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The analysis of response times (RTs) has a long history 
in cognitive psychology (e.g., Hohle, 1965; Luce, 1986; 
Ratcliff & McKoon, 2008; Townsend & Ashby, 1983). 
To draw inferences about mental processes, researchers 
originally relied on measures of central tendency such as 
the mean or median RT. As it became clear that these mea-
sures may lose important information (e.g., Heathcote, 
Popiel, & Mewhort, 1991), a growing number of research-
ers started to use mathematical and statistical models that 
can accommodate not just mean RT, but also the shapes of 
entire RT distributions.

Primary among the statistical models that facilitate 
the analysis of RT distributions are the ex-Gaussian and 
the shifted Wald. Changes in the parameters of these dis-
tributions may be used to summarize the effects of ex-
perimental manipulations. For instance, Leth-Steensen, 
King Elbaz, and Douglas (2000) found that children with 
ADHD differed from age-matched controls specifically 
in the ex-Gaussian parameter that captures the tail of the 
RT distribution.

Although the ex-Gaussian and shifted Wald distribu-
tions are sometimes used as purely descriptive tools (see, 
e.g., Wagenmakers, van der Maas, Dolan, & Grasman, 
2008), many researchers go one step farther and assume 
that changes in the parameters of these distributions map 
onto changes in specific cognitive processes. For instance, 
Kieffaber et al. (2006) argued that changes in the Gaussian 
component of the ex-Gaussian distribution reflect changes 

in attentional cognitive processes, whereas changes in the 
exponential component reflect changes in intentional cog-
nitive processes. The purpose of our study is to examine 
whether this mapping from parameters to processes is war-
ranted. To this end, we attempt to link the parameters of the 
descriptive distributions to those of the Ratcliff diffusion 
model (Ratcliff, 1978). The diffusion model provides a 
theoretical account of performance in speeded two-choice 
tasks and has been successfully applied across a wide 
range of paradigms. Most importantly, the parameters of 
the diffusion model correspond to well-defined psycho-
logical processes, such as the rate of information accumu-
lation (influenced by task difficulty or participant ability), 
response caution, a priori bias, and the time taken by pro-
cesses unrelated to decision making (e.g., encoding and 
motor processes). The association between the diffusion 
model parameters and the psychological processes they 
are supposed to represent has been confirmed in numer-
ous experiments (e.g., Voss, Rothermund, & Voss, 2004; 
Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).

The outline of this article is as follows. In the first and 
second sections, we describe the ex-Gaussian and shifted 
Wald distributions, respectively. In the third section, we 
briefly explain the diffusion model and previous research 
that has studied the association between the diffusion 
model parameters and the parameters of the two descrip-
tive distributions. The fourth section describes the simula-
tion study, in which we systematically varied the param-
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lar cognitive processes with the ex-Gaussian parameters, 
Hohle’s interpretation of the ex-Gaussian parameters has 
been frequently challenged.

First, there is disagreement as to which processing 
mechanism should be attributed to the two ex-Gaussian 
components. McGill (1963) and McGill and Gibbon 
(1965), for example, suggested that residual motor la-
tency corresponds to the exponential component of the ex-
Gaussian, not to the Gaussian component. This interpreta-
tion is diametrically opposed to that of Hohle (1965).

Second, the rationale underlying Hohle’s (1965) inter-
pretation of the two ex-Gaussian components has been 
criticized. Hohle based his interpretation on the finding 
that the mean of the Gaussian component, , was some-
what more sensitive to manipulations of foreperiod dura-
tion, but the mean of the exponential component, , was 
more sensitive to manipulations of stimulus intensity. Be-
cause foreperiod duration was assumed to influence motor 
response time, and stimulus intensity was assumed to in-
fluence decision time, Hohle concluded that the Gaussian 
component must reflect residual time and the exponential 
component the decision portion of the RT.

Luce (1986, pp. 100–102), however, argued that  Hohle’s 
(1965) data are equally consistent with many other de-
compositions of RT, and that the influence of foreperiod 
duration can in fact be attributed to either component of 
RT. Also, experimental results often fail to support the 
differential sensitivity of the ex-Gaussian parameters to 
manipulations that are assumed to influence the decision 
component of RT. For example, the manipulation of word 
frequency, which is assumed to affect the decision portion 
of RT, commonly influences the  as well as the  param-
eter (see, e.g., Andrews & Heathcote, 2001; Plourde & 
Besner, 1997; Yap & Balota, 2007; Yap, Balota, Cortese, 
& Watson, 2006). Table 1 summarizes the effects that ex-
perimental manipulations have on the ex-Gaussian param-
eters, on the basis of a literature review of 54 studies.1

Third, and most importantly, it has been argued that 
the ex-Gaussian distribution lacks a plausible theoretical 
basis, and that consequently it is unable to account for the 
psychological mechanisms that drive performance (see, 
e.g., Heathcote et al., 1991; Luce, 1986). Specifically, the 

eters of the diffusion model to study the corresponding 
changes in the parameters of the descriptive distributions. 
In the fifth section, we apply the descriptive distributions 
to recently published lexical decision data that feature 
manipulations of task difficulty, response caution, and 
a priori bias (Wagenmakers, Ratcliff, et al., 2008). The 
sixth section concludes our investigation.

The Ex-Gaussian Distribution
The ex-Gaussian distribution results from the convolu-

tion of a Gaussian and an exponential distribution and can 
be described by three parameters:  and , the mean and 
standard deviation of the Gaussian component, and , the 
mean of the exponential component. Roughly,  and  re-
flect the leading edge and  reflects the tail of the distribu-
tion. The ex-Gaussian distribution has a positively skewed 
unimodal shape and generally produces an excellent fit to 
empirical RT distributions. Figure 1 shows changes in the 
ex-Gaussian distribution as a result of changes in the ex-
Gaussian parameters , , and . The probability density 
function of the ex-Gaussian is given by
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and its mean and variance are

 E(x)     (2)

and

 Var(x)  2  2. (3)

Originally, the ex-Gaussian distribution was thought 
to represent the durations of two successive components 
of cognitive processing. In particular, Hohle (1965) sug-
gested that the exponential component represents “the 
decision and perceptual portion of an RT,” whereas the 
Gaussian component reflects “the time required for orga-
nization and execution of the motor response” (p. 384). 
Although it may be tempting to associate these particu-
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Figure 1. Changes in the ex-Gaussian distribution as a result of changes in the ex-Gaussian parameters , , and . The parameter 

sets used to generate the distributions are (A)   0.5,   0.05,   0.3 (default parameter set); (B)   1,   0.05,   0.3 (increas-

ing ); (C)   0.5,   0.2,   0.3 (increasing ); and (D)   0.5,   0.05,   0.8 (increasing ).
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also Madden et al., 1999; Possamaï, 1991; and Rotello & 
Zeng, 2008, for similar interpretations). Table 2 gives an 
overview of the cognitive interpretations attributed to the 
ex-Gaussian parameters;2 since the  parameter is rarely 
given a cognitive interpretation, it is omitted from the 
overview. As can be seen in Table 2, there is some con-
sistency in the cognitive interpretation of the ex-Gaussian 
parameters: Lower-order processes are generally ascribed 
to , and higher-order processes to . Note, however, that 
the precise interpretation of the ex-Gaussian parameters 
varies considerably across researchers.

To summarize, the ex-Gaussian distribution provides a 
description of empirical RT data that is accurate but lacks 
a plausible theoretical rationale. Despite this limitation, 
the ex-Gaussian parameters have often been interpreted 
in terms of underlying cognitive processes. The following 
section introduces the shifted Wald distribution, a descrip-
tive distribution that has the potential to provide param-
eters that are theoretically more meaningful.

