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Abstract PSPICE models of current- and flux-controlled

meminductor are described. The models consist of two

parts, one of which represents the state-space description of

the memory effect of the device, and the other part is an

inductor whose inductance depends on the system state.

The basic fingerprints of the meminductor, i.e. the flux–

current pinched hysteresis loops, the unambiguous consti-

tutive relation between the time integral of flux and electric

charge, and identical zero-crossing points of flux and

current waveforms are demonstrated on the example of

current-controlled meminductor.
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1 Introduction

The discovery of solid-state memristor in Hewlett-Packard

(HP) labs, reported in Nature in May 2008 [1], initiated a

growing interest in computer modeling and simulation of

memristor [2–9], the fourth fundamental passive element,

theoretically predicted by Chua in 1971 [10]. The reason

consists in the fact that the above device is not currently

available as off-the-shelf circuit. Then its model, particu-

larly when implemented in current programs for circuit

simulation such as SPICE, can serve as an important tool in

computer experiments with such devices.

In addition to the memristor, other hypothetical ‘‘mem-

devices’’ have come into consideration within the last year,

namely the memcapacitor and the meminductor [11–14].

As noted in [15], ‘‘…combined with the already known

memristor, such elements open up new and unexplored

functionalities in electronics…’’.

In order to enable simulation experiments with the

above mem-elements, the existing PSPICE models of

memristor should be complemented with similar models

of memcapacitor and meminductor. The first step was

performed in [16], where a general methodology for

PSPICE modeling of mem-devices was introduced. The

very first PSPICE model of the memcapacitor was pub-

lished in [17]. To the best of our knowledge, no similar

PSPICE model of the meminductor has been hitherto

reported in the literature. Thereby, this Letter intro-

duces foolproof models of current- and flux-controlled

meminductors.

2 General models of current- and flux-controlled

meminductors for PSPICE

According to [18], a network element can be defined axi-

omatically by its constitutive relation (CR), which does not

depend on the element interaction with the surrounding

networks. For the meminductor, the CR is the relation [16]
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f ðq; qÞ ¼ 0; ð1Þ

where q is the time-domain integral of magnetic flux u
(TIF) of the meminductor, and q is the electric charge, i.e.

the time integral of electric current i (TIC):

qðtÞ ¼
Z t

�1

uðaÞda; qðtÞ ¼
Z t

�1

iðaÞda: ð2Þ

If the CR (1) can be transformed such that it depicts the

TIF as a single-valued function q̂ of the charge, namely

q ¼ q̂ðqÞ; ð3Þ

then we talk about a current-controlled [12, 16] or a

charge-controlled meminductor. In terms of meminductor

flux and current, CR (3) can be rewritten in the form

u ¼ LMðqÞi; ð4Þ

where

LMðqÞ ¼
dq̂ðqÞ

dq Q

���� ð5Þ

is the small-signal meminductance defined at the operating

point Q [18].

Similarly, if CR (1) can depict the charge q as a single-

valued function q̂ of the TIF,

q ¼ q̂ðqÞ; ð6Þ

then (6) defines a flux-controlled [12, 16] or TIF-controlled

meminductor. CR (6) can be transformed into the form

i ¼ KMðqÞu; ð7Þ

where

KMðqÞ ¼
dq̂ðqÞ

dq Q

���� ð8Þ

is the small-signal inverse meminductance defined at the

operating point Q.

It is shown on the example of HP memristor [1] that

there is a significant difference between the behavior of the

ideal hypothetical device (memristor) and its physical

implementation. Since the key parameter of the device,

resistance in the case of memristor, can be changed only

within bounds that are given by the physical limitations

of a concrete implementation, the HP memristor must be

modeled as a more general memristive system [19].

Analogously, it is shown in [12, 16] that the memcapacitor

and the meminductor are special cases of more general

memcapacitive and meminductive systems. In order to

model properly the meminductor also in its limit states, it

should be regarded as a current- or flux-controlled mem-

inductive system (CCMLS or FCMLS), respectively.

