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Magnetic resonance imaging has significant applications for disease diagnosis. Due to the particularity of its imaging mechanism,
hardware imaging suffers from resolution and reaches its limit, and higher radiation intensity and longer radiation time will cause
damage to the human body. The problem is expected to be solved by a superresolution algorithm, especially the image
superresolution based on sparse reconstruction has good performance. Dictionary generation is a key issue that affects the
performance of superresolution algorithms, and dictionary performance is affected by dictionary construction parameters:
balance parameters, dictionary size, overlapping block size, and a number of training sample blocks. In response to this problem,
we propose an optimal dictionary construction parameter search method through the experiment to find the optimal dictionary
construction parameters on the MR image and compare them with the dictionary obtained by multiple sets of random dictionary
construction parameters. The dictionary we searched for the optimal parameters of the dictionary construction training has more

powerful feature expressions, which can improve the superresolution effect of MR images.

1. Introduction

Magnetic resonance imaging (MRI) becomes more and
more widely used in medical clinical applications and plays
an increasingly important role in the diagnosis of various
diseases [1-5]. The mechanism of MR imaging is different
from that of natural images. The hydrogen protons of human
organs are magnetized under the action of external magnetic
fields and generate a magnetic resonance phenomenon
under the action of a magnetic field. The changing magnetic
signals are converted into electrical signals by induction coils
and fill the K space. Finally, an MR image is generated
through the Fourier transform. The method of improving
resolution relies heavily on increasing the magnetization of
more free water in human tissues and organs [6], which will
cause the increase of the radiation time and radiation in-
tensity of the main magnetic field of the magnetic resonance
imager and the loaded electromagnetic waves [7]; excessive

radiation can lead to serious consequences, such as over-
heating of the human body and protein inactivation [8],
causing harm to the human body and not suitable for clinical
application. From the perspective of current imaging
methods and technologies, the hardware imaging resolution
reaches the limit value. To increase the resolution, software
superresolution technology must be used to increase the
image resolution.

Image superresolution methods are mainly based on
interpolation, reconstruction, and learning. Li and Orchard
[9] proposed a new edge-directed image interpolation
(NEDI) method; Wang and Ling [10] proposed an Edge-
Adaptive Interpolation Algorithm (EAIA), combined with
bilinear and NEDI methods; Giachetti and Asuni [11]
proposed an interpolation based on iterative curvature
method based on the NEDI method. But the interpolation-
based method does not essentially increase the image in-
formation. Irani and Peleg [12] proposed an iterative
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backprojection method (IBP), Schultz and Stevenson [13]
proposed a superresolution method based on maximum
posterior probability (MAP), Patti et al. [14] proposed the
convex set projection method, and in [15], the projection
onto convex sets superresolution reconstruction method was
used for the superresolution of cardiac valve MR images.
POCS algorithm is not good at maintaining the image edge
and can not restore the high-frequency information on the
image. The superresolution method based on reconstruction
regards low-resolution observation images as a constraint
condition of the original high-resolution image, and a series
of solution spaces satisfying the constraint condition can be
obtained through the alternating iteration method. Most of
the above algorithms use prior knowledge such as the edge
characteristics of the image, the nonnegativity of pixels and
local smoothing characteristics to construct constraints and
then solve the optimization problem through an iterative
algorithm. The reconstruction algorithms are computa-
tionally expensive, and the resulting image is reconstructed
too smoothly. Learning-based superresolution methods
mainly include dictionary learning and deep learning. Yang
et al. [16] proposed a superresolution reconstruction algo-
rithm based on sparse representation. This method effec-
tively overcomes the problem of inaccurate representation
caused by using a fixed number of neighbors. On the basis of
the methods [17], adaptive sparse field selection and adaptive
regularization are applied to superresolution. Yang et al. [18]
proposed a double-geometric neighborhood embedding
method (DGNE), which uses multiview features and local
spatial neighbors of image blocks to find image features-
spatial manifold embedding. Zhang et al. [19] combined
subspace division and local regressor learning through the
mixture of experts method to further improve the quality of
image reconstruction. With the development of deep
learning. Shi et al. [20] propose a novel image SR method
that integrates both locals and global information for ef-
fective image recovery. This is achieved by, in addition to
TV, low-rank regularization that enables utilization of in-
formation throughout the image. The reconstructed image
will produce stripe distortion, and the texture and other
details will be blurred to some extent. Dong et al. [21] used
convolutional neural networks for image superresolution
reconstruction for the first time. This method first uses
bicubic interpolation to enlarge it to the target size and then
passes through a three-layer convolution network doing the
nonlinear mapping. The results obtained are output as high-
resolution images, and experiments show that it has
achieved good results. Since then, Residual Dense Network
[22], SRGAN [23], and many deep networks [24, 25] are
proposed and used. Deep learning methods are based on
data driving, and Network performance is affected by the
amount of data. However, due to the particularity and
privacy of MR images, it is difficult to obtain large amounts
of data. MR image superresolution task is more suitable for
methods that weak dependence on data volume.

