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Simple Summary: The effects of stress on health outcomes in animals are well 
documented. Veterinary clinicians may be able to improve their patients’ care by better 
understanding how to recognize and reduce stress in those patients. This review will 
describe the physiology of the mammalian stress response and known health consequences 
of psychogenic, rather than physical, stress; as well as methods of measuring stress in 
animals. While the review will address stress in a range of domestic species, it will 
specifically focus on dogs.

Abstract: Evidence to support the existence of health consequences of psychogenic stress 
has been documented across a range of domestic species. A general understanding of 
methods of recognition and means of mitigation of psychogenic stress in hospitalized 
animals is arguably an important feature of the continuing efforts of clinicians to improve 
the well-being and health of dogs and other veterinary patients. The intent of this review is 
to describe, in a variety of species: the physiology of the stress syndrome, with particular 
attention to the hypothalamic-pituitary-adrenal axis; causes and characteristics of 
psychogenic stress; mechanisms and sequelae of stress-induced immune dysfunction; and 
other adverse effects of stress on health outcomes. Following that, we describe general 
aspects of the measurement of stress and the role of physiological measures and behavioral 
signals that may predict stress in hospitalized animals, specifically focusing on dogs. 
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1. Introduction 

In recent decades, the effects of stress on human health, and methods to reduce its prevalence, have 
received a great deal of attention. It is a long recognized phenomenon that husbandry and transport 
stress can dramatically affect animal health in livestock, and stress is beginning to be recognized as a 
factor in naturally occurring disease in humans [1,2]. The clinical relevance of stress in small animal 
veterinary patients has not been examined, but it seems likely that the impact of stress on clinical 
outcomes, such as survival rates or the speed of recovery from surgery, is under-appreciated. The 
implications that stress has for human health care outcomes and health in livestock serve as a 
foundation from which to extrapolate an analogous concern for our small animal veterinary patients. 
Reducing stress in companion animals under veterinary care is clearly important for their mental  
well-being, and is even more important if pharmacologic or non-pharmacologic interventions can also 
prevent disease or improve healthcare outcomes. 

The experience of hospitalization may be expected to include several factors which are known to 
induce stress in veterinary species such as the dog, including separation from the primary caretaker [3], 
environment [4], novel stimuli [5], increased noise levels [6], and a constrained environment [7,8].  
An investigation of behavior and heart rate of pre-operative hospitalized dogs suggests that these 
animals experience stress [9], yet there is little detail regarding the effects of such stress on health 
outcomes for dogs. This is likely in part due to a lack of understanding of stress by veterinary clinicians, 
as well as a lack of tools for accurate identification and quantification of stress in dogs. Investigation 
of the causes and effects of stress on the hospitalized small animal patient requires an understanding of 
both its physiology and pathophysiology, and of available methods of quantification in that particular 
species. The purpose of this review is to describe the physiology of the stress syndrome, characteristics 
of stressors, stress-induced immune dysfunction, and other adverse effects of stress on health using a 
cross-species approach. Following that, general aspects of the measurement of stress and the role of 
behavioral signals that may predict it are described, specifically focusing on dogs. 

2. Physiology of the Stress Syndrome 

The stress response is a normal part of daily life, and is only harmful when triggered too intensely 
or for too long [10,11]. Peripheral expression of the stress response is modulated via two systems, the 
sympatho-adreno-medullary (SAM) axis and the hypothalamic-pituitary-adrenal (HPA) axis. 

The SAM axis mediates the well-known “fight or flight” response, an initial, rapid response to an 
immediate stressor. Activation of the sympathetic nervous system and subsequent release of 
catecholamines (epinephrine and norephinephrine) from sympathetic nerve terminals and the adrenal 
medulla results in a state of physiologic readiness for response. Manifestations of SAM axis activation 
include mydriasis, increased heart rate, increased blood pressure, cutaneous vasoconstriction, an alert 
state, and increased plasma glucose and free fatty acid concentrations [12]. 
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A slower response to a stressor, with effects in minutes to hours or days, is mediated by activation 
of the HPA axis leading to the release of glucocorticoids (GCs) from the adrenal cortex. This endocrine 
portion of the mammalian stress response originates in the hypothalamus, with release of corticotropin 
releasing hormone and arginine vasopressin. These hormones in turn stimulate the release of 
adrenocorticotropic hormone from the pituitary gland, resulting in the production and release of GCs 
from the adrenal glands. Peripherally circulating GCs, cortisol and corticosterone, provide negative 
feedback to this system [12]. Glucocorticoids influence a large number of metabolic processes, 
including protein, glucose, and fatty acid metabolism, and immune function [13], and can induce a 
catabolic state [14], while corticotropin releasing hormone suppreses gastro-intestinal motility [15,16] 
and arginine vasopressin regulates the glomerular filtration rate (GFR), cAMP generation, and fluid 
balance [17]. Acting jointly, these hormones can also influence growth, thyroid function, and 
reproduction [18]. 