The Shifted Wald Distribution
The Wald (1947) distribution represents the density of 

the first passage times of a Wiener diffusion process toward 
a single absorbing boundary (see Figure 2). This distribu-
tion can be characterized by two parameters: , reflecting 
the drift rate of the diffusion process, and , reflecting 
the separation between the starting point of the diffusion 
process and an absorbing barrier. In the RT context, the 
Wald distribution is often supplemented with a positive pa-
rameter  that shifts the entire RT distribution. The shifted 
Wald has a positively skewed unimodal shape that gener-
ally produces an excellent fit to empirical RT distributions. 
Figure 3 shows changes in the shifted Wald distribution as 

Gaussian component necessarily assigns positive proba-
bility to negative RTs, a conceptual inadequacy that high-
lights the fact that the ex-Gaussian distribution can never 
correspond to a plausible cognitive process model.

As a consequence of its problematic theoretical un-
derpinning, some researchers have adopted a cautious 
attitude and have warned against the cognitive interpreta-
tion of the ex-Gaussian parameters. As Heathcote et al. 
(1991) stated, “Although the ex-Gaussian model describes 
RT data successfully, it does so without the benefit of an 
underlying theory” (p. 346). Consistent with this view, 
the ex-Gaussian distribution has sometimes been used as 
an economical three-parameter summary of RT data and 
as a tool to evaluate the predictions of competing cogni-
tive models beyond the level of mean RT (e.g., Heathcote 
et al., 1991; Hockley, 1982, 1984; Ratcliff, 1978, 1993; 
Ratcliff & Murdock, 1976).

Other researchers, however, have not been so cautious 
and have persisted with the substantive interpretation of 
the ex-Gaussian parameters. Rohrer and Wixted (1994), 
for example, interpreted the Gaussian component as  
“a brief initiation that precedes retrieval” and the expo-
nential component as “an ongoing search” (pp. 512–513). 
Balota and Spieler (1999) related the Gaussian component 
to “more stimulus driven automatic (nonanalytic) pro-
cesses” and the exponential component to “more central 
attention demanding (analytic) processes” (p. 34). Kief-
faber et al. (2006) interpreted  in terms of attentional and 
 in terms of intentional cognitive processes (p. 348). As 

a final example, Gordon and Carson (1990) argued that 
the “lumped sensory input/motor output component” of 
RT has a Gaussian distribution, and that the “decisional 
phase” of RT has an exponential distribution (p. 150; see 

Table 1 

The Effects of Experimental Manipulations on the Ex-Gaussian Parameters

Experimental Manipulation  N    

Word frequency (high or low) 18 16 7 12
Flanker task condition (no flanker, neutral, congruent, and incongruent) 14 13 7 4
Age (children, young adults, and older adults) 11 8 8 7
Length of study list 13 6 2 10
Number of stimulus presentations 9 1 0 8
Stimulus quality (clear or degraded) 9 8 3 8
Stroop task condition (neutral, congruent, and incongruent) 8 8 4 6
Study position of probe items 12 12 1 9
Local/global taska condition (neutral, congruent, and incongruent) 6 4 2 1
Output position of recalled items 5 0 0 5
Animacy of stimulus 4 1 1 2
Length of retention interval 4 1 0 4
Nonword type (pseudohomophone, legal, and illegal) 4 4 0 4
Cue-to-target stimulus onset asynchrony 3 3 0 0
Interstimulus interval 3 3 3 3
Speed–accuracy instruction 2 2 0 2

Note—Table 1 summarizes the results of an extensive literature review, covering 54 applications 
of the ex-Gaussian distribution. The summary is created by selecting the most frequently used 
experimental manipulations encountered in the literature and tallying how often, out of N attempts, 
the manipulations influenced each ex-Gaussian parameter. The criterion that researchers used to 
evaluate whether a given experimental manipulation influenced the ex-Gaussian parameters varied 
across the experiments. The criterion either was one of p  .1, p  .05, or p  .001 or was based 
on visual inspection of the changes in parameter values. aAn example of a congruent stimulus 
in the local/global task is the letter H, constructed with small Hs. An example of an incongruent 
stimulus is the letter H, constructed with small Zs. An example of a neutral stimulus is a circle, 
constructed with small Hs.
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pretation of the shifted Wald parameters still holds when 
the distribution is applied to data from a paradigm that 
clearly involves two response alternatives.

In summary, both the ex-Gaussian and shifted Wald dis-
tributions provide excellent tools to summarize RT dis-
tributions. However, the cognitive interpretation of their 
parameters is unclear. The ex-Gaussian distribution lacks 
an adequate theoretical basis, and the substantive interpre-
tation of its parameters has been repeatedly questioned. 
Although the shifted Wald distribution is theoretically 
better justified, it is currently unclear whether the sub-
stantive interpretation of its parameters carries over from 
one-boundary paradigms to two-boundary paradigms.

The Ratcliff Diffusion Model
The diffusion model (Ratcliff, 1978; for reviews, see 

Ratcliff & McKoon, 2008; Wagenmakers, 2009) is a prom-
inent cognitive process model of speeded two-choice deci-
sions. The diffusion model assumes that noisy information 
is accumulated over time from a starting point toward one 
of two response boundaries (see Figure 4). A response 

a result of changes in the parameters , , and . The prob-
ability density function of the shifted Wald is given by
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For further discussion and applications of the Wald distri-
bution, see Burbeck and Luce (1982), Luce (1986), and 
Emerson (1970). For discussion and application of a more 
general version of a single-boundary diffusion process, 
see Smith (1995).

The cognitive interpretation of the shifted Wald param-
eters is straightforward (see, e.g., Heathcote, 2004; Luce, 
1986; Schwarz, 2001, 2002). Participants are assumed to 
accumulate noisy information until a predefined thresh-
old amount is reached and a response is initiated. Drift 
rate  quantifies task difficulty or participant ability, re-
sponse criterion  quantifies response caution, and the 
shift parameter  quantifies the time needed for nondeci-
sion processes.

Although the shifted Wald distribution has a sound 
theoretical basis, the cognitive interpretation of its pa-
rameters has rarely been subject to empirical validation. 
The shifted Wald model may be particularly suited for 
paradigms in which there is likely only a single response 
boundary. Such paradigms may include simple RT tasks 
(Luce, 1986, pp. 51–57), go/no-go tasks (Heathcote, 
2004; Schwarz, 2001), or tasks that involve saccadic eye 
movements that result in very few errors (Carpenter & 
Williams, 1995). It is not clear whether the cognitive inter-

Table 2 

Cognitive Interpretations Attributed to the Ex-Gaussian Parameters

Authors   

Balota and Spieler (1999) stimulus driven automatic  
 (nonanalytic) processes

central attention demanding (analytic)  
 processes 

Blough (1988, 1989) component of RT unrelated to  
 stimulus variables (e.g., neural  
 transmission and motor response)

momentary probability of target detection/ 
 search component of RT

Epstein et al. (2006), Leth-Steensen et al. (2000) — attentional lapses

Gholson and Hohle (1968a, 1968b) — response choice latency/response competition

Gordon and Carson (1990), Hohle (1965), Madden et al. 
 (1999), Possamaï (1991), Rotello and Zeng (2008)

duration of residual processes (e.g., 
 sensory and motor processes)

durations of the decisional phase of RT

Kieffaber et al. (2006) attentional cognitive processes intentional cognitive processes

Penner-Wilger, Leth-Steensen, and Lefevre (2002) retrieval processes nonretrieval/procedure use

Rohrer (1996, 2002), Rohrer and Wixted (1994), Wixted,  
 Ghadisha, and Vera (1997), Wixted and Rohrer (1993)

initial pause preceding the retrieval  
 of the first response

mean recall latency/ongoing memory search

Schmiedek, Oberauer, Wilhelm, Süß,  
 and Wittmann (2007)

— higher cognitive functioning (e.g., working 
 memory and reasoning)

Spieler, Balota, and Faust (1996) — more central processing component

Note—A dash indicates that the parameter is not given any cognitive interpretation.