Our contributions are threefold. First, we propose a
superresolution architecture based on joint dictionary
learning suitable for a small number of MR images. Second,
we analyze the effect of dictionary parameters on dictionary
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performance and find the optimal dictionary parameters
through parameters learning. Third, experiments prove that
our proposed method can achieve state-of-the-art perfor-
mance, even if there are only a few image data.

2. Algorithm and Analysis

2.1. Algorithm. We propose a superresolution architecture
based on joint dictionary learning suitable for a small
number of MR images. The algorithm framework is shown
in Figure 1. Through corresponding high and low-resolution
image block training, learn high and low-resolution dic-
tionary, low-resolution image blocks are sparsely repre-
sented by a low-resolution dictionary, and the sparse
coefficients can be used for high-resolution image recon-
struction. The performance of high and low-resolution
dictionaries directly affects the image reconstruction effect.

Training a joint dictionary requires the use of high-
resolution image block sets and low-resolution image block
sets. Training image pair is represented by P = {Y’, X"}.
X" = oy, %0 x5, 0%} and Y= {1, 0, 5000 ) rep-
resents features extracted from image blocks. The dictionary
training of two image feature spaces is expressed as follows
[16]:

2
x"-D,z|, + Mz, (1)

D,, = arg min
Dy,z

2
Y' - Dz, + MZI,. 2)

D, = arg min
D, z}

According to the idea of the joint training method, the
image blocks corresponding to the two image feature block
spaces are concatenated to form a new image feature block
space, so formula (3) [16] can be obtained:

B R A R (S

(3)

M is the dimensions of the low-dimensional image feature
block, and N is the dimensions of the high-dimensional
image feature block. It can be seen from formula (3) that
balance parameters, dictionary block size, overlapping block
size, and the number of dictionary blocks have an important
impact on the performance of the dictionary. We obtain the
optimal parameters of dictionary construction through
experimental analysis so as to achieve the improvement of
dictionary performance and image reconstruction effect.

2.2. Parameter Set and Analysis. 'The parameter set is written
as parameter = [A, overlap, 1, spn], where A is balance pa-
rameter, the overlap is the size of the overlap block, # is the
size of the dictionary block, and spn is the number of the
exemplar patch.

From the mechanism of reconstruction perspective,
changes of the parameter can cause changes in the structure
and quantity of the data calculated by the dictionary, which
has a great influence on the effect of reconstruction. The
specific analysis is as follows.
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FIGURE 1: MR image superresolution architecture based on joint dictionary learning.

According to the formula in equation (3), the balance
parameter A is used to balance sparsity and low-resolution
dictionary sparse, which represents image block errors. It
can be analyzed from the equation that the sparsity is in-
versely proportional to the error. In order to find the
minimum sparsity coeflicient, the error will increase, and
vice versa, so there must be an optimal value A to minimize
the value of equation (3).