3. Classification and Causes of Stress 

Stress can be classified in a variety of ways, and different classifications of stress may have different 
consequences for health outcomes. Stress can be acute or chronic. In the laboratory setting, acute stress 
is sometimes defined as having a duration of less than one hour [19]. Chronic stressors in the laboratory 
often persist for 4–5 days, though chronic psychosocial stress in humans can last years [20]. These 
definitions differ from clinical perceptions of acute versus chronic disease, in which a disease lasting 
as long as several weeks may still be considered acute [21,22]. 

The term “stress” covers several different concepts: physiologic stress, non-physiologic or psychogenic 
stress, and distress [10]. Physiologic stress describes exposure to positive or negative physical, 
systemic, or environmental challenges that perturb the body’s homeostasis. In a veterinary setting, 
negative physiologic stress may be induced by systemic illness, trauma, and surgery. Similarly, 
psychogenic stress describes exposure to psychological or social challenges which result in disruption 
of psychological well-being. Negative psychogenic stress in a domesticated animal may be induced by 
separation from a caretaker, being subjected to invasive procedures in the absence of familiar 
caretakers, or exposure to a novel environment [23]. Positive psychogenic stress has been less widely 
studied, but may be understood to refer to situations such as reunion with a caretaker or engagement in 
a highly anticipated game such as fetch. Negative psychogenic stressors may account for some degree 
of avoidable morbidity in medical care, if measures to reduce stressors exist. Both physiologic and 
psychogenic stress are a normal part of life, and the healthy body and mind can adapt to maintain 
normal function [11]. Stress becomes distress when the body cannot restore homeostasis in the face  
of overwhelming physiologic stress, or when overwhelming psychogenic stress threatens mental  
well-being [10]. When marked, stress is associated with numerous pathophysiological sequellae, 
ranging from poor mental to poor physical well-being. This review is concerned with negative 
psychogenic stress, especially as it proceeds to distress. Following the stress literature, the term 
“stress” will be used to refer to “distress.” 

Psychogenic stressors may be classified as social/non-social [24] or controllable/uncontrollable [25]. 
A social stressor involves aversive interactions with a hostile conspecific, such as aggressive dogs in 
facing cages, or separation from the attachment figure, as opposed to a nonsocial stressor, such as 
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exposure to aversive environmental conditions, such as elevated noise levels. An uncontrollable 
stressor is not escapable by the animal, such as inescapable electric shock or restraint for medical 
procedures, as opposed to a controllable stressor, such as social stress mitigated by retreat to the rear of 
the cage. All of these types of stressors might be present in a veterinary medical setting; hostile 
conspecifics might present a social stressor, and restraint for a medical procedure might present an 
uncontrollable stressor. Practically, social stressors due to a lack of accommodation to canine body 
language and needs by their human caregiver are also uncontrollable, and are arguably widely 
encountered in veterinary care. 

Different stressors are known to cause varying levels of activation of metabolic and endocrine 
responses in laboratory animals [26,27], and may also have varying consequences in hospitalized
animals. For example, social stressors such as defeat in conflict with a conspecific activate the 
sympathetic nervous system more strongly than non-social stressors (restraint and shock) in rats [24]. 
Uncontrollable stressors, e.g., stressors from which the animal cannot escape and which cannot be 
mitigated, appear to activate the stress response more strongly across species than controllable 
stressors. This has been shown with escapable versus inescapable electric shocks in dogs [25]. Enhanced 
skill in assessment of and response to body language cues, as well as addressing a hospitalized 
animal’s environmental needs, may produce an overall reduction in psychogenic stress. 

