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Psychological and metabolic stress:  
A recipe for accelerated cellular aging?
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ABSTRACT

Chronic stress can affect human health through a myriad of behavioral and biochemical path-
ways. Τhis review focuses on some key hormonal and metabolic pathways that appear important 
today. In modern society, we are faced with excessive psychological stress, as well as an epidemic 
of overeating, and the two together appear to have synergistic effects. Chronic stress can lead to 
overeating, co-elevation of cortisol and insulin, and suppression of certain anabolic hormones. 
This state of metabolic stress in turn promotes abdominal adiposity. Both the direct stress 
response and the accumulation of visceral fat can promote a milieu of systemic inflammation 
and oxidative stress. This biochemical environment appears to be conducive to several cell aging 
mechanisms, mainly dampening telomerase and leading to telomere length (TL) shortening 
and cell senescence. Immune cell telomere shortness is linked with many chronic disease states 
and earlier mortality. In this way, chronic stress may influence a variety of diseases through a 
biochemical cascade leading to immune cell senescence. Certain psychological temperaments 
at high risk of this stress cascade (mainly anxiety prone), gene-environment interactions, and 
potential interventions for interrupting the stress-aging cascade are discussed.
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Α. IntroductIon

Chronological age is the best predictor of chronic 
diseases. The elderly population (65 and older) is 
projected to increase significantly, reaching 72 million 
in the United States by 2030.1 Since the burden of 
diseases of aging on the healthcare system will likely 
be overwhelming, it is important to gain a deeper 

understanding of biological aging. The development 
of age-related diseases occurs at different rates in dif-
ferent individuals, and psychological distress appears 
to be an important factor promoting earlier onset of 
age-related diseases.2-6 Thus, better understanding 
of how stress is likely to promote “biological aging” 
may lead to clinical interventions or policies that 
could have a broad public health impact.

Below is a selective review of some of the major 
effects of chronic stress on metabolism and cell ag-
ing. It demonstrates how a stress-induced anabolic/
catabolic imbalance—characterized in part by high 
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simplicity, cell aging is just one of many outcomes of 
stress, and likewise stress is just one of many factors 
affecting cell aging.

B. MetaBolIc MechanIsMs of agIng

B.1. Aging, allostasis, and biochemical stressors

Allostasis appears to be at the nexus between 
stress and aging. Allostasis describes how our normal 
regulatory physiological systems fluctuate within 
rather large operating ranges to match environmental 
demands. Allostasis creates ‘stability through change’ 
by changing our level of arousal to meet the current 
demands.7 At the systems level, hormones are one 
of the primary allostatic regulators. At the cellular 
level, there are many mechanisms that regulate the 
stress responses, all aiming at genome protection 
(See Section D).

cortisol, glucose, and insulin, and low androgens 
and growth hormones—may lead to oxidative stress 
and systemic inflammation, which in turn impair 
cell aging processes. Consumption of energy-dense 
food and obesity also play a key mediating role in this 
pathway. Our modern lifestyle drives us to consume 
calorically dense food during times of stress. Both 
chronic stress arousal and overeating can cause in-
sulin resistance, and together they promote energy 
storage in abdominal fat tissue. This body habitus is 
associated with systemic inflammation and oxidative 
stress which in turn affects cell metabolism and can 
accelerate cellular aging, possibly affecting autophagy, 
sirtuins, and telomere maintenance. The review 
concludes with the thesis that chronic stress-induced 
biochemical imbalance, the direct central effects and 
indirect effects from adiposity, promote leukocyte 
cellular aging, as shown in Figure 1. Although the 
figure shows linear relationships in a closed system for 

Figure 1. Some systemic and cellular effects of chronic stress
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Efficient allostasis describes facile adaptation, 
such as a quick peak stress response to mount energy 
to an acute stressor, and a rapid return to baseline, 
when the stressor terminates. Impaired allostasis is 
characterized by exaggerated reactivity peaks and 
sluggish recovery.4,8 Chronological aging impairs an 
organism’s ability to sustain efficient allostasis when 
responding to different stressors. In humans, this is 
well-demonstrated by examining physiological regula-
tion such as dynamic hypothalamic-pituitary-adrenal 
(HPA) axis responses or temperature changes. The 
cortisol response to stressors can be exaggerated 
in the elderly, and additionally, there is a sluggish 
negative feedback, so that cortisol stays elevated 
longer.9,10 Aging also causes a greater operating range 
of temperature, making the elderly more vulnerable 
to heat shock when under heat stress. Thus, impaired 
allostasis is inherent in chronological aging.

