
JNK or NF-κB and the effects on signaling activity and cell 
proliferation were evaluated. As depicted in Fig. 3A, B and D, 
treatment with specific inhibitors of ERK (SCH772984), p38 
(SB203580) and JNK (SP600125) reversed the stimulatory 
effects of psoralen on signal marker phosphorylation. In 
addition, the rate of psoralen-induced cell proliferation was 
significantly suppressed by inhibitors of ERK (P=0.004676), 
JNK (P=0.001535) and p38 (P=0.001828) compared with 
psoralen treatment alone. Results also indicated that 15 µM 
psoralen stimulated osteoblast proliferation through the 
NF-κB signaling pathway. Notably, western blotting indicated 
that the expression of P65, as an NF-κB signal marker (31), 
similar to the activities of ERK and JNK following treatment 
with psoralen and signaling inhibitors (Fig. 3A and D). Thus, it 
was suspected that the NF-κB pathway may be involved.
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Figure 1. Time and dose-dependent effects of psoralen on hFOB1.19 cell proliferation. (A) RT-qPCR and (B) western blot analysis of GLUT3 expression at the 
mRNA and protein levels, respectively, in hFOB1.19 cells at psoralen concentrations of 0, 5, 10, 15 and 20 µM. GAPDH was used as a control *P<0.05, **P<0.01 
and ***P<0.001 vs. 0 µM. (C) A CCK-8 assay of hFOB1.19 cell proliferation following treatment with 0, 5, 10, 15 and 20 µM psoralen. **P<0.01 and ***P<0.001 
vs. 0 µM. (D) RT-qPCR and (E) western blot analysis of GLUT3 expression in hFOB1.19 cells treated with 15 µM psoralen at 0, 24, 36, 48 and 72 h. GAPDH 
was used as a control. *P<0.05, **P<0.01 and ***P<0.001 vs. 0 h. (F) A CCK-8 assay of hFOB1.19 cell proliferation at 0, 24, 36, 48 and 72 h after treatment 
with 15 µM psoralen. **P<0.01 and ***P<0.001 vs. 0 h. hFOB1.19, human fetal osteoblastic 1.19; RT-qPCR, reverse transcription-quantitative polymerase chain 
reaction; GLUT3, glucose transporter 3; CCK-8, cell counting kit-8.

Figure 2. Effect of psoralen on hFOB1.19 cell proliferation. (A) RT-qPCR and (B) western blot analysis of GLUT3 expression at the mRNA and protein levels 
in hFOB1.19 cells treated with or without 15 µM psoralen for 48 h. GAPDH was used as a control. Western blotting indicated that 15 µM psoralen stimulated 
the expression of GLUT3 protein in osteoblast cells. (C) A CCK‑8 assay indicated that psoralen significantly increased cell proliferation compared with the 
control group at 24, 36, 48, and 72 h. *P<0.05 vs. control. hFOB1.19, human fetal osteoblastic 1.19; RT-qPCR, reverse transcription-quantitative polymerase 
chain reaction; GLUT3, glucose transporter 3; CCK-8, cell counting kit-8.
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Figure 3. (A-D) Effect of MAPK inhibitors on psoralen-induced proliferation in osteoblast cells. Western blotting was used to measure the protein expression 
of (A) ERK, P-ERK, (B) p38, P-p38, (D) JNK and P-JNK following treatment with psoralen and MAPK inhibitors. Levels of p65, GLUT3 and GAPDH expres-
sion were also determined. GAPDH was used as a control. (C) A CCK‑8 assay indicated that MAPK inhibitors significantly suppressed psoralen‑induced 
proliferation. MAPK, mitogen-activated protein kinase; SCH772984, ERK inhibitor; SB203580, P38 inhibitor; SP600125, JNK inhibitor; ERK, extracellular 
signal-related kinase; JNK, c-Jun N-terminal kinase; GLUT3, glucose transporter 3; P-, phosphorylated; CCK-8, cell counting kit-8.