Wald distribution

Response

Time

Figure 2. The shifted Wald model of RT and its parameters. See 

the text for details.
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In addition to these key parameters, the diffusion model 
features parameters that describe how the key parameter 
values fluctuate from one trial to the next. Specifically, 
the model assumes across-trial variability in drift rate (ac-
cording to a normal distribution with variance ), starting 
point (according to a uniform distribution with range sz), 
and nondecision time (according to a uniform distribution 
with range st).3

To summarize, the diffusion model provides a gen-
eral theoretical account of decision making in speeded 
two-choice tasks. Previous research has shown that the 
parameters of the model correspond to the psychologi-
cal processes that they are assumed to represent (e.g., 
Ratcliff & McKoon, 2008; Voss et al., 2004; Wagenmak-
ers, 2009). Therefore, the diffusion model can be used 
to judge whether the cognitive interpretation of the ex-
Gaussian and shifted Wald parameters is warranted when 
these descriptive distributions are applied to data from 
speeded two-choice tasks. Ideally, the parameters of the 
 ex-Gaussian and shifted Wald distributions would cor-
respond uniquely with the parameters of the diffusion 
model. For instance, one would hope that, say, a change 
in drift rate in the diffusion model would correspond to 

is initiated when one of the two response boundaries is 
reached. The diffusion model has been successfully ap-
plied to a wide range of experimental paradigms, includ-
ing brightness discrimination, letter identification, lexical 
decision, recognition memory, and signal detection (see, 
e.g., Ratcliff, 1978, 2002; Ratcliff, Gomez, & McKoon, 
2004; Ratcliff & Rouder, 2000; Ratcliff, Thapar, Gomez, 
& McKoon, 2004; Ratcliff, Thapar, & McKoon, 2001, 
2003, 2004; Thapar, Ratcliff, & McKoon, 2003; Wagen-
makers, Ratcliff, et al., 2008). The diffusion model gener-
ally provides an excellent fit to all aspects of the observed 
RT data, including response accuracy and the RT distribu-
tions of both correct and error responses. As indicated by 
Ratcliff and McKoon (2008, p. 918), “. . . the class of dif-
fusion models has as near to provided a solution to simple 
decision making as is possible in behavioral science.”

One of the major strengths of the diffusion model is 
its ability to provide parameter estimates that can be in-
terpreted in terms of the cognitive components underly-
ing the decision process (see, e.g., Voss et al., 2004). The 
central parameters of the model are drift rate v, boundary 
separation a, starting point z, and nondecision time Ter. 
Drift rate v represents the mean rate of information ac-
cumulation and is determined by the quality of informa-
tion that is extracted from the stimulus. Drift rate can be 
influenced either by individual differences in the quality 
of information processing or by stimulus characteristics 
that reflect task difficulty. Boundary separation a quanti-
fies the distance between the two response boundaries 
and represents response caution. Large values of a indi-
cate that more information must be accumulated before 
a decision can be made. Boundary separation is usually 
manipulated via speed–accuracy instructions. Starting 
point z represents participants’ a priori bias for one of the 
two response alternatives. Starting point is usually ma-
nipulated either by varying the proportions of stimuli as-
sociated with the upper and lower response boundaries or 
by payoff manipulations. Both a and z are assumed to be 
under the subjective control of participants. Nondecision 
time Ter quantifies the duration of processes that are unre-
lated to the decision process, including stimulus encoding 
and response execution.
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would mainly cause a decrease in , and (4) an increase in 
nondecison time Ter would mainly cause an increase in .

Empirical evidence for some of these relations has been 
reported by Schwarz (2001). Schwarz (2001) used a go/
no-go digit comparison task and manipulated numeri-
cal distance (1 or 4) and the prior probability of go trials 
(.5 or .75). Shifted Wald analyses by Heathcote (2004) 
confirmed that the manipulation of numerical distance se-
lectively influenced the Wald drift rate  and that the ma-
nipulation of prior probability selectively influenced the 
Wald response criterion . As expected, the Wald nonde-
cision time  was not influenced by either of these two ma-
nipulations. These results are encouraging, but it remains 
unclear to what extent the parameters of the shifted Wald 
will correspond to those of the diffusion model when data 
are obtained in a speeded task that clearly features two 
response alternatives.

Validation of the Ex-Gaussian and Shifted Wald 
Parameters Using Diffusion Model Simulations

In this section, we investigate the associations between 
parameters from the ex-Gaussian and shifted Wald dis-
tributions and from the diffusion model. To this end, we 
simulated data from the diffusion model by systematically 
varying its parameter values. Next, we fitted both the ex-
Gaussian and the shifted Wald distributions to the simu-
lated data sets.

Diffusion model simulations and model fitting. 
In each simulation, we generated data by manipulating 
a particular diffusion model parameter from a minimum 
to a maximum value while keeping the other parameters 
constant on their average values. Realistic parameter val-
ues were based on an extensive literature survey that cov-
ered 23 diffusion model applications. Table 3 shows the 
minimum, maximum, and mean values of the parameters 
used in the simulations. Note that some of the estimates 
from which the minimum, maximum, and mean values 
are derived result from parameter estimation with theo-
retically motivated constraints on some of the diffusion 
model parameters. For the histograms of the diffusion 
model parameter values found in the literature, the reader 
is referred to Appendix A.4

For the manipulation of boundary separation a, starting 
point z was assumed to be equidistant from the two re-
sponse boundaries, so that z  a/2. Furthermore, the ma-
nipulation of starting point z was carried out with respect 
to the mean value of boundary separation a by using the 
minimum and maximum values of the z/a ratios, the so-
called bias parameters, found in the literature. A z/a ratio 
of .5 indicates that starting point z is equidistant from the 
two response boundaries. Similarly, the manipulation of 
the parameter for trial-to-trial variability in starting point, 
sz, was carried out with respect to the mean value of a 
by using the minimum and maximum values of the sz/a 
ratios. Each parameter was manipulated in 1,000 steps of 
equal size, resulting in 1,000 data sets per parameter. In 
order to obtain relatively noise-free parameter estimates, 
each data set contained 10,000 RTs. The simulations were 
carried out using the Diffusion Model Analysis Toolbox 
(Vandekerckhove & Tuerlinckx, 2007, 2008).

a change in the  parameter in the ex-Gaussian and the 
 parameter in the shifted Wald.

Links between the ex-Gaussian and diffusion 
model parameters. Several attempts have been made to 
relate the ex-Gaussian parameters to those of the diffusion 
model. For instance, Schmiedek, Oberauer, Wilhelm, Süß, 
and Wittmann (2007) showed that both the ex-Gaussian 
parameter  and the diffusion model parameter v corre-
lated strongly with people’s higher cognitive functions, 
such as working memory and reasoning. In addition, 
Schmiedek et al. demonstrated by simulations that the 
relation between  and higher cognitive functions could 
be fully explained in terms of individual differences in 
drift rate v. Schmiedek et al. concluded that  is associ-
ated with v.