The CCMLS for modeling the current-controlled me-

minductor can be defined by the following algebraic port

equation (PE) and first-order differential state equation

(SE):

PE: u ¼ LMðx; i; tÞi; ð9Þ

SE: _x ¼ d

dt
x ¼ fiðx; i; tÞ: ð10Þ

In general, LM( ) and fi( ) are nonlinear functions, which

depend on the concrete physical implementation of the

current-controlled meminductive system or meminductor.

The suffix i denotes the current-controlled system.

Analogously, the FCMLS for modeling the flux-con-

trolled meminductor can be defined as follows:

PE: i ¼ KMðx;u; tÞu; ð11Þ

SE: _x ¼ d

dt
x ¼ fuðx;u; tÞ; ð12Þ
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Fig. 1 Schematic symbol of the meminductor and block diagrams of SPICE modeling of a current-controlled, b flux-controlled meminductor
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where KM( ) and fu( ) are nonlinear functions. The suffix u
denotes the flux-controlled system.

The functions fi( ) and fu( ) should also model the

so-called boundary effects, which cause the decrease of the

speed of state variable to zero if the device state approa-

ches its physical limits [20]. Details will be given in the

following section.

Equations 9–12 can serve as a starting point for con-

structing PSPICE models of current- and flux-controlled

meminductors operating on the basis of various physical

principles. The basic schematics of such modeling are

given in Fig. 1(a) and (b), together with the schematic

symbol of the meminductor. The symbol should be used in

accordance with [12]: when a positive voltage is applied to

the upper terminal with respect to the terminal denoted by

the black thick line, the meminductance is increased.

Port equations (9) and (11) are modeled by inductors with

inductances controlled through the blocks LM( ) and KM( ).

Input signals of these blocks are the system state x and the

meminductor current (Fig. 1a) or flux (Fig. 1b). The flux is

computed as a time-domain integral of meminductor voltage

(see the block Intu in Fig. 1b). Differential state equations

(10) and (12) are modeled by the integrator Intx and the

nonlinear blocks fi( ) and fu( ), respectively.

The varying inductors in Fig. 1 can be modeled in

PSPICE as follows. The general equation of the inductor

with varying inductance LM or with varying inverse

inductance KM = 1/LM

uðtÞ ¼ uð0Þ þ
Z t

0

vðnÞdn; or

LMðtÞiðtÞ ¼ LMð0Þið0Þ þ
Z t

0

vðnÞdn;

where u(0) and i(0) are the initial flux and current at time

0, can be rewritten in the form

iðtÞ ¼ KMðtÞ½LMð0Þið0Þ þ
Z t

0

vðnÞdn�: ð13Þ

This equation can be modeled in PSPICE via a controlled

current source. Note that the right-side integral is a flux,

which must be computed. The mathematical formula of the

inverse meminductance will depend on the concrete

physical implementation of the meminductor.

3 Example of SPICE modeling of meminductor

Figure 2 shows a simple electro-mechanical model of

meminductor. The coil has one fixed (on the left side) and

one sliding terminal, which can be moved, depending on

the circuit quantities described below, within limits defined

by distances lmin and lmax from the fixed terminal. The

slider positions lmin and lmax determine the limiting values

of the coil inductances Lmin and Lmax. Let us define the

dimensionless state variable x

x ¼ l� lmin

lmax � lmin

2 ð0; 1Þ: ð14Þ

The coil inductance L is, roughly speaking, proportional to

the square of the number of turns N:

L � N2=RM ; ð15Þ

where RM is the magnetic resistance of the magnetic part of

the coil.