Chronic stress causes certain regulatory systems 
to have altered set points as well as changed response 
profiles. Aging is also associated with altered set points 
in multiple regulatory parameters such as cytokines, 
blood pressure, and lipids, and often deficiencies in 
androgens and IGF-1. An index of these markers is 
commonly used as a way to measure “allostatic load,” 
the damage due to repeated fluctuations of the stress 
response. A high allostatic load index, indicating 
altered set points, has been linked to earlier mortal-
ity.11 Here we focus on four of these factors—cortisol 
and insulin, inflammatory factors, and oxidative 
stress—labeling these ‘biochemical stressors’. These 
factors that are stress responsive become imbalanced 
during chronic stress, acting as physiological stressors 
which can accelerate cellular and tissue aging.

B.2. The anabolic/catabolic hormonal balance

Chronic stress tends to shift the hormonal bal-
ance toward low levels of the anabolic hormones 
that promote growth of lean and skeletal mass and 
prevent adiposity, such as androgens and IGF-1. It 
also can promote greater cortisol levels, or cortisol 
levels that are not well counter-regulated by anabolic 
hormones. This has been labeled anabolic/catabolic 
imbalance(A/C imbalance).12 In addition, cortisol 
increases insulin levels.13,14 Although insulin is ana-
bolic and under normal basal conditions can increase 
both lean mass and fat mass, co-elevation of insulin 

with cortisol preferentially increases abdominal fat 
stores (See B2, below), making high insulin part of 
the A/C imbalance profile.

Chronic stress can affect the hypothalamic pituitary 
adrenal axis in many ways. For example, it can lead to 
impaired negative feedback of the HPA axis, to slower 
recovery from stressors, and to either higher or lower 
cortisol levels.3,4 A considerable body of research has 
linked depression and chronic stress to elevated stress 
hormones, mainly cortisol and catecholamines,3,15-17 
though not in all cases.18-20 While around 40% of de-
pression is characterized by high cortisol levels, both 
depression and chronic stress have also been linked 
to hypocortisolemia or low Corticotropin-Releasing 
Hormone (CRH).21,22 In particular, atypical depres-
sion, states of chronic fatigue, and post-traumatic stress 
syndrome are linked to profiles of low cortisol and/or 
enhanced HPA axis negative feedback.21,23 It may be 
that a deficiency of cortisol contributes functionally 
to symptoms of inflammation and fatigue. Further, 
hypercortisolemic depression may actually promote 
functional hypocortisolemia, since glucocorticoid 
receptor sensitivity is low, which can lead to glucor-
ticoid resistance and impaired signaling.24 Here we 
focus on effects of high cortisol, but acknowledge that 
low cortisol may have effects on cell aging through 
alternative pathways.

Anabolic hormones including androgens [De-
hydroepiandrosterone (DHEA), and testosterone] 
and the somatotropic axis, mainly growth hormone 
(GH) and insulin like growth factor 1 (IGF-1), also 
play an important role in stress and aging. These 
hormones decrease with age and are often linked to 
poor metabolic health. It is notable that androgens 
appear to have gender specific effects on disease. 
Testosterone, and in some cases DHEA-S, predict 
lower incidence of diabetes and metabolic disease in 
men, but higher incidence in women.25-27

Like aging, chronic stress can lead to decreased 
IGF-1, GH, DHEA, and testosterone levels,12,28 al-
though there are exceptions to this.29 As described 
elsewhere, chronic stress and obesity have independent 
and interactive effects on suppressing these hormones 
as well as disrupting the gonadal axis and reproduc-
tive function.30

DHEA often serves as an antiglucocorticoid and 
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psychological stress, including job stress, is associated 
with abdominal fat in cross-sectional 46 and prospec-
tive studies.47-49

These relationships are not surprising, as abdomi-
nal fat is an ideal target tissue for stress. Abdominal 
fat is regulated in part by A/C balance. Low levels 
of androgens and high levels of cortisol and insulin 
promote abdominal fat deposition.50 Visceral fat is 
well equipped to respond to the stress-induced com-
bination of high cortisol and high insulin. For one, it 
has a greater density of glucocorticoid receptors.51,52 
Secondly, insulin promotes lipoprotein lipase, the 
fat storing enzyme that converts triglycerides into 
stored fat (free fatty acids), and cortisol promotes 
prolonged elevations of lipoprotein lipase.53 Rodent 
studies have shown that the combination of stress plus 
high fat diet leads to greater abdominal fat storage 
than either stress or high fat diet alone.54