Other researchers have adopted a different approach, 
using simulations to examine changes in the ex-Gaussian 
parameters as a result of changes in the diffusion model 
drift rate and boundary separation parameters. The re-
sults have typically shown that (1) an increase in drift 
rate mainly causes a decrease in  and (2) an increase in 
boundary separation mainly causes an increase in  (see, 
e.g., Spieler, 2001; Spieler, Balota, & Faust, 2000; Yap 
et al., 2006).

Finally, Ratcliff (1978) used the ex-Gaussian  and  pa-
rameters to fit the diffusion model to data obtained from 
various experimental paradigms, such as the study–test 
paradigm (e.g., Ratcliff & Murdock, 1976), the Stern-
berg paradigm (e.g., Sternberg, 1966), and the continu-
ous recognition memory paradigm (e.g., Okada, 1971). 
Contrary to the simulation results above, Ratcliff found 
that  and  are both sensitive to changes in drift rate and 
boundary separation. In particular, the results indicated 
that (1) increases in drift rate and starting point cause de-
creases in both  and , and (2) an increase in boundary 
separation causes increases in both  and .

The results above are therefore far from conclusive. 
Some studies (e.g., Spieler, 2001) have reported that 
 and  are selectively influenced by drift rate v and 

boundary separation a, respectively. Other studies (e.g., 
Ratcliff, 1978), however, have shown that  and  are sen-
sitive to changes in a variety of diffusion model param-
eters. In addition, the previous work has examined only 
a limited range of values for the diffusion model param-
eters. A comprehensive investigation will require that the 
diffusion model parameters be manipulated on a realistic 
and sufficiently large range.

Links between the shifted Wald and diffusion 
model parameters. To the best of our knowledge, no 
one has yet attempted to relate the shifted Wald param-
eters to those of the diffusion model. Nevertheless, both 
the shifted Wald distribution and the diffusion model con-
ceptualize the decision process as a gradual process of 
information accumulation. In fact, the shifted Wald can be 
thought of as a single-boundary diffusion process (cf. Fig-
ures 2 and 4). On the basis of the conceptual similarities 
between the two models, one might expect that (1) an in-
crease in drift rate v would mainly cause an increase in , 
(2) an increase in boundary separation a would mainly 
cause an increase in , (3) an increase in starting point z 
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 parameter is not influenced substantially by any of the 
key diffusion model parameters, and  is substantially in-
fluenced by both drift rate v and boundary separation a.

Shifted Wald parameters. With respect to drift rate v, 
Figure 6A shows that both  and  increase as v increases. 
In contrast,  seems to decrease with increasing v. How-
ever, the decrease in  is extremely small. In fact, changes 
in v are primarily reflected in  and . Note that the three 
shifted Wald parameters all level off for high values of v 
and that  and  are also relatively constant for low values 
of v.

Turning to boundary separation a, Figure 6B shows that 
 decreases and  increases with increasing a. Quite un-

expectedly, the response criterion  parameter decreases 
as a increases. The changes in all three parameters are 
substantial. Note that the rates of decrease in both  and 
 slow down as a increases. In fact,  levels off at inter-

mediate values of a.
With respect to starting point z, Figure 6C shows that 

both  and  decrease as z increases. In contrast,  de-
creases for lower values and increases for higher values 
of z. The point of reversal in  seems to correspond to the 
point at which z is equidistant to the two response bound-
aries. However, the changes in both  and  are extremely 
small. Changes in z are thus primarily reflected in .

Turning to nondecision time Ter, Figure 6D shows that 
 is unresponsive to changes in Ter. In contrast, both  

and  increase as Ter increases. However, the increase in 
 is negligible and limited to high values of Ter. Changes 

in Ter are thus primarily reflected in . In fact,  changes 
substantially more as a function of Ter than as a function 
of any other diffusion model parameter.

To summarize, the results of the simulations indicate 
that the shifted Wald parameters likewise do not corre-
spond uniquely to the parameters of the diffusion model. 
The  parameter is substantially influenced by drift rate v, 
boundary separation a, and starting point z. Remarkably,  
decreases as a increases. The  parameter is substantially 
influenced by both boundary separation a and nondeci-
sion time Ter. Finally, the  parameter is substantially in-
fluenced by both v and a.

Validation of the Ex-Gaussian and Shifted Wald 
Parameters Using Experimental Manipulations

In this section, we present a concrete empirical illustra-
tion of the simulation results reported above by examin-

Next, the ex-Gaussian and shifted Wald distributions 
were fitted to the simulated data sets using maximum 
likelihood estimation (see, e.g., Myung, 2003). Extreme 
parameter estimates (i.e., 15 ex-Gaussian and 8 shifted 
Wald estimates) were removed from the analyses. Note 
that the descriptive distributions were fitted to the RTs of 
correct responses only.

Simulation results. Figures 5 and 6 show the changes 
in the ex-Gaussian and shifted Wald parameters as a func-
tion of changes in the diffusion model parameters. Table 4 
gives a summary of the associations between the two sets 
of parameters. In this section, we present only the results 
related to the manipulation of the key diffusion model 
parameters: drift rate v, boundary separation a, starting 
point z, and nondecision time Ter. Because the across-trial 
variability parameters cannot be interpreted in terms of 
cognitive processes, the results related to these parameters 
are presented in Appendix B.

Ex-Gaussian parameters. With respect to drift rate v, 
Figure 5A shows that the three ex-Gaussian parameters 
all decrease as v increases. The decreases in both  and  
are, however, extremely small. In fact, changes in v are 
primarily reflected in . Also,  continues to decrease until 
extreme values of v, whereas  and  level off at interme-
diate values of v.

Turning to boundary separation a, Figure 5B shows 
that the three ex-Gaussian parameters all increase as a 
increases. Although  increases more than either  or , 
the increase in  is also substantial. Note that  changes 
substantially more as a function of a than as a function of 
any other diffusion model parameter.

With respect to starting point z, Figure 5C shows that the 
three ex-Gaussian parameters all decrease as z increases. 
However, the decreases in both  and  are negligible. Also, 
 seems relatively constant for low values of z. Changes in 

starting point z are thus primarily reflected in .
Turning to nondecision time Ter, Figure 5D shows that 

 increases as Ter increases. In contrast, both the  and the 
 parameters are unaffected by Ter. Note that  changes 

substantially more as a function of Ter than as a function 
of any other diffusion model parameter.

To summarize, the results of the simulations indi-
cate that the ex-Gaussian parameters do not correspond 
uniquely to the parameters of the diffusion model. The 

 parameter is substantially influenced by boundary sepa-
ration a, starting point z, and nondecision time Ter. The 

Table 3 

Minimum, Maximum, and Mean Values  

of the Diffusion Model Parameters Used in the Simulations

Diffusion Model Parameter  Minimum  Maximum  Mean

Drift rate v 0.0 0.586 0.223
Boundary separation a 0.056 0.393 0.125
Starting point z 0.028 0.182 0.063
Nondecision time Ter 0.206 0.942 0.435
Trial-to-trial variability in drift rate 0.0 0.329 0.133
Trial-to-trial variability in starting point sz 0.0 0.169 0.037
Trial-to-trial variability in nondecision time st 0.0 0.630 0.183
Bias z/a 0.272 0.782 –
sz/a  0.0  0.900  –
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Figure 5. Changes in the ex-Gaussian parameters , , and  as a function of systematic changes in the diffusion model parameters 

drift rate v (A), boundary separation a (B), starting point z (C), and nondecision time Ter (D). The left-hand figures in each panel plot 

the results on scales ranging from the minimum to the maximum values of the ex-Gaussian parameters found across all simulations. 