4. The Effects of Stress on Health Outcomes 

There is ample evidence from laboratory, clinical, and epidemiological trials demonstrating that 
acute and chronic psychogenic stress can result in negative consequences on both human and non-human 
animals, contributing to increased patient morbidity or mortality [28]. These health implications 
include, but are not limited to, susceptibility to infection and sepsis, impaired antibody responses to 
vaccination, slowed wound healing, and development of gastric ulceration [28–30]. Chronic stress 
from anxiety disorders is associated with shortened lifespan in dogs [31]. Outcomes of particular 
relevance to hospitalized animals will be discussed under the subheadings below. 

4.1. Interactions between the Stress Response and the Immune System 

There is a complex interplay between the stress response and the immune system, which varies 
based on the duration (acute or chronic), timing (before or after immune challenge), and type (social or 
non-social, controllable or uncontrollable) of the stressor. The balance between the immunoenhancing 
and immunosuppressive effects of stress is complex, and any stressor may theoretically be immunoenhancing 
or immunosuppressive in a particular individual, based on the aforementioned variables. 

The initial stress response to a psychogenic stressor or an injury is often immunoenhancing and  
pro-inflammatory [32]. Acute stress enhances T lymphocyte responsiveness and appropriate 
differentiation into T helper 1 (Th1) or T helper 2 (Th2) lymphocytes [19,33]. Increased endogenous 
GC production associated with acute stress may result in a “stress leukogram,” characterized by a 
peripheral neutrophilia, lymphopenia, eosinopenia, and monocytosis due to redistribution and 
increased trafficking of white blood cells [34]. Circulating natural killer cell numbers may also 
increase, and the levels of both pro- and anti-inflammatory cytokines are altered [35,36]. Taken together, 
these changes prepare the immune system for an impending challenge, such as microbial invasion. 
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As time passes and an acute stressor becomes chronic, the effects of the stress response on the 
immune system may shift from immunoenhancement to immunosuppression. Glucocorticoids can 
inappropriately suppress the Th1 response and enhance the Th2 response [33]. Chronic stress can  
also be associated with leukopenia, lymphopenia, and reduced leukocyte phagocytic capacity [37]. 
These immunosuppressive and anti-inflammatory properties of the chronic stress response may be 
adaptive to limit systemic inflammation while permitting a controlled, localized inflammatory 
response to injury or infection, or to shift from the innate immune response to the adaptive immune 
response when the stressor is of longer duration, allowing enough time for the slower adaptive 
response to be effective [32,33]. 

However, when activation of the stress response is exaggerated or prolonged, it may lead to 
inappropriate immunosuppression [38]. For example, chronic stress induced immunosuppression in 
humans can lead to increased susceptibility to infection and neoplasia and decreased response to 
vaccination [28,39]. In mice, chronic restraint and acoustic stress results in decreased ability to 
eliminate bacterial infection associated with mild peritonitis [38].  

The timing of the stressor is also important. The immunoenhancing effects of acute stress are  
best realized when the stressor is timed to occur just before immune challenge. When a stressor occurs 
after the onset of an immune response, the stressor is more likely to be suppressive, even in the acute 
setting [19]. 

In addition to the duration and timing of the stressor, the type of stressor may also affect the  
pro-versus anti-inflammatory consequences of that stress. For example, social disruption stress in mice 
is pro-inflammatory, and presumed to be an adaptive response, since it is often associated with 
physical conflict resulting in wounds [40]. 

Hospitalized animals may be exposed to both acute and chronic stressors of a variety of types, 
including social, nonsocial, uncontrollable, and controllable. The interactions of immunoenhancing 
acute stressors versus immunosuppressing chronic stressors may be difficult to predict. However, as 
stressors associated with hospitalization of companion animals often occur after the challenge that 
initially prompted presentation of the animal to the veterinary hospital, they may be expected to be 
immunosuppressive, not immunoenhancing. Similarly, as the animal’s time in the hospital extends, the 
stress of hospitalization becomes more likely to act as chronic rather than acute stress, and therefore 
becomes more likely to suppress rather than enhance the immune response. 