In turn, abdominal fat contributes to numerous 
biochemical stressors. Clinically, greater abdominal fat 
thickness is associated with higher levels of systemic 
total oxidative stress (lower antioxidants, higher lipid 
markers)56 and greater number of inflammatory mark-
ers.57 Fat cells, both subcutaneous, abdominal and 
particularly visceral abdominal fat, release cytokines 
such as TNF-a and IL-6.58 Monocytes infiltrate the 
fat, especially near dead cells, and further release 
cytokines, promoting systemic inflammation. Animals 
with fat transplants of visceral but not subcutaneous 
origin develop increased inflammatory and cardio-
vascular disease, suggesting that the inflammation 
alone is pathogenic.55 Thus, the visceral fat tissue is 
a likely source of the chemicals that induce cellular 
aging.

B.4. Oxidative stress

Production of free radicals (oxidative stress) is 
thought to exert a major influence on cell aging and 
tissue damage,59,60 particularly to cardiac cells and 
the brain.61 Free radicals tend to increase with age, 
as indexed by markers such as lipid peroxidation and 
impaired antioxidant activity. However, in elderly 
individuals who are still healthy, oxidative stress level 
can be similar to that of young adults,62 or at least 
comparable to antioxidant defenses,63 suggesting 
that oxidation is not inevitable in aging. It appears 
that psychological stress and lifestyle factors such as 

can buffer effects of inflammation and oxidative 
stress.31 Therefore, deficits in anabolic hormones may 
in some cases leave actions of cortisol unopposed. 
Anabolic hormones at sufficient levels signify restora-
tive processes, while deficits may indicate earlier aging 
and risk of mortality. For example, A/C imbalance is 
related to cachexia, and earlier mortality from Chronic 
Heart Failure (CHF).32,33 Low levels of testosterone 
predicted mortality in male veterans.34 Another study 
examined whether low levels of IGF-1, testosterone, 
and DHEA were related to earlier mortality in men, 
while adjusting for various behavioral factors as well 
as presence of chronic diseases. They found that being 
low on all three of these hormones was related to a 
2.5 times higher risk of early mortality.35

GH and IGF-1 decrease with aging, a phenom-
enon associated with muscle atrophy, but anabolic 
hormones, also promote malignancy such as breast 
cancer.36 People with low levels of GH have increased 
adiposity, insulin resistance, and increased incidence 
of cardiovascular disease, but nevertheless have very 
low rates of cancer.37 Thus, growth factors are double-
edged swords: they have favorable effects on muscu-
loskeletal and thus metabolic health, yet increase the 
risk of cancers. Despite these links between GH/IGF-1 
and good metabolic health in humans, GH/IGF hor-
mones are linked to shorter lifespan in most lower 
species and mammalian models.38 New research on 
genetic variation of genes controlling the IGF-1/GH 
signaling pathway, such as the FOXO gene, support 
the animal studies showing that mutations in these 
signaling pathways are linked to longevity in humans 
as well,39 painting a complex picture of the role of 
these growth hormones in human health.

B.3. Insulin resistance and adiposity

Chronological age is strongly associated with 
increases in insulin resistance and adiposity, and it 
is becoming clear that long time exposure to insulin 
resistance accelerates biological aging. For example, 
in diabetes, there is early onset of certain diseases of 
aging, such as dementia, as well as signs of general 
body aging such as frailty.40

Chronic stress may accelerate these age related 
metabolic changes. Stress is related to obesity, espe-
cially abdominal obesity, and insulin resistance in 
both animal and human models.41-45 For example, 
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smoking and sedentariness have an impact on the level 
of oxidation.64,65 Oxidation in turn is associated with 
functional decline and might be partly responsible for 
whole body accelerated aging. In an elderly population 
(>80 years old), free radicals were associated with 
poorer cognitive function, loss of autonomy, loss of 
ability to perform daily activities, and institutionali-
zation, as well as depressive symptoms.66

Oxidative stress appears to play an especially 
important role in the brain. A/C imbalance may 
affect free radical production and neurodegenera-
tive diseases. Cortisol is essential for brain viability. 
However, when it is too high for too long, certain 
vulnerable neurons may be damaged, in part by in-
creases in oxidative stress.67,68 DHEA and estrogens 
can prevent oxidative stress damage in neurons.69-71 
DHEA can block cortisol-mediated excitatory neu-
rotoxicity, pointing to the likely importance of the 
balance between cortisol and DHEA.71

There are a growing number of studies both in 
rats72 and in humans73-76 that have found links between 
markers of oxidative stress and psychological distress. 
Markers of oxidative stress are increased by acute 
stress exposure77,78 as well as by chronic states, such 
as major depression79 and duration of exposure to car-
egiving.76 In one study of acute stress, individuals who 
responded with higher ratings of anger and tendency 
to suppress anger had greater reactive oxygen species 
30 minutes after the acute stressor.77 However, other 
studies found that acute stress may reduce markers of 
oxidation. It may be that both the state of a person’s 
health and antioxidant defenses together determine 
whether acute stress leads to increases or decreases 
in net oxidation.