The right-hand figures in each panel plot the same results on scales ranging from the minimum to the maximum values of the ex-

Gaussian parameters found for manipulations of the given diffusion model parameter.
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Figure 6. Changes in the shifted Wald parameters , , and  as a function of systematic changes in the diffusion model parameters 

drift rate v (A), boundary separation a (B), starting point z (C), and nondecision time Ter (D). The left-hand figures in each panel plot 

the results on scales ranging from the minimum to the maximum values of the shifted Wald parameters found across all simulations. 

The right-hand figures in each panel plot the same results on scales ranging from the minimum to the maximum values of the shifted 

Wald parameters found for manipulations of the given diffusion model parameter.
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ing, the upper and lower boundaries were associated with 
“word” and “nonword” responses, respectively).

We fitted this data set using the ex-Gaussian and shifted 
Wald distributions and examined how their parameters 
relate to the experimental manipulation of drift rate v, 
boundary separation a, and starting point z. We expected 
that the pattern of association between the two sets of pa-
rameters would largely follow the pattern found in our 
simulations. The empirical results, however, are unlikely 
to precisely mirror the results of the simulations. Although 
the effects of the experimental manipulations were ade-
quately accounted for by changes in the above-mentioned 
diffusion model parameters, the manipulations might not 
have had completely selective influence on these param-
eters. Hence, changes in the ex-Gaussian and shifted Wald 
parameters as a function of the experimental manipula-
tions might reflect slight changes in diffusion model pa-
rameters other than the intended ones.

Hierarchical Bayesian modeling. We used hierarchi-
cal Bayesian modeling (see, e.g., Farrell & Ludwig, 2008; 
Gelman & Hill, 2007; Rouder, Lu, Speckman, Sun, & 
Jiang, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003; 
Shiffrin, Lee, Kim, & Wagenmakers, 2008) to fit the ex-
Gaussian and shifted Wald distributions to the lexical de-
cision data. We used a hierarchical Bayesian approach to 
fit the descriptive distributions because the individual par-
ticipant data obtained from the lexical decision tasks were 
considerably noisier than the synthetic data used in the 
previous section. As shown by Farrell and Ludwig (2008) 
and Rouder et al. (2005), hierarchical Bayesian methods 
reduce the variability in the recovered parameters and pro-
duce more accurate parameter estimates than single-level 
maximum likelihood estimation.

The hierarchical Bayesian approach assumes that the 
parameters of individual participants are drawn from 
group-level distributions that specify how the individual 
parameters are distributed in the population. The group-
level distributions thus define the between-subjects varia-
tions of the parameters and can themselves be character-
ized by a set of parameters. For example, suppose that the 
RT data of each participant are assumed to come from an 
ex-Gaussian distribution, but with different values of , , 
and . The individual participant parameters i, i, and i 
might in turn be assumed to come from normal distribu-
tions with means m, s, and t and variances sm

2, ss
2, and st

2, 
respectively. The benefits of hierarchical modeling arise 
from using the group-level distributions as priors to adjust 
extreme individual parameter estimates to more moder-
ate values. In summary, hierarchical Bayesian modeling 
involves a

. . . tension between fitting each subject as well as 
possible (optimal choice of individual parameters) 
and fitting the group as a whole. . . . This tension 
results in a movement of the individual parameters 
toward the group mean, a desirable characteristic 
given that we do not desire to overfit the data, and 
fit the noise in each individual’s data. (Shiffrin et al., 
2008, p. 1261)

ing how the parameters of the descriptive distributions 
relate to experimentally induced changes in the diffusion 
model parameters. Specifically, we investigate how the 
ex-Gaussian and shifted Wald parameters respond to ex-
perimental manipulations that selectively affect the key 
parameters of the diffusion model (i.e., drift rate v, bound-
ary separation a, and starting point z). To this end, we fit-
ted the ex-Gaussian and shifted Wald distributions to data 
sets obtained from two lexical decision experiments.

The lexical decision data. To separately estimate 
the effects of lexical processing from the effects of stra-
tegic threshold adjustments, Wagenmakers, Ratcliff, 
et al. (2008) applied the diffusion model to the data of 
two lexical decision experiments. In the first experiment 
(N  15), task difficulty was manipulated on three levels 
by varying word frequency (high, low, and very low fre-
quency), and response caution was manipulated on two 
levels by instructions and feedback that emphasized ei-
ther response speed or response accuracy. The resulting 
3 (word frequency)  2 (speed–accuracy instruction) cells 
of the experimental design each contained 160 trials per 
participant. The diffusion model was able to account for 
the effects of the manipulations with only two parameters 
free to vary across conditions. The effects of word fre-
quency were entirely accounted for by changes in drift 
rate v, with higher word frequency associated with higher 
values of v. In contrast, the effects of the speed–accuracy 
instructions were entirely accounted for by changes in 
boundary separation a, with speed instructions associated 
with lower values of a.

In the second experiment (N  19), in addition to the 
task difficulty manipulation, participants’ a priori bias 
was manipulated on two levels by varying the proportion 
of word versus nonword stimuli in a list (i.e., 75% words 
or 75% nonwords). The resulting 3 (word frequency)  
2 (word–nonword proportion) cells of the experimental 
design each contained 160 trials per participant. As in Ex-
periment 1, the effects of word frequency were entirely 
accounted for by changes in drift rate v. In contrast, the 
effects of the proportion manipulation were accounted for 
by changes in starting point z, with the 75%-word con-
dition associated with higher values of z (in the model-

Table 4 

The Associations Between Parameters of the Ex-Gaussian  

and Shifted Wald Distributions and Parameters  

of the Diffusion Model

Diffusion Model Parameters

    v  a  z  Ter

Ex-Gaussian parameters

Shifted Wald parameters

/

Note— , substantial positive association; , weak positive associa-
tion; , substantial negative association; , weak negative associa-
tion; , no association; v, drift rate; a, boundary separation; z, starting 
point; Ter, nondecision time.
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The uniform prior distributions for the group standard de-
viations range from 0 to the standard deviations of the uni-
form priors for the corresponding group means. For ex-
ample, the uniform prior for the ex-Gaussian group mean 
m ranges from 0.25 to 0.99; values of  more extreme than 
this did not occur in our earlier diffusion model simulation 
study. The uniform prior for the associated group standard 
deviation sm ranges from 0 to 0.214. The latter value is the 
maximum standard deviation for a unimodal distribution 
on m—that is, the standard deviation for a uniform distri-
bution on m [i.e., (0.99  0.25)/ 12  0.214].

The starting values for the hierarchical Bayesian analy-
sis were based on the individual parameter estimates.5 At 
the beginning of each sampling run, the first 1,000 trials 
of the Markov chain Monte Carlo chains were discarded. 
Each analysis was based on 10,000 recorded samples. We 
used the WinBUGS program (Lunn, Thomas, Best, & 
Spiegelhalter, 2000) for parameter estimation.6 Note that, 
similar to the procedure of Wagenmakers, Ratcliff, et al. 
(2008), the descriptive distributions were fitted only to 

Figures 7 and 8 show graphical models for the hierar-
chical ex-Gaussian and shifted Wald analyses reported 
in this section. The nodes represent variables of inter-
est, and the graph structure is used to indicate depen-
dencies between the variables, with children depending 
on their parents. We use the convention of representing 
unobserved variables without shading and observed 
variables with shading (see, e.g., Lee, 2008). Figure 7 
shows that the ex-Gaussian parameters i, i, and i vary 
from participant to participant and are assumed to be 
drawn from group-level normal distributions with means 
m, s, and t, respectively. Similarly, Figure 8 shows that 
the shifted Wald parameters i, i, and i vary from par-
ticipant to participant and are assumed to be drawn from 
group-level normal distributions with means a, h, and g, 
respectively.