The overlapped block overlap is the size of the over-
lapped portion among the image blocks, and is divided into
the selection of sample blocks in dictionary training and
overlap of test image blocks in reconstruction. In order to
ensure that the detailed features of the sample block can be
extracted in the dictionary training, the maximum over-
lapped block method is used to select samples, which makes
1 pixel gradually change between the training sample blocks
of a localized image. In order to eliminate the boundary blur
caused by the feature extraction of the test image block and
the reliability of the connection between the reconstructed
blocks, the overlap between the blocks is required. The larger
the overlap block, the larger the constraint between the
reconstructed blocks, and the better the reconstruction
effect.

MR images are expected to show various tissue structures
clearly, with high tissue resolution. However, the outline of
the diseased tissue can not be seen clearly and separated from
the surrounding structure, so it is important to clearly display
the texture details, especially the boundaries between different
organizational structures, and to some extent, reduce the
chances of misjudgment of the diagnosis due to the blurring
of the picture. Then, for the dictionary and the reconstructed

image, the size of the dictionary block used to represent the
teature will affect the number of effective features. The smaller
the dictionary block, the fewer features are generated, which
makes the reconstructed image have limitations and larger
errors, such as the most extreme 1x 1 and 2 x 2 blocks. The
features they can describe are limited. However, the oversized
block is also problematic. The image is too large, and the
features described by the image block can be combined and
described by several smaller feature blocks, then they lose the
properties of the feature block, such as extreme cases; the test
image itself is a large feature block; of course, this is un-
reasonable. Therefore, there must be an optimal value for
image segmentation, which makes image reconstruction
better.

We adopt the method of sparse representation and re-
construction of image blocks. When training the dictionary,
a large number of sampling image blocks are required. The
number of image sampling blocks has a certain influence on
the reconstructed quality. If the image block sample is too
little, it is not enough to complete the training of the dic-
tionary. If there are too many image sample blocks, espe-
cially the features of some image sample blocks that are not
obvious or typical, the characterization of the dictionary
cannot be improved even if there is much training. Is there
an optimal number of partitions? Since the selected image
sampling blocks are randomly extracted, it is difficult to
extract the required sample blocks in an accurate number of
blocks, so there is no optimal number of sample blocks.
Therefore, the selection of the sample block is as long as a
certain amount. Too little or too much can both not change
the image reconstruction effect.



3. Experimental Results and Analysis

3.1. Dataset. The experiments are all set as follows: The
method adopts the experimental framework of Section 1 of
Chapter 2. 81; representative pictures of different categories
in the image library were selected as the training samples of
the high-resolution dictionary. These MR images were ob-
tained from Siemens 3T platforms using a 32-channel head
coil. Low-resolution images are generated by the degrada-
tion of high-resolution images. LR images are generated
following the steps: (1) the high-resolution images are
transformed from image space to K space by FFT, (2) in the
K space, the outer high frequency is truncated, (3) through
the inverse Fourier transform, the truncated k space data are
transformed into the image space to generate the corre-
sponding low-resolution images. This mimics the actual
acquisition of LR and HR images by MRI scanners. In the
experiment, as shown in Figure 2, five images corresponding
to different types of MR images are selected as test samples.

3.2. Joint Optimization of Parameter

3.2.1. Balance Parameter A. The optimal value of the balance
parameter is verified by the experiments below. The initial
parameter configures are as follows: the dictionary size is
512, the balance parameter A = 0.1, and the block size is 5 x 5,
the overlap block is 4, the number of sample blocks is
100000, and the test samples are, respectively, selected from
the head, ankle, carotid artery, knee, and neck, as shown in
Figure 2.

It can be seen from Figure 4 that the value of PSNR
decreases significantly with the increasing A when A > 0.1. On
the contrary, when A<0.1, the value of PSNR decreases
slowly with A decreasing. As the balance parameter of the
sparsity, A exists optimal value, which makes PSNR maxi-
mum. For further verification, let A=0.1 as the optimal
balance parameter. The super resolution ratio is 1:4.

The experiment used a superresolution ratio of 1:4, and
other experimental parameters are the same as those in
experiment ratio 1:2. The experimental results are shown in
Table 2.