The links between psychological stress and blood 
levels of oxidative stress may be mediated in part by 
increases in cortisol and insulin, although there is 
no direct evidence of this at present. Elevations of 
glucose and insulin from chronic stress may promote 
free radical production through auto-oxidative glyco-
sylation and through insulin-mediated sympathetic 
activity.80

c. health BehavIors

C.1. Health Behaviors are important contributors 

to A/C imbalance and other biochemical stressors. 
Health behaviors including activity, diet, and sleep 
shape our hormonal milieu. Sedentariness, a high fat 
diet, and insufficient sleep have been associated with 
higher HPA axis and/or lower GH axis responsiveness 
and higher insulin levels.81-83 Lifestyle factors have 
also been linked to DNA damage due to oxidation. 
For example, smoking, alcohol, and a high fat diet 
are associated with greater oxidative stress.64

C.2. Eating behavior has highly significant ef-
fects on biochemical stressors (oxidative stress and 
inflammation). Overeating can lead to increased 
aerobic metabolism and thus overproduction of free 
radicals and increased fat storage. Excess adiposity 
in turn can lead to decreased insulin sensitivity. An 
excess glucose infusion, possibly analogous to a binge 
episode of overfeeding, led to a decrease in antioxi-
dants, increase in liver oxidative stress, and systemic 
inflammatory response.84 In a rat model of metabolic 
syndrome, high fat and sugar feeding leads to greater 
oxidative stress,84,85 apparently through upregulation 
of NAD(P)H oxidase in kidney and cardiovascular 
tissue, and downregulation of antioxidants. Dietary 
fat can decrease the activity of PPAR-γ, which has 
anti-inflammatory action. PPAR-γ inhibits proin-
flammatory cytokines in monocytes, partly through 
inhibition of nuclear factor kappa B (NFkB). In one 
study of patients with metabolic syndrome, exposure 
to dietary fat overload led to lower expression of 
PPAR-γ, and such decreases in turn were correlated 
with greater oxidative stress.86 In another study in 
rodents, a thiozolidinedione, an agonist of PPAR-
γ, used to increase insulin sensitivity, also reduced 
oxidative stress (and visceral fat).84 Caloric restriction 
can also reduce oxidative stress, as described below 
(Section F.2).

While actual caloric restriction has many positive 
effects on biochemical milieu, self reports of cogni-
tive dietary restraint (trying to restrict calories, but 
not necessarily doing so) appear to show different or 
even opposite relations. Dietary restraint, especially 
in combination with a strong tendency to overeat, is 
related to higher cortisol levels87 and, in some stud-
ies, to perceived stress.88 Restraint is also related to 
shorter leukocyte telomeres, independent of body mass 
index.89 The association could be due to a myriad of 
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is a mechanism for the development of this cellular 
senescence. Short TL leads to genomic instability, 
end-to-end chromosome fusion, less efficient mitosis, 
and loss of ability for cell replenishment.94-96

Telomerase provides enzymatic maintenance of 
TL and can counteract shortening and its functional 
consequences. Telomerase is a ribonucleoprotein re-
verse transcriptase cellular enzyme that adds telomeric 
DNA to shortened telomeres. If the TL shortening 
represents the clock ticking forward on the cells 
limited lifespan, telomerase can reverse or slow this 
clock.97 Short TL stimulates telomerase, and cells 
with short TL can be stable with sufficient telom-
erase. Thus, TL and telomerase form an intricately 
interdependent dynamic system. Telomerase may 
also have independent effects on organismic health 
by, for example, promoting cell longevity even in the 
face of critically shortened telomeres.97

Shortened telomeres are linked to age-related 
disease and mortality. Shorter TL is associated with 
CVD98,99 and risk factors including pulse pressure,100-102 
obesity,104 insulin resistance,103 and diabetes.104-106 
Shorter TL predicts mortality in non-clinical sam-
ples,107,108 as well as in samples with chronic kidney 
disease,109 Alzheimer’s,110 and stroke.111

D.2. Biochemical stressors affect the Telomere/
Telomerase maintenance system

Stress arousal appears to be linked to telomerase 
and TL maintenance. Two studies have examined 
stress hormones, finding that cortisol is associated 
with shorter TL in vivo112 and that exposure to cortisol 
dampens telomerase activity in vitro.113 Markers of 
inflammation are linked to TL shortening in several 
studies. Shorter TL length has been related to higher 
IL-6 and CRP in hemodialysis patients,109 and in 
men.108 Certain inflammatory factors can lead to T 
cell turnover, and possible TL shortening, if in the 
presence of low telomerase.