The ranges of the uniform prior distributions for the 
group means are based on the minimum and maximum 
values of the corresponding ex-Gaussian and shifted Wald 
parameters found in the simulation study reported above. 

di j

i i i

a sa h sh g sg

trial j
subject i

a ~ Uniform(0.67, 2.35)

sa ~ Uniform(0, 0.485)

h ~ Uniform(0, 0.82)

sh ~ Uniform(0, 0.237)

g ~ Uniform(0.85, 7.43)

sg ~ Uniform(0, 1.899)

i ~ Gaussian(a, s 2
a)

i ~ Gaussian(h, s 2
h)

i ~ Gaussian(g, s 2
g)

di j ~ Shifted Wald( i, i, i)

Figure 8. Graphical model for the hierarchical shifted Wald analysis. 

Note that the ranges of the uniform prior distributions for the group 

means are based on the minimum and maximum values of the corre-

sponding shifted Wald parameters found in the simulation study re-

ported above.

di j

i i i

m sm s ss t st

trial j
subject i

m ~ Uniform(0.25, 0.99)

sm ~ Uniform(0, 0.214)

s ~ Uniform(0.02, 0.18)

ss ~ Uniform(0, 0.046)

t ~ Uniform(0.05, 0.85)

st ~ Uniform(0, 0.231)

i ~ Gaussian(m, s 2
m)

i ~ Gaussian(s, s 2
s )

i ~ Gaussian(t, s 2
t )

di j ~ Ex-Gaussian ( i, i, i)

Figure 7. Graphical model of the hierarchical ex-Gaussian analysis. 

Note that the ranges of the uniform prior distributions for the group 

means are based on the minimum and maximum values of the corre-

sponding ex-Gaussian parameters found in the simulation study re-

ported above.
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Again, the effect of the word frequency manipulation is 
less clear—s increases somewhat from high-frequency to 
low-frequency words but does not change considerably 
from low-frequency to very-low-frequency words. This 
finding suggests that  increases slightly with decreas-
ing drift rate v. Note, however, that the increase in  is 
relatively small.

Turning to t (i.e., the group mean for the  parameter), 
Figure 9C shows that t increases with decreasing word 
frequency and when the instructions emphasize choice 
accuracy. In contrast, t is unresponsive to the effects of 
the proportion manipulation. These results suggest that 
 increases with increasing boundary separation a and 

with decreasing drift rate v but is unaffected by changes 
in starting point z.

In summary, the results above indicate that the ex-
Gaussian parameters do not respond selectively to the ef-
fects of the word frequency, speed–accuracy, and propor-
tion manipulations. Consistent with the diffusion model 
simulations reported above, these results suggest that the 
ex-Gaussian parameters do not correspond uniquely to 
the drift rate v, boundary separation a, and starting point z 
parameters of the diffusion model. The  parameter is 
sensitive to changes in all three diffusion model param-
eters. Although  seems to be influenced only by drift rate, 
this influence is relatively small. Finally,  is sensitive to 
changes in both drift rate and boundary separation. These 
results indicate that changes in the two most important 
ex-Gaussian parameters,  and , can reflect changes in a 
variety of diffusion model parameters.

the RTs of correct word responses that were slower than 
300 msec and faster than 2,500 msec.

Results. Figure 9 shows box plots of the posterior dis-
tributions for the ex-Gaussian group mean parameters 
m, s, and t. Figure 10 shows box plots of the posterior 
distributions for the shifted Wald group mean parameters 
a, h, and g. Our discussion of the results is based on a 
visual inspection of the posterior distributions.

Ex-Gaussian parameters. With respect to m (i.e., the 
group mean for the  parameter), Figure 9A shows that m 
increases when instructions emphasize choice accuracy. 
Since the effects of the speed–accuracy manipulation can 
be accounted for by changes in boundary separation a, this 
result suggests that  increases with increasing boundary 
separation. Similarly, m increases when the stimuli con-
sist of 75% nonwords. Since the effects of the proportion 
manipulation can be accounted for by changes in starting 
point z, this result suggests that  increases with decreas-
ing starting point. The effect of the word frequency ma-
nipulation is less clear—m increases from high-frequency 
to low-frequency words, but does not change considerably 
from low-frequency to very-low-frequency words. Since 
the effects of the word frequency manipulation can be ac-
counted for by changes in drift rate v, this result suggests 
that  increases slightly with decreasing drift rate.

With respect to s (i.e., the group mean for the  param-
eter), Figure 9B shows that s is influenced by the effects of 
neither the speed–accuracy instructions nor the proportion 
manipulation. These results suggest that  is not influ-
enced by either boundary separation a or starting point z. 
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Figure 9. Box plots of the posterior distributions for the ex-Gaussian group means m, s, and t, derived separately for 

each condition of the two lexical decision experiments of Wagenmakers, Ratcliff, et al. (2008). HF, high-frequency words; 

LF, low-frequency words; VLF, very-low-frequency words.
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tion a, decreases with decreasing drift rate v, and is unaf-
fected by changes in starting point z.

To summarize, the results above indicate that the shifted 
Wald parameters also do not respond selectively to the ef-
fects of the word frequency, speed–accuracy, and propor-
tion manipulations. Consistent with the diffusion model 
simulations reported above, these results suggest that 
the shifted Wald parameters do not correspond uniquely 
to the drift rate v, boundary separation a, and starting 
point z parameters of the diffusion model. The  and the 
 parameters are responsive to changes in both boundary 

separation a and drift rate v, and  is influenced by all 
three diffusion model parameters. These results indicate 
that changes in the shifted Wald parameters can reflect 
changes in a diversity of diffusion model parameters.

Discussion
The goal of this study was to examine the extent to which 

the ex-Gaussian and shifted Wald parameters could be asso-
ciated with the kind of psychological processes that are hy-
pothesized in the diffusion model, one of the most success-
ful process models of speeded two-choice decision making. 
First, we generated synthetic data by systematically manip-
ulating the diffusion model parameters to examine the as-
sociated changes in the parameters of the ex-Gaussian and 
shifted Wald distributions. Second, we investigated empiri-
cal data and studied how the ex-Gaussian and shifted Wald 
parameters relate to the experimental manipulation of the 
diffusion model parameters drift rate v, boundary separa-
tion a, and starting point z. The results were clear cut: In the 

Shifted Wald parameters. With respect to a (i.e., the 
group mean for the  parameter), Figure 10A shows that 
group mean a increases when instructions emphasize fast 
responding. In contrast, it seems to be unresponsive to 
the effects of the proportion manipulation. These results 
suggest that  increases with decreasing boundary separa-
tion a and is unaffected by changes in starting point z. The 
effect of word frequency is less clear—group mean a in-
creases somewhat with decreasing word frequency when 
the stimuli consist of 75% words but is relatively constant 
in the other conditions. This result suggests that, under 
certain conditions,  increases slightly with decreasing 
drift rate.