4.2. Response to Vaccination 

Acute stress, on the order of minutes or hours, is immunoenhancing, so that stress may essentially 
serve as a natural adjuvant when it occurs at the time of vaccination [19] and has been shown in mice 
to induce a long-lasting increase in immunity [41] through enhancement of both the adaptive and 
innate arms of the immune system [42]. Timing is essential, however, because psychogenic stressors 
occurring after vaccination have been associated with a poorer antibody response [43], and a stressor 
which becomes chronic may suppress rather than enhance immune activity [19]. These beneficial 
effects appear to be mediated by endogenous glucocorticoids in physiologic, not pharmacologic, 
concentrations [19]. 
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4.3. Susceptibility to Sepsis 

Stress may influence an animal’s susceptibility to sepsis. In sepsis, an exaggerated systemic 
response to infection occurs, which results in increased mortality and may be more damaging than the 
original infection [40]. Studies in mice suggest that increased GC concentrations due to psychogenic 
stress might provide protection against sepsis due to the immunosuppressive effects of GCs, or might 
increase susceptibility to sepsis due to increased GC resistance, depending on the effects of different 
stressor types [13,44]. It is not known whether stress might increase or decrease susceptibility to sepsis 
in hospitalized veterinary patients. 

4.4. Wound Healing 

In humans, both acute and chronic psychogenic stress can negatively affect wound healing,  
even when activated for as short a time as several hours or days, as may be the case in hospitalized 
animals [45]. Chronic psychogenic stressors shown to affect wound healing in humans include 
examination stress, care taking for dementia patients, and marital stress [46]. Additionally, greater 
amounts of stress perceived pre-operatively in humans predict slower wound healing [45]. Therefore, 
psychogenic stress during hospitalization might be expected to affect wound healing in veterinary 
patients with traumatic wounds and surgical incisions. 

4.5. Gastrointestinal System 

Stress has been shown in humans and in laboratory animals to induce the development of stomach 
ulcers, particularly in conjunction with pathogens such as Helicobacter pylori, or non-steroidal  
anti-inflammatory drugs [47]. Chronic stress is also associated with the exacerbation of inflammatory 
bowel disease in humans [48], and stressful environment and anxious personality traits are associated 
with chronic idiopathic large-bowel disease in dogs [49]. Dogs undergoing significant physiological 
stress in the form of the physical exertion of a sled race are at increased risk of developing gastric 
lesions [50]. In addition to physiological stress, sled dogs are arguably exposed to psychogenic stress 
in the form of exposure to unfamiliar environments, interactions with unfamiliar conspecifics, and the 
race itself. Similarly, hospitalized animals are exposed to physiologic stressors, in the form of illness 
or trauma, in addition to psychogenic stressors. However, effects of hospitalization stress on 
gastrointestinal function in dogs have not yet been investigated. 

4.6. Cardiovascular System 

The detrimental effects of psychogenic stress on cardiovascular function in humans and laboratory 
animals are well recognized. Acute social stress increases T-wave alternans in normal dogs, and has 
triggered atrial fibrillation in humans [51,52]. Acute psychogenic stress is associated with 
hypercoagulability and thrombotic tendencies in humans, which is exacerbated in subjects who are 
also undergoing chronic stress [53,54]. Additionally, chronic psychogenic stress is associated with 
coronary artery disease and hypertension in humans, and increased risk of cardiovascular disease 
occurrence, morbidity, and mortality [55–57]. It is not known at this time how stress affects the 
cardiovascular systems of hospitalized animals with or without heart disease. 
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5. Quantification of Stress 

Although the effects of stress on health outcomes have been well studied in humans and animal 
models, little work has been done to evaluate the effects of different stressors on health outcomes in 
hospitalized animals with naturally occurring disease. It is likely that, as in other species, effects of 
stress on specific health outcomes in veterinary patients will vary depending on the duration, timing, 
and type of stressor(s). In order to better understand how stress affects hospitalized veterinary patients, 
reliable measurement tools are essential. As various markers of stress can be species specific, the 
following section focuses primarily on the dog. 