Oxidative stress clearly exerts a negative influence 
on TL maintenance. It can dramatically decrease 
TERT (telomerase protein) activity114,115 and can 
damage telomeric DNA much more than non-telo-
meric chromosomal DNA of fibroblasts in vitro.116 
Conversely, addition of antioxidants decelerates TL 
shortening in cultured cells117 and prolongs telomer-

factors related to restraint. We speculate that restraint 
might be a proxy factor for greater exposure to both 
psychological and metabolic stress, including high 
cortisol and bouts of caloric restriction, followed 
by overeating and the ensuing biochemical stress 
described above.89

Many studies try to covary out health behaviors 
to examine pure effects of stress arousal. However, 
stress works both directly and also through behav-
ioral pathways. Chronic stress serves as an organ-
izing factor, shaping most daily self-care behaviors 
and sleep. For example, chronic stress or cortisol 
exposure motivates people to select high fat food 
and to overeat.90,91 Chronic stress impairs sleep, and 
short duration sleep is a predictor of weight gain.92 
Thus, while it is helpful to examine ‘unique’ effects 
of chronic stress on physiology, the phenotypic ef-
fects inherently include several of these behavioral 
pathways. In the next section we review how stress 
induced biochemical changes may be related to several 
cell aging mechanisms.

d. cell agIng MechanIsMs

D.1. The Telomere/Telomerase Maintenance 
System

The telomere/telomerase maintenance system, 
discovered by Elizabeth Blackburn, Carol Greider, 
and colleagues, offers insight into how cells age and 
senesce and, as recent research suggests, how people 
grow ‘old’ biologically. Telomeres are the protective 
nucleoprotein structures capping the ends of eu-
karyotic chromosomes, consisting of a simple repeat 
sequence (TTAGGG). Telomeres naturally shorten 
with mitosis. With every cell division, a portion of 
the telomeric DNA may not be replicated due to the 
“end replication problem”—that is, DNA polymerase 
does not work properly at the end of a DNA strand.93 
Thus, older mitotic cells tend to have shorter TL 
than younger cells. TL shortening is not merely a 
marker of cellular aging but also a mechanism, with 
important functional consequences. Mitotic cells can 
undergo a limited number of cell divisions before they 
become senescent and lose the ability to grow and 
divide, unless there are other conditions, such as high 
telomerase, as explained below. Telomere shortening 
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ase activity.118 Cross-sectional research in humans is 
consistent with the concept that oxidative stress may 
have cumulative effects on TL length. We found that 
oxidative stress imbalance (ratio of oxidative stress 
to antioxidants) in vivo is associated with shorter TL 
length,76 and others have now found similar associa-
tions using various markers of oxidative stress.119-121

Insulin Resistance and adiposity

TL length is related to many factors associated 
with overeating, among them excess adiposity, insulin 
resistance, and increased leptin levels.104 In one study, 
an increase in obesity over ten years was associated 
with a decrease in TL length.103 Multivariate modeling 
suggested that this was due to insulin resistance. 
Similarly, another study found that hypertension was 
associated with shorter TL, also accounted for by 
insulin resistance.121 A recent cross-sectional study 
found the longest TL in healthy controls, and pro-
gressively shorter TL length in people with impaired 
glucose tolerance and diabetes without plaques, and 
the shortest in those with diabetes and plaques.120 
Another study found that within diabetics, oxida-
tive stress and not inflammation was correlated with 
monocyte TL length. Most participants were taking 
statins, which can reduce inflammation and might 
explain the null finding with inflammation.106

Thus, one can speculate that chronic caloric excess 
may be an early proximal promoter of accelerated 
aging through its effects at the systems level on body 
composition and insulin sensitivity, and at the cellu-
lar level through affecting the telomere/telomerase 
maintenance system.