Figure 3 is obtained from Table 2. It can be seen from the
figure that the extreme point is near A = 0.1, and the ex-
periment with a superresolution ratio of 1:4 has the same
conclusion as the experiment with a superresolution ratio of
1:2.

3.2.2. Overlap Block. The relationship between the image
reconstruction effect and overlapped blocks is verified by the
following experiment. The initial parameters in the exper-
iment are the same as those in Experiment Balance pa-
rameter, and the changed parameters are the size of the
overlapped region. The overlapped blocks 1-4 are used to
represent the superposed pixels. The experimental results
can be seen in Table 3.

According to the experimental results, the images with
superresolution ratios of 1:2 and 1:4 are demonstrated,
respectively, in Figure 5, where the abscissa represents the
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number of overlapped blocks, and the ordinate is the cor-
responding PSNR. It can be seen from the figure that as the
overlay area of the overlapped blocks decreases, the value of
PSNR decreases. This is because the larger the overlay area
where the image blocks selected for the reconstructed block,
the larger the constraint between the reconstructed blocks,
and this is easy to find the closest image block to be con-
nected. The more the pixel points at the edge of the image
block overlap, the easier it is to eliminate the truncation
error caused by the feature extraction. It also has a certain
inhibitory effect on noise.

3.2.3. Dictionary Blocking Size. The following experiments
show the quality of the reconstructed image when having the
different blocking conditions for the same test image, where
the set of dictionaries is generated with the altering size of
the blocked image.

Other experimental parameters do not change, and the
changed parameters are the block size of the image blocking.
The image blocking of the dictionary has the same re-
quirements as the image blocking of the test image.

The experimental results are as follows: when the
superresolution ratio is 1:2, 8 high-definition dictionaries
with the image block from 3 x3 to 10x 10 are generated.
Three image blocks are shown in Figure 6. It can be seen that
as the image block size increases, the dictionary block be-
comes more and more complicated. The resulting PSNR
values are shown in Table 4.

Table 4 shows the value of the superresolution recon-
struction PSNR corresponding to the different block training
dictionaries of images. Since the reconstructed overlapped
block is 4, which exceeds the block size of the sample block
itself, the reconstructed samples are not correct when the
dictionaries are, respectively, corresponding to block 3 x 3
and block 4 x 4. The two data sets are not analyzed. The other
data corresponding to dictionary block and PSNR are shown
in Figure 7.

The abscissa in Figure 7 only represents the block of the
dictionary and the image. For example, the abscissa 5 in-
dicates that the dictionary block is 5x5 and so on. In-
creasing the block size will reduce the value of PSNR when
the overlap block size is unchanged. That is to say, the block
is not bigger always better. When the block is large, the
number of dictionary blocks that represent the image feature
block will increase, and the reconstruction error will become
larger. It can be seen that the preferred block value is 5 x 5 or
6% 6 blocks, and the calculation efficiency 5x5 blocks is
optimal.

When the superresolution ratio is 1:4, high-resolution
dictionaries from 5x5 to 13x13 are generated through
experiment. Three high-resolution dictionaries are shown in
Figure 8, where the dictionary block becomes more and
more complicated with the number of the blocks increasing.
But the too-large block causes too many singular matrices
when calculating the dictionary block, which causes the
dictionary block information to be lost. The larger the block,
the fewer the valid dictionary blocks. This will lead to a
decrease in PSNR values, as shown in Figure 8(c). The
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FIGURE 2: Image test sample. The comparison of reconstructed result with different balance parameter A is shown in Table 1, where the
superresolution is 1: 2. The first column in Table 1 is the change of the balance parameter. The data in the table is the corresponding PSNR
value. The results are plotted in Figure 3. (a) Head, (b) ankle, (c) carotid artery, (d) knee, and (e) neck.
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FIGURE 3: PSNR curve with the balance parameter A variation (superresolution ratio 1:4).

TasLE 1: The PSNR values of the five groups of samples with parameters A variation (superresolution ratio 1:2).