Then the inductance LM of the meminductor in Fig. 2

depends on the state variable x approximately as follows:

LðtÞ �
ffiffiffiffiffiffiffiffiffi
Lmin

p
þ xðtÞ

ffiffiffiffiffiffiffiffiffi
Lmax

p
�

ffiffiffiffiffiffiffiffiffi
Lmin

p� �� �2 ð16Þ

Consider the current-controlled meminductor. According

to Eq. 10, the time derivative of the state variable, i.e. the

speed of the motion of the normalized distance x of the coil

slider from the fixed terminal in Fig. 2, must depend on the

inductor current. Analogously to the charge-controlled HP

memristor in [3] and memcapacitor in [17], consider state

equation (10) of the current-controlled meminductor in the

form

_x ¼ k � iðtÞ � windowðxÞ ð17Þ

The rate of the change of the slider position is directly

proportional to the meminductor current and to the

mobility factor k. The purpose of the nonlinear function

window(x) is to model the rate decrease to zero when the

slider approaches the limit positions lmin and lmax. As

known from papers on HP memristor, the modeling of such

boundary effects can be accomplished by several types of

window functions, which provide a transition to zero

values such as the rectangular [12, 21], Joglekar [20], or

Biolek [3] window, denoted by R, J, and B subscripts in the

formulae below:

~

l

i

v

l
lmax

min

Fig. 2 Electro-mechanical model of the meminductor
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windowRðxÞ ¼ stpðxÞ � stpðx� 1Þ;
windowJðxÞ ¼ 1� ð2x� 1Þ2p;

windowBðxÞ ¼ 1� ðx� stpð�xdÞÞ2p

ð18Þ

Here stp(x) is a step function, i.e. stp(x) = 1 when x C 0,

stp(x) = 0 when x \ 0, p is a positive integer, and xd is a

quantity which evaluates the direction of the change of the

state variable, i.e. xd [ 0 when x increases, and xd B 0

when x decreases or is constant.

Figure 3(a) shows that if the control parameter

p increases, the Joglekar window converges to the rectan-

gular window. The basic problem of this window consists

in the fact that when the state variable of the device is in its

terminal value 0 or 1, no external stimulus can change this

state because the time derivative of the state variable in

(17) is zero, independently of the terminal signals. Such a

discrepancy between the behavior of the model and the

requirements for the operation of a real circuit element is

x

( )xwindow

1

1

0.5

0.50
0

p= 1

p= 10

J

x

1

1

0.5

0.50
0

( )xwindowB

(a) (b)

Fig. 3 Window functions according to Joglekar (a) and Biolek (b), the latter for p = 2 [3]

Table 1 PSPICE subcircuit of

the meminductor from Fig. 2
No. PSPICE code

1 .SUBCKT memL Plus Minus PARAMS:

2 ? Lmin=1mH Lmax=20mH Linit=5mH k=10 p=10 IC=0

3 * Input port *

4 Vsense Plus ? 0 V; sensing of the meminductor current

5 Gml ? Minus value={(V(flux)?IC*Linit)/LM(V(x))}; see Eq. 13

6 *Flux computation via time-domain integration of meminductor voltage*

7 Gflux 0 flux value={V(plus,minus)}

8 Cflux flux 0 1

9 Rflux flux 0 1G

10 *State-space equation (17). Intx from Fig. 1 is formed by Cx and Gx*

11 .param xinit {(sqrt(Linit)-sqrt(Lmin))/(sqrt(Lmax)-sqrt(Lmin))}; results from Eq. 16

12 Gx 0 x value={I(Vsense)*k*windowJ(V(x),p)}; version for Joglekar window, see Eq. 17

13 ;Gx 0 x value={I(Vsense)*k*windowB(V(x),I(Vsense),p)}; version for Biolek window, see Eq. 17

14 Cx x 0 1 IC={xinit}

15 Rx x 0 1G

16 *Functions for defining meminductance and boundary effects

17 .func LM(x)={(sqrt(Lmin)?x*(sqrt(Lmax)-sqrt(Lmin)))^2}; see Eq. 16

18 .func windowJ(x,p)={1-(2*x-1)^(2*p)}; Joglekar window, see Eq. 18

19 .func windowB(x,xd,p)={1-(x-stp(-xd))^(2*p)}; Biolek window, see Eq. 18

20 *Computing charge and time-domain integral of flux (TIF)