D.3. Additional putative pathways of 
psychological stress that affect cell aging

Stress resistance

Although no studies have examined effects of 
psychological stress on cell aging mechanisms, there 
is a solid body of research examining effects of physi-
ological stressors. Excessive exposure to physiological 
stressors can cause damage to molecules, necessitating 
the mobilization of cell repair mechanisms, promo-
tion of housekeeping activities, and recovery from 
the stressor.122 When these protective functions are 
overwhelmed, damage ensues. Several examples of 

stress and damage were reviewed above, such as the 
effect of oxidative stress on TL shortening.123

However, more intriguing than stress-induced 
damage is stress induced resistance. Small doses 
of physiological stressors can promote longer living 
cells. Short-term manageable stressors can promote 
“hormesis” or a toughening of the cell.124 All organ-
isms from c. elegans to humans have intracellular 
stress responses that increase when exposed to stres-
sors and that protect them from physiological stres-
sors such as heat and ultraviolet radiation. These 
protective responses to stress have been labeled 
‘stress resistance.’ This includes energy metabolism, 
heat shock proteins, DNA repair enzymes, and free 
radical scavengers.125,126 These are crucial for cell 
and organism survival. For example, heat stress can 
denature proteins and cause them to aggregate. Heat 
shock proteins serve as molecular chaperones for the 
damaged molecules.

Stress resistance is affected by both the dose of 
the stressor and cell’s age and is thought to be a major 
pathway promoting cell longevity.127 For example, mild 
heat treatments early in life produce greater heat 
shock proteins and longevity in c. elegans.128

Stress resistance appears to involve energy regulat-
ing and growth signaling pathways. Old cells cannot 
generate energy as efficiently, possibly due to aged 
mitochondria. Aging impacts the ability to respond to 
stressors. Cells of older people have poorer response 
to physiological stressors,129 including lower heat 
shock protein response. In one study, immune cells 
from an elderly sample exposed to paraquat had an 
8% mean increase in antioxidant response (super-
oxide dismutase or SOD), whereas those under 40 
years had an 80% response. Of the almost 50% who 
died five years later, all showed a low SOD response 
to stress.130 Even though this was a small sample, it 
demonstrates the effect of chronological aging on 
stress resistance and offers a link between resistance 
and longevity in humans.

Activity of the somatotropic axis is also related to 
stress resistance. Cells (fibroblasts) from long-lived 
animals, such as the Snell mice which have low IGF, 
show stress resistance to injuries from oxidative stres-
sors. Long-lived mutant worms, which have low activity 
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in the insulin/IGF signaling pathway, have greater 
stress resistance to heat stress and oxidative stress.124 
Stress resistance is a common characteristic of cer-
tain long-lived mutant animals,131 although in several 
cases mechanisms promoting stress resistance can be 
uncoupled from those promoting longevity.132

Biochemical stressors are linked to other cell 
aging mechanisms

There are several cell aging processes that are 
particularly affected by excess energy balance—among 
them systemic over-exposure to glucose and insulin. 
Excess glucose is a key factor that is pro-aging through 
both direct and indirect effects of insulin exposure.133 
There are numerous ways in which excess glucose and 
insulin can lead to cellular aging, as reviewed by Kassi 
et al.133 For example, glucose and increased glycolysis 
can decrease sirtuins and autophagy. 

Sirtuins, protein deacetylases, are important for 
stabilizing DNA and for longevity. They appear to 
reduce inflammation and oxidative stress, to promote 
stress resistance,134 and may promote stability of the 
telomere.135 No studies have examined whether stress 
mediators such as cortisol and catecholamines affect 
expression of sirtuins.

Autophagy, the breaking down and recycling of 
damaged molecules, is an important housekeeping 
function of the cell. It thus allows cells to adapt to 
their changing environment and might be thought of 
as a key player in allostasis of the cell. Autophagy, 
or ‘self-eating’, occurs by enzymatic degradation of 
intracellular ‘garbage.’ Autophagy becomes impaired 
with aging, and low levels of autophagy are related to 
cancer and neurodegenerative diseases.136 Systemic 
regulators of autophagy are not well studied. How-
ever, caloric restriction promotes autophagy, which 
in turn is required for the caloric restriction-induced 
longevity in c. elegans.137 Insulin may also regulate rate 
of autophagy. High levels of circulating insulin can 
impair autophagy in the kidney,138 whereas decreased 
insulin receptor signaling promotes autophagy.139 Sev-
eral studies suggest that acute exposure to stressors 
or glucocorticoids appears to increase autophagy, 
but no studies have examined the effects of chronic 
stress exposure.140,141

e. IndIvIdual dIfferences: Who WIll 
suffer accelerated agIng froM 
chronIc stress exposure?