Balance parameter A Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
0.0001 32.1147 28.7875 32.0252 30.4382 30.1109
0.005 32.2643 28.9049 32.0483 30.6418 30.3621
0.01 32.2774 28.9341 32.0550 30.6463 30.3665
0.1 32.2431 28.8725 32.0357 30.5912 30.3487
0.2 32.1026 28.7828 31.9349 30.5253 30.2482
0.3 31.9502 28.6892 31.8094 30.4486 30.1392
0.4 31.7931 28.5935 31.6755 30.3667 30.0240
0.5 31.6271 28.4894 31.5267 30.2823 29.9142
0.6 31.4527 28.3712 31.3588 30.1950 29.7959
0.7 31.1624 28.1633 31.0738 30.0590 29.6033
0.8 29.1705 26.9047 29.2414 29.2739 28.1618
0.9 24.4864 23.1957 25.2566 26.5782 24.2847

parameters in the experiment only change is the super-
resolution ratio of 1:4, and the experimental results are
shown in Table 5.

The data in Table 5 are the corresponding PSNR values
generated by the superresolution reconstruction of the test
sample with different block training dictionaries for the
corresponding image. In order to intuitively distinguish the

influence of the block on the reconstruction, the horizontal
coordinate is the image block and the ordinate is the PSNR,
as shown in Figure 9.

The abscissa in Figure 9 only shows the image blocking
situation. The preferred PSNR corresponds to a 10 x10 or
11 x 11 image blocking. Taking into account the calculation
amount, 10x 10 image blocking is the best. If the image
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FIGURE 4: PSNR curve with the balance parameter A variation (superresolution ratio 1:2).

TaBLE 2: The PSNR values of the five groups of samples with parameters A variation (superresolution ratio 1:4).

Balance parameter A Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
0.0001 29.7593 25.2764 29.0537 26.9532 27.4701
0.005 29.8049 25.3250 29.1497 27.0742 27.5213
0.01 29.8186 25.3349 29.1571 27.0843 27.5372
0.1 29.8281 25.3454 29.1645 27.0922 27.5412
0.2 29.7391 25.2944 29.1024 27.0675 27.4779
0.3 29.6576 25.2515 29.0441 27.0382 27.4229
0.4 29.5741 25.2092 28.9856 27.0088 27.3612
0.5 29.4826 25.1631 28.9223 26.9778 27.2964
0.6 29.3861 25.1159 28.8543 26.9439 27.2285
0.7 29.2832 25.0664 28.7783 26.9074 27.1586
0.8 29.1534 25.0057 28.6830 26.8639 27.0771
0.9 28.4246 24.7130 28.1476 26.6769 26.6622
TaBLE 3: The PSNR data table varies with overlap blocks.
Superresolution ratio Overlap block Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
1:2 1 31.8015 28.5365 31.6296 30.3486 29.9244
1:2 2 31.8795 28.6155 31.7500 30.4587 30.0547
1:2 3 32.1207 28.8228 31.9781 30.5427 30.2708
1:2 4 32.2431 28.8725 32.0357 30.5912 30.3487
1:4 1 28.6725 24.7516 28.3602 26.6512 26.8626
1:4 2 29.0840 25.0284 28.6332 26.8210 27.0542
1:4 3 29.5786 25.2175 28.9978 27.0029 27.3708
1:4 4 29.8281 25.3454 29.1645 27.0922 27.5412

blocking is too small, it cannot represent features fully, and if
the image blocking is too large, the algorithm itself has
limitations.

Comparing results corresponding to the superresolution
ratios of 1:4 and 1:2, they have their own best partitions.
The image blocks with a superresolution ratio of 1:4 are
approximately double that of 1:2. This is because the image
local information required for 4 times superresolution be-
comes larger, and naturally, the image block needs to be
correspondingly larger.

The above two experiments compared the results where
the overlapped blocks are fixed as 4. But in the overlapped
block experiment, the larger the overlapped blocks, the
better the results. The experiment did not consider the best
case of overlapped blocks. Next, we will consider that if the
best block changes when blocking the different overlapped
blocks corresponding maximum.