Turning to h (i.e., the group mean for the  parameter), 
Figure 10B shows that h increases when the instructions 
emphasize choice accuracy and when the stimuli consist 
of 75% nonwords. These results suggest that  increases 
with increasing boundary separation a and with decreas-
ing starting point z. Again, the effect of the word fre-
quency manipulation is less clear—h seems to decrease 
with decreasing word frequency when the stimuli consist 
of 75% words but is relatively constant in the other condi-
tions. This result suggests that, under certain conditions, 

 decreases with decreasing drift rate v.
With respect to g (i.e., the group mean for the  param-

eter), Figure 10C shows that g increases when instructions 
emphasize fast responding and decreases with decreas-
ing word frequency. In contrast, it seems unresponsive to 
the effects of the proportion manipulation. These results 
suggest that  increases with decreasing boundary separa-

0.5

1.0

1.5

2.0

G
ro

u
p

 M
e

a
n

 a

Speed

Accuracy

0.6

0.8

1.0

1.2

1.4

G
ro

u
p

 M
e

a
n

 a

0.15

0.20

0.25

0.30

0.35

0.40

0.45

G
ro

u
p

 M
e

a
n

 h

Speed

Accuracy

0.20

0.25

0.30

0.35

0.40

0.45
G

ro
u

p
 M

e
a

n
 h

1

2

3

4

5

6

7

8

G
ro

u
p

 M
e

a
n

 g

Speed

Accuracy

1

2

3

4

5

6

G
ro

u
p

 M
e

a
n

 g

HF LF VLF

HF LF VLF

Word Frequency

Word Frequency

75% Nonwords

75% Words

HF LF VLF

HF LF VLF

Word Frequency

Word Frequency

75% Nonwords

75% Words

HF LF VLF

HF LF VLF

Word Frequency

Word Frequency

75% Nonwords

75% Words

Group Mean aA Group Mean hB Group Mean gC

Figure 10. Box plots of the posterior distributions for the shifted Wald group means a, h, and g, derived separately for 

each condition of the two lexical decision experiments of Wagenmakers, Ratcliff, et al. (2008). HF, high-frequency words; 

LF, low-frequency words; VLF, very-low-frequency words.



INTERPRETING THE EX-GAUSSIAN AND SHIFTED WALD PARAMETERS    811

cognitive interpretation of the shifted Wald parameters no 
longer holds. It must further be noted that the results of 
Gomez, Ratcliff, and Perea (2007) suggest that the cogni-
tive interpretation of the shifted Wald parameters might 
be problematic even when the distribution is applied to 
one-choice tasks. In particular, Gomez et al. showed that 
an adequate model of the go/no-go task must feature two 
response boundaries: one associated with the go response 
and another associated with the implicit choice not to re-
spond (i.e., the no-go decision).

The effects of error rate, parameter correlations, 
and parameter combinations. Our results strongly 
suggest that the ex-Gaussian and shifted Wald param-
eters should not be interpreted in terms of the cognitive 
processes assumed by the diffusion model. Nevertheless, 
some issues warrant further discussion.

First, our method of data generation resulted in error 
rates ranging from 10% to 15% across the simulations. 
However, the shifted Wald distribution may perhaps be ap-
propriate for paradigms that result in very few errors, such 
as tasks that involve saccadic eye movements (Carpenter 
& Williams, 1995). We therefore investigated how the ex-
Gaussian and shifted Wald parameters change as a func-
tion of manipulation of the diffusion model parameters 
in data sets with lower (0.9%–4%) as well as with higher 
(19%–28%) error rates. Regardless of whether the error 
rate was low or high, the results clearly indicated that the 
ex-Gaussian and shifted Wald parameters cannot be asso-
ciated uniquely with parameters of the diffusion model.7

Second, we generated data by manipulating each diffu-
sion model parameter separately while holding the other 
parameters constant on their average values. Although 
this approach yields clear-cut and comprehensible results, 
it ignores the possible associations among the diffusion 
model parameters. We therefore investigated how changes 
in the ex-Gaussian and shifted Wald parameters relate to 
changes in the diffusion model parameters when we take 
into account the correlations between the latter param-
eters. The simulations indicated that using parameter sets 
with realistic parameter associations yields results that are 
noisier but qualitatively similar to those reported in the 
present article.

Finally, our results indicate that the individual ex- Gaussian 
and shifted Wald parameters cannot be mapped uniquely 
onto the parameters of the diffusion model. However, the pa-
rameters of the descriptive distributions need not be consid-
ered in isolation. Unlike the individual parameters, certain 
(nonlinear) combinations of the ex-Gaussian or shifted Wald 
parameters might map uniquely onto parameters of the dif-
fusion model. This possibility awaits further investigation.

A common problem? Neither the ex-Gaussian nor the 
shifted Wald parameters appear to correspond to the psy-
chological processes hypothesized by the diffusion model. 
A possible reason for this unfortunate result may be that 
neither of the two distributions takes into account response 
accuracy. Without any knowledge of response accuracy, 
it is very difficult to distinguish between effects of task 
difficulty (or participant ability) and effects of response 
caution. For example, does a decrease in RT come about 
because of an increase in drift rate v or a decrease in bound-

context of a two-choice task, the ex-Gaussian and shifted 
Wald parameters cannot be associated uniquely with the 
parameters of the diffusion model.

The ex-Gaussian distribution. Like the results of 
Ratcliff (1978), our simulation results demonstrated that 
the two most important ex-Gaussian parameters,  and , 
are sensitive to changes in a variety of diffusion model pa-
rameters. Specifically,  was influenced by boundary sepa-
ration a, starting point z, and nondecision time Ter. On the 
other hand,  was sensitive to changes in both drift rate v 
and boundary separation a. The results related to experi-
mental manipulations of the diffusion model parameters 
followed a similar pattern. The only discrepancy was that 

 also appeared to be influenced by the effects of the word 
frequency manipulation, suggesting that it was also sensi-
tive to changes in drift rate v. This difference notwithstand-
ing, the results indicate that the ex-Gaussian parameters do 
not correspond uniquely to those of the diffusion model.

The shifted Wald distribution. The results of the 
simulations indicated that the shifted Wald parameters 
also could not be uniquely associated with parameters of 
the diffusion model. Each of the shifted Wald parameters 
appeared to be sensitive to changes in a diversity of diffu-
sion model parameters. The  parameter was sensitive to 
changes in drift rate v, boundary separation a, and start-
ing point z. Surprisingly,  decreased as boundary sepa-
ration increased. The  parameter was affected by both 
boundary separation a and nondecision time Ter. Finally, 
the  parameter was substantially influenced by both drift 
rate v and boundary separation a. The results related to ex-
perimental manipulations of the diffusion model param-
eters largely followed the same pattern. However,  was 
unresponsive to the effects of the proportion manipulation, 
suggesting that this parameter was unaffected by changes 
in starting point z. Also,  seemed to increase, rather than 
decrease, with decreasing word frequency, suggesting that 
it increased with decreasing drift rate v. Finally,  was re-
sponsive to the effects of the word frequency and propor-
tion manipulations, suggesting that it was also sensitive 
to changes in v and z. These differences notwithstanding, 
the results with experimental data also indicate that the 
shifted Wald parameters do not correspond uniquely to 
parameters of the diffusion model.