We have discussed chronic stressors as relevant 
triggers of a stress cascade of cellular aging, focusing 
on leukocyte TL. Stressors can lead to a wide range of 
emotional responses, such as anger, fear, or sadness 
and withdrawal, and each of these likely has their 
own physiological profiles. Individual temperament 
and these distinct emotional responses to chronic 
stressors will influence the stress signatures—the 
type of stress responses and potential dysregulation 
that one encounters. Therefore, it is important not 
only to identify groups at greatest risk of exposure to 
chronic stressors but also to phenotype who within 
these groups are most vulnerable to the stress cascade. 
Thus, we briefly define the psychological stress re-
sponse that appears to be most relevant to our model. 
In this model, the typical chronic stress response is 
characterized by exaggerated levels of high cortisol 
and high insulin.

Who is at most risk of this type of stress response? 
In animal studies, anxiety proneness is linked to 
greater reactivity, which in turn is linked to aging. For 
example, in rats, freezing or slower maze perform-
ance predicts a premature aging syndrome, cognitive 
decline, lower antioxidants, and higher oxidative 
stress.142,143 Further, greater behavioral reactivity 
or arousal is linked to shorter lifespan.143 From an 
evolutionary perspective, anxiety prone individuals, 
those who tend to vigilantly monitor the environment, 
should do well in times of acute stress, but when 
exposed to chronic stress, the common condition in 
modern society, she or he will suffer from greater 
levels of allostatic load than other types of respond-
ers, such as those responding with anger rather than 
fear and anxiety.144

While there is no ‘one to one’ mapping of personal-
ity onto stress response, in general, the exaggerated 
cortisol response appears to be most typical of people 
with a cognitive style characteristic of greater trait 
anxiety. Below we discuss several key traits related to 
anxiety, specifically greater social inhibition and vul-
nerability to social evaluative threat. Social evaluative 
threats elicit strong cortisol response.145 People with 
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a more inhibited personality type, characterized by 
anxiety or low self-esteem, are prone to high cortisol 
reactivity or lack of cortisol habituation over time146 
and have higher activation in their amygdala in re-
sponse to novel or stressful stimuli.147,148 Many studies 
have found that people with the ‘distressed’ personal-
ity—characterized by negative affect/neuroticism and 
social inhibition (suppressing expression of negative 
feelings)—tend to have greater proinflammatory 
cytokines as well as increased cardiovascular morbid-
ity and mortality.149,150 In the first study examining a 
personality trait and telomere length, O’Donovan 
et al found that pessimism, the tendency to expect 
negative outcomes in the future, was related to shorter 
telomere length, as well as greater IL-6.151

Social and genetic contexts will also affect relation-
ships between personality and stress related aging. 
Those with high social support tended to show lower 
cortisol reactivity and neural threat responses to a 
social evaluative stressor.152 People with the short al-
lele of the serotonin transporter, which is related to 
higher neuroticism, and exposure to greater life stress, 
tend to have higher activity in the amygdala during a 
resting baseline when their mind is not occupied by 
tasks.153 It is likely that personality marked by stress 
vulnerability or stressor exposure alone will only be 
weakly predictive of stress related aging. Rather, gene-
environment interactions will be important to predict 
meaningful variance in stress-induced aging.

f. InterventIons: can We reverse or 
aMelIorate MetaBolIc agIng?

Can interventions improve biochemical stressors? 
This question has been addressed in many types of 
studies so far, including pharmacological, psycho-
logical/behavioral, and caloric restriction studies. 
Improved A/C balance (decreased in cortisol, insulin, 
and increased in DHEA) can be partly achieved by 
behavioral interventions that work directly on stress 
and metabolic pathways, targeting neural regulation 
of these pathways.

F.1. Psychological/Behavioral interventions

By reducing perceptions of stress and increasing 
healthy behaviors, we may promote subtle but impor-
tant improvements in A/C balance, reducing cortisol 

and increasing anabolic hormones, vagal tone, and 
other restorative processes. Furthermore, by restor-
ing hormonal balance naturally, through increasing 
endogenous secretion (vs. pharmacologically), one 
preserves the secretory patterns and diurnal rhythms 
(vs. a bolus at one time of day, as in most pharma-
cological approaches). These changes in hormonal 
milieu may in turn slow cell aging processes.