The experiment verified the effect of the maximum overlap
block experiment on the superresolution performance. The
parameters are the same as those before the experiments. The
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FiGure 5: PSNR with overlap blocks changes (superresolution ratio 1: 2 and 1:4). (a) Superresolution ratio 1: 2, (b) superresolution ratio 1 :
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FiGure 6: High-resolution dictionary blocks (superresolution 1:2). (a) Dictionary block 3 x 3. (b) Dictionary block 6 x c. (c) Dictionary
block 10 x10.

TaBLE 4: PSNR data using different block constructed dictionaries (superresolution 1:2).

Dictionary blocking size Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
5x5 32.24 28.87 32.04 30.59 30.35
6Xx6 32.30 28.87 32.06 30.53 30.31
7x7 31.99 28.75 31.95 30.32 30.14
8x8 31.62 28.44 31.65 30.09 29.89
9%x9 31.20 28.21 31.33 29.80 29.52
10x10 30.92 27.95 31.18 29.60 29.27
changed parameters are only the block size and the overlapped The data show the superresolution reconstruction, where

block. For example, the block size is 7 x 1, and the overlapped ~ each test sample corresponds to different blocks and overlap
block value is 7 — 1. When the superresolution ratio is 1:2, the ~ blocks. For comparison, the data are plotted as shown in
experimental results can be seen in Table 6. Figure 10.
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FIGURE 7: Superresolution PSNR values of dictionary images constructed with different blocks (superresolution ratio 1:2).
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FiGure 8: High-resolution dictionary blocks (superresolution 1:4). (a) Dictionary block 5 x 5. (b) Dictionary block 9 x 9. (c) Dictionary

block 13 x13.

The horizontal coordinate in Figure 11 only indicates the
difference of the block. It can be clearly seen that the
reconstructed effect is better from Figure 11 when the
dictionary block is 5 5 or 6 x 6 blocks. The smaller blocks
make the features of the blocks insufficient, and the too-large
blocks need to increase the number of calculated pixels. The
increase in the size of the dictionary representation block
caused by the increase of the feature block makes the error
larger and impacts the PSNR effect. In this experiment, the
largest overlap block is used to make each component block
reach the best reconstruction. It can be seen that the better

block value is still 5x 5 or 6 x 6, and it is best to select a 5 x 5
block for the calculation efficiency.

The above experiment verified the effect of the maximum
overlap block experiment on the superresolution perfor-
mance. The parameters are the same as those in other ex-
periments. The changed parameters are only the block size
and the overlapped block. When the superresolution ratio is
1:4, the experimental results are shown in Table 7. The
obtained data is still plotted with the block size as the
abscissa and PSNR values as the ordinate, as shown in
Figure 11.
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TaBLE 5: Effects of dictionary blocks on PSNR (superresolution ratio 1:4).
Dictionary blocking size Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
5x5 29.83 25.35 29.16 27.09 27.54
6Xx6 30.00 25.49 29.38 27.22 27.72
7x7 30.30 25.61 29.49 27.18 27.91
8x8 30.40 25.71 29.72 27.23 28.02
9%x9 30.43 25.69 29.78 27.27 28.05
10x10 30.75 25.75 29.94 27.32 28.11
11x11 30.67 25.77 29.90 27.22 28.12
12x12 30.53 25.71 29.82 27.19 27.93
13x13 30.31 25.60 29.64 27.08 27.78
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FIGURE 9: Superresolution PSNR values of dictionary images constructed with different blocks (superresolution ratio 1:4).

TaBLE 6: Comparison of superresolution PSNR for different block and overlap block training dictionaries (superresolution ratio 1:2).