Quantification of stress is difficult. Both physiological and behavioral measures have been used to 
quantify psychogenic stress. However, both approaches have drawbacks, and results may be 
challenging to interpret. Theoretically, psychogenic stress may be objectively evaluated by measuring 
the circulating concentrations of SAM or HPA axis hormones, or associated physiologic parameters, 
such as heart rate variability as a representation of autonomic tone. In practice, no single hormone or 
physiological response is ideal for measuring psychogenic stress, and it has been suggested that 
multiple parameters should be used simultaneously to improve accuracy [10]. There are no known 
physiological measurements of stress which can serve as specific markers of distress; measuring stress 
is made difficult by confounding factors, such as measurements that describe the function of the 
immune system in addition to characterizing the stress response. Behavioral measures of stress suffer 
from similar non-specificity, and are in many ways less well understood than physiological measures. 

5.1. Physiological Measures of Stress 

Physiological measurements of stress include assessment of the HPA axis (usually cortisol 
measurement), salivary immunoglobulin (Ig)A (sIgA), and the neutrophil:lymphocyte (N:L) ratio. The 
benefits and limitations of each of these are discussed below. Additionally, Table 1 summarizes some 
physiological measures of stress in regards to their invasiveness, the time period that they reflect, and 
daily variation. 

Table 1. Physiological measurements of stress in dogs.

Type Invasiveness Time period reflected Daily variation
Plasma cortisol Moderate 3–40 minutes High
Salivary cortisol Low 4–40 minutes High
Urinary cortisol None 6–12 hours Low
Salivary IgA Low 0–30 minutes High
N:L ratio Moderate Hours Low
HRV Moderate Hours High

5.1.1. The HPA Axis 

Measurement of HPA axis activity through concentrations of GCs such as cortisol and corticosterone 
is the most widely used hormonal measurement of psychogenic stress, and is commonly used in 
humans and dogs [58–60]. Cortisol concentrations in the plasma, saliva, or urine have been shown to 
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significantly increase in dogs 15–30 minutes after the onset of a stressor, indicating increased HPA 
axis activation [61]. Because blood collection is moderately invasive, many animals will display 
increased cortisol concentrations after immobilization and venipuncture. However, cortisol secretion in 
response to collection does not affect the values in dogs if venipuncture and collection can be 
completed in less than 3 minutes, or if saliva collection can be completed in less than 4 minutes [62]. 
Salivary cortisol concentrations are frequently used in stress studies of dogs because they are strongly 
correlated with plasma cortisol, are less invasive, and require less training of the handler performing 
the collection [59,63]. Urine contains both cortisol and its metabolites, and may be collected  
non-invasively. Urine cortisol:creatinine ratios provide a summary of HPA axis activity over several 
hours, and are therefore more useful for measurement of chronic stress than of HPA axis response to 
an acute stressor [64].

The evaluation of HPA axis activation by means of cortisol concentration measurement has 
multiple limitations. Measurement of cortisol activity reflects physical and/or psychological arousal, 
and therefore is not a specific measurement of psychogenic stress. The level of psychogenic distress 
experienced by an individual may be only moderately associated with cortisol concentrations, due to 
the intricate relationship of HPA axis function and metabolic demands [59,65]. In fact, activation of 
the HPA axis may indicate positive stress rather than distress, as it is activated in dogs after time in the 
dog park [66] or in sled dogs anticipating a race [67]. Moreover, due to the degree of variability in 
cortisol concentrations between individuals, no reliable species reference ranges exist, and basal 
concentrations must be evaluated with reference to a control group [68]. Daily variability in cortisol 
concentrations is such that sampling the same animal on multiple days is recommended where  
possible [62]. Additionally, samples should be obtained at the same time of day to avoid possible 
diurnal variability [69]. These samples may be affected by daily experience, including sleep patterns, 
meal content, and recent exercise [69–71]. 

To some extent, study design can mitigate the issue of variability in cortisol concentrations, by 
pairing similar subjects in statistical analysis, taking multiple samples, taking samples at the same time 
of day, and by limiting the variety of ages, breeds, and life experience where possible. However, 
cortisol alone is not a highly reliable measurement of stress. Despite its common use, it has proven to 
be a problematic tool at best, due to its extreme inter- and intra-individual variability. 