Interventions that include health behavior change 
in addition to psychosocial support or coping skills 
are likely to be more effective in improving health 
than targeting only one behavior. Increasing fitness is 
likely one of the most potent interventions for restoring 
A/C balance and can improve well-being. Long-term 
exercise can decrease cortisol and increase DHEA, 
GH, and IGF-1,154 and is associated with reduced 
cortisol reactivity155 and cardiovascular reactivity 
to acute stress,156 as well as reduced anxiety157 and 
depressive symptoms.158

Psychosocial interventions have been effective 
in improving A/C balance.159 For example, an en-
richment program for elderly subjects160 increased 
DHEA, testosterone, estradiol, and GH levels, as 
well as significantly attenuating decreases in height, 
likely indicating less bone loss. In addition, Cruess 
and colleagues have shown that a cognitive behav-
ioral stress management, designed to reduce stress 
appraisals and depressive symptoms, can improve 
A/C balance by reducing cortisol and catecholamines 
and by increasing DHEA and testosterone.161 A yoga 
intervention for women with breast cancer appeared 
to slightly attenuate the post-radiation damage to 
DNA, compared to a control group of women receiv-
ing supportive counseling.162

Nutritional interventions are a potent way to im-
prove biochemical milieu and possibly cellular aging. 
A low fat diet for type 2 diabetics can reduce adiposity, 
insulin resistance, oxidative stress, and inflammatory 
factors.163 Combining improved diet with stress reduc-
tion and activity may provide the most potent interven-
tions for healthy aging. A preliminary intervention 
study of intensive lifestyle modification across these 
domains found significant increases in telomerase.164 
Currently, our research group at UCSF is developing 
interventions that focus on reducing metabolic and 
stress arousal pathways (including mindful eating 
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behavior, improved nutrition, activity, and stress 
reduction). However, one limitation to most behav-
ioral interventions is poor long-term maintenance 
of behavioral changes, such as low compliance with 
effective doses of daily meditation, healthy diet and 
activity. The biochemical changes reviewed may last 
only as long as there is sufficient maintenance of the 
behavioral and psychological changes.

F.2. Caloric Restriction

Caloric Restriction is one of the most reliable 
manipulations to increase lifespan across species, and 
the complex mechanisms are reviewed elsewhere.165,166 
Caloric restriction appears to decrease metabolic rate, 
free radical generation, adiposity, and sympathetic 
activity and may reduce insulin and increase insulin 
sensitivity and DHEA-S levels.167,168 It is thought 
that caloric restriction increases longevity in part 
through suppressing expression of sirtuins which 
then indirectly suppress fat mobilization (through 
suppressing PPAR-γ).169

Thus, caloric restriction appears to reduce bio-
chemical stressors and the stress cascade described in 
Figure 1, with one important exception. It is notable 
that it appears to increase cortisol, despite having 
overwhelmingly positive effects on health. No studies 
have yet examined whether caloric restriction actually 
increases telomerase activity or TL length.

suMMary

There is now a large body of support for metabolic 
changes during psychological stress, toward energy 
storage in abdominal fat depots, and away from restor-
ative activities of the anabolic hormones.170 Although 
there are few studies examining psychological stress 
and cell aging, Figure 1 proposes the hypothesis that 
stress related biochemical factors (hormones, inflam-
matory factors, and oxidative stress) may promote 
cellular aging, particularly by dampening telomerase 
and leading to earlier cell senescence. Like chronic 
stress, abdominal obesity may systemically affect 
cell aging through a similar cascade of biochemical 
stressors—mainly insulin and glucose, and inflam-
mation from fat tissue. Together, stress and obesity 
could powerfully fuel a state of biochemical stress and 
thus be a recipe or pathway for accelerated cell aging. 

Given the preponderance of psychological stress and 
its effects on food consumption and abdominal obes-
ity, a better understanding of the interaction between 
stress and obesity may offer ways of preventing the 
biochemical stressor cascade.

Several studies have linked the systemic changes 
in hormonal balance and adiposity with cell aging. 
Most of these studies have been correlational clinical 
studies and do not demonstrate causal pathways. More 
mechanistic studies, using animal and in vitro models, 
need to be performed in order to test whether these 
correlations represent causal relationships. Given 
that the systemic responses of the nervous system 
are regulated by psychological appraisal processes, 
the prefrontal cortex and limbic system, psychologi-
cal stress resistance must also be considered a key 
determinant of stress arousal, physiological stress 
resistance, and thus rate of cell aging. Impaired al-
lostasis and impaired stress resistance seem inherent 
in most chronological aging. This raises the question 
of whether enhanced allostasis —the efficient response 
to stressors characteristic of youthful systems— is 
protective of biological aging and promotes longevity. 
More clinical studies are warranted to test whether 
decreases in psychological stress and increases in cel-
lular stress resistance and neuroendocrine patterns of 
enhanced allostasis can indeed increase telomerase 
activity and telomere maintenance.
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