Block size Overlap block Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
3x3 2 31.30 28.21 31.22 30.26 29.70
4x4 3 31.96 28.70 31.73 30.54 30.19
5x5 4 32.24 28.87 32.04 30.59 30.35
6X6 5 32.29 28.90 32.07 30.55 30.32
7x7 6 3211 28.83 32.03 30.40 30.26
8x8 7 31.90 28.71 31.93 30.26 30.08
9% 9 8 31.71 28.60 31.80 30.10 29.93
10x10 9 31.43 28.42 31.65 29.95 29.70

It can be seen from Figure 11 that the 10 x 10 training
dictionary has the best superresolution reconstruction when
the superresolution ratio is 1:4. The above experiment
shows that the block size has the highest value and is related
to the superresolution ratio. The larger the superresolution
ratio is, the larger the block is needed. The change of the
overlap block does not influence the result of the optimal
block. For the MR image, the optimal block with a

superresolution ratio of 1:2 is 5% 5, and the optimal block
with a superresolution ratio of 1:4 is 10 x 10.

3.2.4. Number of Sampling Blocks. The experiment uses the
same parameters as other experiments. The changed pa-
rameters are the sample amount of sample image blocks, and
the data can be overlap extraction. The superresolution ratio
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TaBLE 7: Comparison of superresolution PSNR for different block and overlap block training dictionaries (superresolution ratio 1:4).

Block size Overlap block Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
3x3 2 29.22 25.05 28.78 26.91 27.11
4x4 3 29.45 25.16 28.93 26.97 27.26
5x5 4 29.83 25.35 29.16 27.09 27.54
6X6 5 30.19 25.57 29.43 27.26 27.81
7x7 6 30.63 25.72 29.68 27.30 28.06
8x8 7 30.80 25.88 29.96 27.35 28.25
9% 9 8 30.92 25.94 30.03 27.43 28.30
10x10 9 31.11 25.96 30.15 27.44 28.31
11x11 10 30.91 2591 30.09 27.32 28.22
12x12 11 30.87 25.90 30.05 27.30 28.17

13x13 12 30.63 25.76 29.88 27.19 27.98
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TaBLE 8: PSNR value corresponding to the number of sample blocks of different sampling images (superresolution ratio 1:2).
Number of blocks Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
1000 31.98 28.64 31.74 30.45 30.10
5000 32.15 28.79 31.94 30.52 30.23
10000 32.20 28.81 31.96 30.56 30.28
50000 32.29 28.84 31.99 30.57 30.31
100000 32.24 28.87 32.04 30.59 30.35
150000 32.31 28.91 32.04 30.60 30.37
200000 32.26 28.84 32.04 30.58 30.35
500000 32.32 28.86 32.01 30.61 30.35
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FIGURE 12: PSNR value corresponding to the training dictionary using different the number of samples (superresolution ratio 1:2).

TaBLE 9: PSNR value corresponding to the number of sample blocks of different sampling images (superresolution ratio 1:4).

Number of sample image blocks Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
1000 — — — — —
5000 29.78 25.29 29.11 27.04 27.43
10000 29.75 25.30 29.15 27.09 27.48
50000 29.77 25.35 29.16 27.11 27.53
100000 29.83 25.35 29.16 27.09 27.54
150000 29.84 25.38 29.18 27.08 27.54
200000 29.81 25.36 29.17 27.09 27.51
500000 29.85 25.39 29.16 27.10 27.53

is 1:2, and the experimental results are shown in Table 8.
The data is taken as an abscissa in the image block sampling
with different numbers of training dictionaries, and the
image is plotted with PSNR values as the ordinate, as shown
in Figure 12.

It can be seen from Figure 12 that the number of sample
blocks below 10000 blocks is too small. Since the sample
blocks that do not meet the requirements are removed in the
algorithm, the MR images have many black or dark areas,
and these gray scales are not changed much. Samples with

little change in gray, all zeros, or near all zeros are rejected,
which greatly reduces the number of blocks actually involved
in the calculation. Therefore, as the training sample block, a
training sample block with insufficient features reduces the
value of PSNR when reconstructed. On the contrary, the
large increase in the number of blocks does not cause a
significant change in the PSNR, nor does it have a maximum
value, showing a fluctuating change. All the training sample
blocks participate in the training of the dictionary. Too many
blocks will increase the training time, and there is no positive
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TaBLE 10: MR image superresolution optimal parameters.