5.1.2. Salivary Immunoglobulin (Ig) A 

Salivary immunoglobulin(Ig)A (sIgA) is a well-known marker of stress in humans [72]. sIgA 
concentrations have been shown to negatively correlate with cortisol concentrations in dogs, and have 
been used to evaluate both acute and chronic stress in dogs [73,74]. Limitations of using sIgA 
concentrations to assess stress are that they change rapidly, will decline immediately after the 
presentation of a stressor, have significant diurnal variation, and may fail to distinguish between 
physiologic and psychogenic stress [73,75]. Because sIgA concentrations significantly correlate with 
plasma cortisol concentrations, they may be subject to similar variation, though causes of variability of 
sIgA are not as well described in domesticated animals as are causes of cortisol variability [74]. 
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5.1.3. Neutrophil: Lymphocyte (N:L) Ratio 

Because both acute and chronic stress are known to be associated with neutrophilia and lymphopenia, 
an increased neutrophil:lymphocyte (N:L) ratio has been used as a marker of stress in human  
and veterinary studies, including studies in dogs [8,76]. Using the N:L ratio has the advantage of a 
several-hour time delay from the onset of the stressor, so that it may be used to measure baseline stress 
levels in dogs who have recently arrived at a veterinary hospital.  

Limitations of the N:L are similar to those of GC concentrations, in that it cannot distinguish 
between physiologic and psychogenic stress and is invasive; therefore, this marker may not be 
appropriate for all studies [76]. This ratio suffers from less variability than cortisol concentrations, but 
is correspondingly less responsive in the short term to the effects of very acute stressors [76]. 
Additionally, its use in veterinary studies of stress is much less common and less well understood than 
the use of cortisol. 

5.1.4. Heart Rate and Heart Rate Variability 

Sympathetic nervous system activation during psychogenic stress results in increased heart rate, 
which has been used to assess acute stress in dogs [3,77–79]. However, heart rate elevation has been 
found to be a non-specific marker of distress, increasing in cases of positive and negative stress, as 
well as with increased motor activity [3,77,79]. Heart rate ordinarily varies over time due to the 
prevailing balance of parasympathetic and sympathetic nervous system input. During stressful events, 
heart rate variability (HRV) declines as the heart rate remains mostly elevated, and this parameter can 
be measured and interpreted. Decreased HRV has been shown to be present in dogs which may be 
suffering from stress due to hospitalization [9]. Heart rate variability has also been used as a marker of 
acute stress in humans [80] and lab animals [24], and may prove valuable as a marker of acute stress in 
dogs. Heart rate variability measurement requires continuous monitoring, typically accomplished via 
attachment of telemetry equipment [78,79], but more simple and feasible methods developed for 
human athletes hold promise for studies of stress in dogs [81,82]. Ideally, dogs should be acclimated to 
wearing telemetry devices, in order to avoid the confounding of the response to the experimental 
stressor with a reaction to the equipment [77]. 

5.1.5. Additional Physiologic Measures 

ACTH, norepinephrine, and epinephrine [8,83] have been used as biomarkers of stress in dogs, but 
only rarely. Additional measures of physiologic change have been documented in dogs post-surgically, 
including decreased prolactin, monocytosis, eosinopenia, and increased C-reactive protein and 
haptoglobin [23], but these measures have not been used as biomarkers of stress in dogs. 

5.1.6. Limitations of Physiologic Measurements of Stress 

An understanding of the limitations of measurement of physiologic changes to evaluate psychogenic 
stress is important when designing stress studies using these measurements. What one individual 
experiences as a stressor, another may not, and stimuli which evoke a stress response in one individual 
may not do so in another. A standardized stress stimulation tool in humans, the Trier Social Stress 
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Test, produces a stress response measurable with cortisol in only 70–80% of tested individuals [84]. 
Similarly, a hospital environment triggering a stress response in one dog may not do so in another 
individual coming from a comparatively more stimulating or stressful home environment. In other 
words, though physiologic changes are likely to reflect an animal’s distress, prediction of what 
constitutes a stressor for a specific individual may be difficult if the animal’s prior history is unknown. 
Conclusions from studies using purpose-bred dogs of uniform age, breed, gender, and life experience 
should be applied to pet dogs, a population which might vary in all of those parameters, only with 
caution. On the other hand, studies on pet dogs may be confounded by variability in such a large 
number of parameters that the necessary sample size to reach statistical significance may be much 
larger than for uniform populations. 