Figure 4. Effect of NF-kB inhibitor on psoralen-induced osteoblast proliferation. hFOB1.19 cells were incubated with or without PDTC in the presence or 
absence of 15 µM psoralen. (A) Level of P65 and GLUT3 in the cell extracts were measured by western blotting. When PDTC was added, levels of P65 
and GLUT3 were markedly decreased compared with the psoralen-induced group. GAPDH was used as a control. (B) A CCK-8 assay indicated that PDTC 
significantly suppressed psoralen‑induced proliferation. NF‑κB, nuclear factor-κB; hFOB1.19, human fetal osteoblastic 1.19; PDTC, NF-κB inhibitor; GLUT3, 
glucose transporter 3; CCK-8, cell counting kit-8.
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NF-κB knockout mice exhibit bone disorder (32). In the 
majority of cells, NF-κB is present as a latent-form in the 
cytoplasm and stimulates the transcription of target genes in 
the nucleus (33). NF-κB is involved in cellular responses to 
various stimuli (34). To determine whether psoralen induced 
NF-κB signaling, a NF-κB signal pathway inhibitor (PDTC) 
was administered to hFOB 1.19 cells following psoralen 
treatment. As depicted in Fig. 4A, cells treated with psoralen 
exhibited increased levels of GLUT3 and p65 compared to 
controls. In turn, when cells were treated with psoralen and 
PDTC inhibitor, the expressions of GLUT3 and p65 were 
reduced when compared to cells treated with psoralen alone. 
Furthermore, the proliferation of cells was significantly 
decreased when cells were treated with psoralen and PDTC 
inhibitor (P=0.010386 vs. psoralen group; Fig. 4B). As similar 
results were obtained for NF-κB and MAPK pathway analysis, 
this suggested that psoralen stimulated osteoblast proliferation 
through NF-κB-MAPK signaling.

Discussion

Osteoblasts are mesenchymal cells and are responsible for 
bone matrix synthesis, secretion and mineralization during 
the bone remodeling process (35). Osteoblasts serve a key 
role in maintaining bone mass and reducing bone loss. During 
the proliferation stage, osteoblasts secrete type I collagen to 
aid mineralization and reduce bone loss (36). Osteoblasts 
also secrete osteoprotegerin, which blocks receptor activator 
NF-κB ligand interactions and prevents bone resorption (37).

Osteoblast proliferation is typically evaluated through 
measurements of total cellular protein, alkaline phosphatase 
activity and type I collagen secretion or GLUT3 expression (38). 
GLUT3 is a transporter with a high affinity for glucose and is 
essential for cell proliferation (39). Bell et al (40) observed that 
GLUT3 was expressed in osteoblasts and that glucose uptake 
in osteoblasts was mediated by GLUT1 and 3.

In the present study, the mRNA and protein expression 
levels of GLUT3 were upregulated with increasing doses of 
psoralen, though cell toxicity was induced at the highest dose 
of 20 µM psoralen. In addition, the mRNA and protein expres-
sion levels of GLUT3 were upregulated with time. Collectively, 
results indicated that osteoblast proliferation was increased in 
a dose and time-dependent manner.

Components within the MAPK, ERK and JNK signaling 
pathways, including insulin, glucocorticoid, hyperbaric 
oxygen and fibroblast growth factor‑6, have been identified 
as major promoters of osteoblast proliferation in a number 
of studies (41-43). Song et al (44) demonstrated that icariin, 
a flavonoid glucoside isolated from P. corylifolia, promoted 
MC3T3-E1 osteoblast proliferation by inducing the activation 
of ERK and JNK, but exerted no effect on the activity of p38 
kinase. By contrast, Luo et al (45) observed that adiponectin 
was able to promote osteoblast differentiation through the p38 
pathway, and that adiponectin stimulated osteoblast prolifera-
tion by inducing JNK activation, but not ERK1/2, in osteoblasts. 
MAPK pathways serve key roles in cell proliferation, and more 
specifically, these pathways are considered to serve vital roles 
in osteoblast proliferation and differentiation (44).

A previous in vivo study indicated that bone morphoge-
netic proteins (BMPs) controlled osteoblast proliferation and 

induced bone formation (46). BMP-2 has been demonstrated 
to induce the activation of alkaline phosphatase genes, which 
serve an essential role in osteoblast differentiation (47). 
Kong et al (48) suggested that interactions with BMP and 
the MAPK signaling pathway may be involved in osteoblast 
proliferation.

Psoralen, as a type of furanocoumarin, is the predominant 
component of the leguminous plant P. corylifolia (49). In a 
recent study, psoralen has been indicated to possess bacterio-
static, anti-tumor, hemostatic and cardiovascular effects, and 
promote bone formation while inhibiting bone resorption (50). 
In addition, Tang et al (51) observed that psoralen upregulated 
the expression of BMP-2 to stimulate mouse calvarial osteo-
blast differentiation. In the present study, psoralen stimulated 
osteoblast proliferation through the ERK/MAPK, JNK/MAPK 
and p38/MAPK pathways. Furthermore, psoralen significantly 
increased the expression of NF-κB. This result may indicate 
that NF-κB was the pathway by which psoralen induced cell 
proliferation. Two explanations may account for these obser-
vations. First, the MAPK pathway, as an important pathway 
involved in the process of cell proliferation, may have stimu-
lated osteoblasts directly. Second, psoralen-induced MAPK 
activation may have stimulated the BMP pathway to promote 
osteoblast proliferation.

In conclusion, the present findings indicated that psoralen 
stimulated osteoblast proliferation through the activation of 
NF-κB and MAPK signaling. Thus, psoralen may be a viable 
therapeutic agent in the treatment of osteoporosis.
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