The finding that neither the simulation nor the experi-
mental results support the interpretation of the shifted 
Wald parameters in terms of the psychological processes 
of participant ability/task difficulty, response caution, and 
nondecision time is disappointing and comes somewhat as 
a surprise. First, in view of the conceptual similarities of 
the shifted Wald distribution and the diffusion model, one 
might expect some correspondence between the two sets 
of parameters and their underlying cognitive processes. 
Yet none of our predictions derived from the theoreti-
cal similarities of the two models was supported by the 
results. Second, our results indicate that the differential 
sensitivity of the shifted Wald parameters found in the go/
no-go task (Heathcote, 2004) does not generalize to tasks 
that involve two response boundaries. Instead, our results 
suggest that when the shifted Wald is applied to paradigms 
that involve more than a single response boundary, the 
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Plourde, C. E., & Besner, D. (1997). On the locus of the word fre-
quency effect in visual word recognition. Canadian Journal of Experi-
mental Psychology, 51, 181-194.

Possamaï, C.-A. (1991). A responding hand effect in a simple-RT pre-
cueing experiment: Evidence for a late locus of facilitation. Acta Psy-
chologica, 77, 47-63.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Re-
view, 85, 59-108.

Ratcliff, R. (1993). Methods for dealing with reaction time outliers. 
Psychological Bulletin, 114, 510-532.
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ary separation a? It is evident that in this case, a change 
in response accuracy is highly diagnostic; an increase in 
drift rate leads to fewer errors (i.e., an overall improve-
ment), whereas a decrease in boundary separation leads to 
more errors (i.e., the speed–accuracy trade-off; see, e.g., 
Schouten & Bekker, 1967; Wickelgren, 1977). Because 
performance in RT tasks reflects the combined effects of 
task difficulty and response caution, a model that cannot 
separate these influences is unlikely to capture the cogni-
tive processes that determine performance (Wagenmak-
ers, van der Maas, & Grasman, 2007).

Conclusion. The present results indicate that—in the 
context of speeded two-alternative tasks—the ex- Gaussian 
and shifted Wald parameters should not be interpreted in 
terms of the cognitive processes hypothesized by the dif-
fusion model. This does not imply that the ex-Gaussian 
and shifted Wald distributions should no longer be used 
as purely descriptive tools to economically summarize RT 
data and to constrain model development. Such descrip-
tive use of the ex-Gaussian and shifted Wald distributions 
is perfectly legitimate and highly encouraged. What our 
findings do imply is that it may be ill-advised to attribute 
changes in the ex-Gaussian and shifted Wald parameters to 
changes in specific components of cognitive processing.
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6. The WinBUGS code and the lexical decision data are available in 
the supplemental materials.

7. The results of these additional simulations are available in the sup-
plemental materials.
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APPENDIX A 
THE DISTRIBUTION OF THE DIFFUSION MODEL PARAMETER VALUES

Figure A1 presents histograms of the best-fitting diffusion model parameter values and the corresponding z/a and sz/a ratios 
found in 23 applications of the diffusion model. The histograms are based on the parameter values reported for each experimental 
condition of the 23 articles. The exact parameter values, including references, are available at http://pbr.psychonomic-journals.org/
content/supplemental. 
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Figure A1. Histograms of the diffusion model parameter values.
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(Continued on next page)

APPENDIX B 
RESULTS FOR THE DIFFUSION MODEL TRIAL-TO-TRIAL VARIABILITY PARAMETERS

This appendix shows how the ex-Gaussian and shifted Wald parameters change as a function of the ma-
nipulation of the trial-to-trial variability in drift rate , the trial-to-trial variability in starting point sz, and the 
trial-to-trial variability in nondecision time st parameters of the diffusion model. Table B1 gives a summary 
of the associations between the ex-Gaussian and shifted Wald parameters and the diffusion model variability 
parameters. Figures B1 and B2 then show the detailed changes in the ex-Gaussian and shifted Wald parameters 
as a function of changes in the diffusion model variability parameters. 

Ex-Gaussian Parameters
With respect to trial-to-trial variability in drift rate , Figure B1A shows that both  and  decrease as  in-

creases. In, contrast,  increases for low values of  and decreases for high values of . However, the changes in 
the three ex-Gaussian parameters are all extremely small. Turning to trial-to-trial variability in starting point sz, 
Figure B1B shows that both  and the  increase as sz increases, but in contrast,  decreases with increasing sz. 
However, the changes in the three ex-Gaussian parameters are all negligible. With respect to trial-to-trial vari-
ability in nondecision time st, Figure B1C shows that both  and  increase as st increases, whereas  decreases 
with increasing st. Note that  is the only parameter that is substantially influenced by st. In fact,  changes 
substantially more as function of st than as a function of any other diffusion model parameter.

To summarize, these results further support the conclusion that the two most important parameters of the 
ex-Gaussian distribution,  and , do not correspond uniquely to parameters of the diffusion model. Neither 
of these ex-Gaussian parameters is influenced substantially by any of the variability parameters of the diffu-
sion model. In contrast,  seems to be uniquely associated with st, the parameter for trial-to-trial variability in 
nondecision time.

Shifted Wald Parameters
With respect to trial-to-trial variability in drift rate ( ), Figure B2A shows that both  and  decrease as  in-

creases, but in contrast,  increases with increasing . However, the changes in the three shifted Wald parameters 
are extremely small. Turning to trial-to-trial variability in starting point (sz), Figure B2B shows that  is unaf-
fected by changes in sz, whereas  increases and  decreases with increasing sz. However, the changes in both 

 and  are extremely small. With respect to trial-to-trial variability in nondecision time (st), Figure B2C shows 
that both  and  increase for low and intermediate values of st and then decrease for high values. In contrast, 

 decreases for low and intermediate values of st and equals 0 for high values. Although  changes more than 
either  or , the change in  is also substantial. Note that  changes just as much as a function of st as it does 
as a function of boundary separation a.

To summarize, these results further support the conclusion that the shifted Wald parameters do not correspond 
uniquely to parameters of the diffusion model. The  parameter is not influenced substantially by any of the 
variability parameters of the diffusion model. In contrast, both  and  are substantially influenced by st, the 
trial-to-trial variability in nondecision time. In addition to the influence of the key diffusion model parameters, 
changes in  and  can therefore also reflect the influence of st.

Table B1 

Associations Between Parameters of the Ex-Gaussian  

and Shifted Wald Distributions and the Variability  

Parameters of the Diffusion Model

Diffusion Model 
Parameters

      sz  st  

Ex-Gaussian parameters

/
Shifted Wald parameters /

/

Note— , substantial positive association; , weak positive asso-
ciation; , substantial negative association; , weak negative as-
sociation; , no association; , trial-to-trial variability in drift rate; sz, 
trial-to-trial variability in starting point; st, trial-to-trial variability in 
nondecision time.
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Figure B1. Changes in the ex-Gaussian parameters , , and  as a function of systematic changes in the diffusion model parameters 

trial-to-trial variability in drift rate  (A), trial-to-trial variability in starting point sz (B), and trial-to-trial variability in nondecision 

time st (C). The left-hand figures in each panel plot the results on scales ranging from the minimum to the maximum values of the ex-

Gaussian parameters found across all simulations. The right-hand figures in each panel plot the same results on scales ranging from the 

minimum to the maximum values of the ex-Gaussian parameters found for manipulations of the given diffusion model parameter.
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Figure B2. Changes in the shifted Wald parameters , , and  as a function of systematic changes in the diffusion model parameters 

trial-to-trial variability in drift rate  (A), trial-to-trial variability in starting point sz (B), and trial-to-trial variability in nondecision time 

st (C). The left-hand figures in each panel plot the results on scales ranging from the minimum to the maximum values of the shifted Wald 

parameters found across all simulations. The right-hand figures in each panel plot the same results on scales ranging from the minimum 

to the maximum values of the shifted Wald parameters found for manipulations of the given diffusion model parameter.
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