21 Gcharge 0 0 value={SDT(I(Vsense))}

22 Gintflux 0 0 value={SDT(V(flux))}

23 .ENDS memL

132 Analog Integr Circ Sig Process (2011) 66:129–137
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resolved by the Biolek window, which reflects the fact that

the speeds of receding from and approaching the limit

positions of the slider are different. An illustration of how

this window works is given in Fig. 3(b) for the control

parameter p = 2. Details can be found in [3, 9]. As a

conclusion, the more sophisticated Biolek window models

well the device behavior also near its boundary states, but

numerical problems in transient analysis due to the dis-

continuities at boundary points can appear more frequently

than in the case of the Joglekar window. The Joglekar

window can be advantageously used for cases when the

mem-element operates far enough from its boundary states.

Note that when applying the Biolek window, constitutive

relation (1) will now depend on the way the meminductor

interacts with the surrounding networks. However, it is

only a consequence of the fact that the device in Fig. 2 is

not an ideal meminductor but a more general meminduc-

tive system.
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Fig. 4 PSPICE analysis of

meminductor from Table 1

excited by harmonic current

source. Boundary effects are

modeled via Joglekar window
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Fig. 5 PSPICE analysis of meminductor from Table 1 excited by harmonic current source. Boundary effects are modeled via Joglekar window.

The memory effect decreases with increasing frequency of excited signal
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The SPICE subcircuit, modeling the meminductor from

Fig. 2, is shown in Table 1 together with the self-explan-

atory notes.

The Vsense voltage source, defined on line 4, serves to

sense the meminductor current. The value of this current is

needed for modeling the state equation on line 12 or 13 as

well as for computing the charge on line 21. The code on

line 12 can be replaced by the text on line 13 when the

Biolek window is used instead of the Joglekar window. The

integrator Intx in Fig. 1(a) is accomplished by a capacitor

Cx with 1F capacitance, charged from a current source Gx,

which provides current according to Eq. 17. A shunting

resistor Rx is needed in order to provide the DC path to the

ground. The initial state xinit of the device is derived from

the initial value of inductance Linit, see line 11. The flux

computation as a time-domain integral of meminductor

voltage is done similarly on lines 7–9.

In order to easily visualize constitutive relation (1), the

charge and TIF computations are performed on lines 21

and 22. For simplicity, the time-domain integrations are

provided via a PSPICE function SDT, not by means of the

current source and capacitor. To save model nodes, the

computation is arranged via current sources with each

terminal grounded. The values of these currents are equal

to the charge and TIF and thus they can be used for the

visualization of the CR. Note that the SDT function was

not utilized in the above-mentioned models of integrators.

The main reason for not using the SDT function is that the

precision of these integrators can then be adjusted via a

proper selection of the component parameters.

The results of PSPICE transient analysis are shown in

Fig. 4. The analysis was performed for the meminductor

with default parameters given in Table 1 and the Joglekar

window, excited by a harmonic current source with an
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Fig. 6 PSPICE analysis of

meminductors excited by

trapezoidal pulse current

sources, with boundary effects

modeled by Joglekar and Biolek

windows. Figures (a) and

(b) show initial transients

whereas figures (c) and

(d) display the steady-state

behavior. The meminductor

parameters are Lmin = 100 lH,

Lmax = 2 mH, Linit = 1 mH,

k = 10 A-1 s-1, p = 10
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amplitude of 100 mA and a frequency of 1 Hz, with an

auxiliary 1 GX shunting resistor. The results shown in

Fig. 4 clearly demonstrate three basic fingerprints of the

meminductor [11]: Unambiguous constitutive relation

(1) (Fig. 4a), the pinched hysteretic loop in the flux–cur-

rent characteristic (Fig. 4b), and the identical time instants

when the flux and current waveforms cross the zero levels

(Fig. 4c). Figure 4(d) shows the variation of the state

variable x due to changing the terminal current and

voltage.