Super resolution ratio Balance parameter A

Overlap block

Dictionary block size Number of sampling blocks

1:2 0.1 4
1:4 0.1 9

5x5
10x10

150000
150000

TaBLE 11: List of random group parameters.

Random group  Superresolution ratio

Balance parameter A Overlap block Dictionary block size

Number of sampling blocks

First group 1:2 0.1
Second group 1:2 0.2
Third group 1:2 0.2
Forth group 1:2 0.3
Fifth group 1:4 0.4
Sixth group 1:4 0.2
Seventh group 1:4 0.3
Eighth group 1:4 0.1

2 4x4 100000
7 8x8 50000
4 6Xx6 10000
3 7x7 120000
6 9%x9 30000
4 5x5 80000
9 12x12 90000
8 10x10 7000

significance for the generation of the HD dictionary.
Therefore, it is better to select 150000 sampling blocks. The
following experiment with a superresolution 1:4 is verified.

The data in Table 9 are taken as an abscissa in the image
block sampling with different numbers of training dictio-
naries, and the image is plotted with PSNR values as the
ordinate, as shown in Figure 13. As can be seen from
Figure 13, the conclusion with the superresolution ratio of 1 :
4 and is the same as that with the superresolution ratio of 1:
2 in block selection, while the dictionary cannot be trained
with a superresolution ratio of 1:4 when the number of
blocks is 1000. There are more requirements on the number
of dictionaries. Considering the reduction of dictionary
training time, it is better to select 150,000 blocks.

3.3. Experiment Simulation of Comprehensive Parameters.
The previous section analyzes several parameters that affect
the superresolution effect. The values of the optimal pa-
rameters of the superresolution MR image are shown in
Table 10.

The validity of the optimal parameters is verified by the
experiments below. The parameters select several sets of
random parameters to form a random group training dic-
tionary, which is compared with the dictionary of optimal
parameter training, as shown in Table 11. The PSNR results
obtained by experiments are shown in Table 12 below.

Comparing the data in Tables 12 and 13, superresolution
PSNR data in the optimal group are higher than that in the
random group, no matter the superresolution ratiois 1:2 or
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TaBLE 12: PSNR data of superresolution reconstruction in random group.
Random group Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
First group 31.83 28.56 31.60 30.46 30.07
Second group 31.50 28.45 31.61 30.10 29.72
Third group 31.88 28.63 31.79 30.35 30.13
Forth group 30.78 27.85 30.87 29.74 29.17
Fifth group 30.23 25.53 29.61 27.17 27.83
Sixth group 29.80 25.34 29.14 27.07 27.50
Seventh group 30.27 25.63 29.64 27.04 27.81
Eighth group 30.66 25.81 29.85 27.28 28.06
TaBLE 13: Superresolution reconstruction PSNR data in optimal group.
Optimal group Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Super resolution ratio 1:2 32.31 28.91 32.04 30.60 30.37
Super resolution ratio 1:4 31.10 26.00 30.14 27.37 28.36

1: 4. This shows that the parameters of the optimal group are
the best parameter values.

From the experimental results can be seen, the five human
body parts of the superresolution effect have obvious differ-
ences. The head and carotid artery superresolution effect is
best, and ankle superresolution effect is the worst. This is
mainly because each part contains different water components.
More water components can produce more hydrogen protons.
Under the action of magnetic field and radio frequency pulse,
high-frequency information will be generated, which can
better generate image edge, texture, and other details.

4. Conclusion

We propose a joint dictionary learning framework for
superresolution of MR images, in which changes in dic-
tionary construction parameters will cause changes in the
training dictionary and thus affect the performance of
superresolution reconstructed images. We have learned the
optimal dictionary construction parameters through a large
number of experiments and verified that the automatically
learned dictionary construction parameters could effectively
improve the performance of the dictionary and enhance the
expression ability of the image blocks, thereby achieving
better MR image superresolution effects.

Data Availability

We have not used specific data from other sources for the
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www.brain-development.org/.
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