5.2. Behavioral Markers of Stress in Dogs 

Behavioral measures of stress have been used to inform interpretation of physiological markers of 
stress such as cortisol concentrations or heart rate, and are non-invasive [4,58,60,64]. However, 
behavior may be difficult to interpret, and may not be constant for different stressors [85]. In one study 
of stress in dogs moved to a new kennel environment, behaviors thought to be associated with stress 
showed no correlation with urinary cortisol concentrations [60]. The interpretation of individual 
behaviors may be contextual, so that behaviors may be linked to stress in some situations but not 
others. Oral activity such as lip licking increases after some acute stressors, including pulling the dog’s 
head down by a rope, opening an umbrella, or pressing the dog down to the floor [86]. However, oral 
activity does not increase after other acute stressors, such as a loud sound or the presentation of a 
moving toy car [60]. Similarly, paw lifting is increased in dogs subjected to austere housing compared 
to dogs with more enriched housing, but not in dogs introduced to an animal shelter [60,85]. Therefore, 
stress behaviors cannot be grouped into categories such as “behaviors in response to acute stress” or 
“behaviors in response to housing stress,” but must be considered for a particular environment. 

5.3. The Need for Behavioral Stress Assessment Instruments for Hospitalized Dogs 

Hospitalization represents a predictable set of stressors, including separation from the caretaker and 
exposure to novel surroundings, which may have an impact on the outcome of medical treatment.  
If behaviors were determined to correlate positively or negatively with cortisol concentrations or  
other physiologic markers, generation of stress assessment scales or instruments may be possible. 
Validation of scales is necessary, to guard against errors in the development process, and to ensure 
reproducibility.

Validated behavioral instruments have been used to assess and study other states in dogs, such as 
acute pain, postoperative pain, and pain from osteoarthritis [86–88]. Pain is a state that, like stress,  
has no “gold standard” for detection in non-verbal beings, even experimentally, but the emergence of 
pain scales in veterinary medicine has enhanced the study of interventions and assessments greatly  
in recent years.

Published studies of stress in dogs commonly involve measurement of salivary cortisol. Due to 
cortisol’s variability and non-specificity as a marker of stress, the addition of a second marker may 
increase the reliability of behavioral instruments to detect stress [10]. However, the measurement of 
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multiple physiologic variables represents a challenge in the clinical study of patient populations, 
particularly when such measures may themselves perturb the state of the system being studied in  
the subject.

In addition to allowing the study of the effects of stress on health care outcomes, behavioral 
assessment may provide a useful clinical diagnostic measure. Salivary cortisol is not useful for “point 
of care” detection of stress levels in hospitalized patients, since measurement requires an immunoassay 
and strict controls. Clinical evaluation of stress levels of patients currently involves interpretation of 
behavior [23]. Our recent work has contributed to the literature by providing some evidence for 
correlation of specific behavior combinations associated with salivary cortisol in hospitalized  
dogs [89]; however, it was necessary to observe the dogs over a period of time (20 minutes), and this 
was considered too cumbersome for a useful clinical observation period. Behavior is an inexpensive 
and non-invasive parameter to assess, but due to its high variability and lack of understanding of the 
specific sources of that variability in different situations, it may be difficult to interpret [85]. Therefore, 
in order for behavior to be a useful indicator, there is a need for more investigation into correlations 
between stress markers and behavior in hospitalized dogs. 

6. Conclusions 

Both because of a growing recognition of its potential to affect health outcomes in humans and 
animals, and because the experience of psychogenic distress is unpleasant, veterinarians should 
recognize the importance of identification and reduction of psychogenic distress in their patients. 
Therefore, there is a need for investigation into methods of measurement of stress in hospitalized 
animals. If we can produce behavioral assessment instruments, or “stress scales,” to enable 
identification of highly stressed patients, then this may aid in determining the extent to which negative 
outcomes are associated with increased stress and methods to reduce its impact on the patient. As 
evidence accumulates in support of the fact that psychogenic stress has important health consequences 
across a range of species, a general understanding on the part of clinicians, as well as investigation of 
its recognition and means of mitigation using validated stress assessment tools, are important features 
of our evolving quest to improve the well-being and health of veterinary patients. 
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