Figure 5 demonstrates another well-known fact from the

world of mem-devices: if the frequency of the signal

excitation increases, the hysteretic effect in the flux–cur-

rent characteristic is gradually suppressed.

Figure 6 offers a comparison of meminductor behaviors

when the boundary effects are modeled by the Joglekar and

the Biolek windows. Meminductors are excited by identical

current sources with symmetrical periodical trapezoidal

pulse waveforms with MIN/MAX values of -100 lA/

?100 lA, with a repeating frequency of 2 Hz, and with

5 ms rise and fall times. Figure 6(a) and (b) show the initial

transients whereas Fig. 6(c) and (d) display the steady-state

meminductor voltages, currents, and state variables x. Note

that whereas the initial transients are almost identical (see

Fig. 6a, b), in the steady-state the meminductor modeled by

the Joglekar window operates in the regime of x = 1, due

to the effect of locking in on the boundary state in which

the time derivative of the state variable is zero, and thus it

behaves as a conventional linear inductor. The corre-

sponding flux–current characteristic in Fig. 7(a) is a line

without any hysteretic behavior. By contrast, the operation

of the meminductor with the Biolek window exhibits a

steady-state variation of the state variable x (see Fig. 6d),

and the hysteretic loop in the flux–current characteristic is

evident in Fig. 7(b). Note that the constitutive TIF-charge

relation in Fig. 7(d) is not ambiguous because the

(a)
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(c)
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Fig. 7 Steady-state

characteristics of the

meminductors analyzed in

Fig. 6: flux–current

characteristics for Joglekar

(a) and Biolek (b) windows,

TIF-charge characteristics for

Joglekar (c) and Biolek

(d) windows
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meminductor now behaves as a more complicated mem-

inductive system.

4 Conclusions

The methodology described here facilitates effective

modeling of meminductive systems of various physical

natures in the SPICE-family programs for circuit simula-

tion. An example of the modeling of a current-controlled

meminductor whose inductance is changed depending on a

state variable, controlled by the meminductor current, is

analyzed in detail. The SPICE modeling of flux-controlled

meminductive systems can be figured out analogously,

following the general model in Fig. 1(b).
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of memcapacitor. Electronics Letters, 46(7), 520–522.

18. Chua, L. O. (2003). Nonlinear circuit foundations for nanode-

vices. Part I. The four-Element Torus. Proceedings of the IEEE,
91(11), 1830–1859.

19. Chua, L. O., & Kang, S. M. (1976). Memristive devices and

systems. Proceedings of the IEEE, 64(2), 209–223.

20. Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor:

Properties of basic electrical circuits. European Journal of
Physics, 30, 661–675.

21. Pershin, Y. V., & Di Ventra, M. (2010). Memristive circuits

simulate memcapacitors and meminductors. Electronics Letters,
46(7), 517–518.

Dalibor Biolek He received the

M.Sc. degree in Electrical Engi-

neering from the Brno Univer-

sity of Technology, Czech

Republic, in 1983, and the Ph.D.

degree in Electronics from the

Military Academy Brno, Czech

Republic, in 1989, focusing in

algorit of the symbolic and

numerical computer analysis of

electronic circuits with a view to

the linear continuous-time and

switched filters. He is currently

with the Department of EE,

University of Defence Brno

(UDB), and with the Department of Microelectronics, Brno University

of Technology (BUT), Czech Republic. His scientific activity is

directed to the areas of general circuit theory, frequency filters, and

computer simulation of electronic systems. He has published over 250

papers and is author of a book on circuit analysis and simulation. At

present, he is professor at the BUT and UDB in the field of Theoretical

Electrical Engineering. He is a member of the CAS/COM Czech

National Group of IEEE. He is also the president of Commission C of

the URSI National Committee for the Czech Republic.

136 Analog Integr Circ Sig Process (2011) 66:129–137

123

http://dx.doi.org/10.1109/TNANO.2009.2038051
http://dx.doi.org/10.1109/TNANO.2009.2038051
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is currently with the SŠIEŘ
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