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Filty college physics students rated the 
similarity 01 pairs 01 concept words in 
analytical mechanics, and also provided 
1 min 01 continued word associations to 
each individual concept word. The mean 
proportion 01 responses in common on the 
word association test was used as an index 
01 associative similarity among concepts. 
Mean rating-scale judgments served as an 
index 01 perceived similarity. These two 
indices were interpreted as proximity 
measures and were scaled, using 
multidimensional scaling procedures with 
both a Euclidean and a city-block metric. 
Results suggest that either a 
two-dimensiontll configuration with a 
Euclidean metric or a three-dimensional 
configuration with a city-block metric 
describes the underlying structure 01 the 
similarity relations. The three-dimensional 
configuration co"elated well with an 
hypothesized geometrie model. 

By the psychologie al reality of physical 
concepts, we mean how representations of 
these concepts are perceived and evaluated. 
In order to study physical concepts in this 
sense, we conceive of a psychological space 
with a set of points in this space 
corresponding to perceived relations among 
the concepts. 

The physical concepts we propose to 
describe in this fashion are drawn from the 
subject matter of analytical mechanies. 
They are power, work, force, momentum, 
acceleration, and velocity . These concepts 
are defined by mathematical equations 
which ultimately specify some relationship 
between mass, distance, and time, which 
are in turn defined by things such as the 
balance, the meter stick, and the clock. 

The formal or logical relationships 
among the fust six concepts above can be 
conceptua1ized by means of a geometrie 
model derived from their mathematical 
defmitions.3 This model is presented in 
Fig. 1. 

Because each concept· in Fig. 1 can be 
written in terms of the operations of 
integration and differentiation with respect 
to some combination of mass (m), distance 
(x), and time (t), they can be plotted as 
points in the space generated by the model. 
To plot concepts in this fashion, we assurne 
that each differentiation or integration 
represents one unit and that the concept of 
distance constitutes the origin of the space. 
The point immediately to the right of the 
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six chosen concepts to be located in the 
space (e.g., dx/dt = velocity) but also 
permits a representation of points that are 
not readily labeled by concept words in 
mechanics (e.g., Jxdm). Notice, however, 
that the six concepts are distributed so that 
four of them lie in the mass-time plane. 
Experimentally this may be an unfortunate 
artifact of the way physicists have labeled 
concepts with words. On the other hand, 
such labeIing may tell us something about 
the scientist's conception of his discipline. 
At any rate, the scheme in Fig. 1 permits 
other concepts to be studied, provided we 
describe these concepts in a language such 
as mathematics. 

The model in Fig. 1 suggests that 
distances between the points in the space 
can be used to predict obtained similarity 
relations among representations of these 
points. Thus, the closer two concepts are in 
Fig. I, the greater their logical similarity; 
and we would expect that the greater the 
logical similarity, the greater would be 
their perceived similarity in appropriate 
tasks. Put another way, our approach is 
based upon the assumption that the study 
of internal representations of physical 
concepts must focus upon the relationship 
between the structure among external 
representations of these concepts and the 
structure among their corresponding 
internal representations (cf. Shepard & 
Chipman, 1970). 

METHOD 
In the present study, similarity relations 

among the six concept words were indexed 
in two ways, one direct and one indirect. 
The direct measure was obtained by 

+ 
d/dt 

Fig. 1. Geometrie model of seleeted 
eoneepts in analytieal meehanies. 

presenting Ss with the 15 possible pairs of 
the six concepts and asking them to judge 
on a 7-point rating scale how similar they 
feit these pairs were to one another. The 
indireet measure of similarity was based 
upon a word association test. Here Ss were 
given the six concepts and instructed to 
write as many words as they could for each 
concept in 1 min. 

The tasks were presented to Ss in the 
form of a booklet containing the word 
association test (J{ A) and the similarity 
rating test (SR), in that order. The six 
concept words were randomized for each S 
on the WA test. In the SR test, pairs of the 
six words were presented in two random 
orders, each word appearing equally often 
on both sides of the rating scale in each 
random order. 

Ss were 50 physics majors at the 
University of Minnesota. Each S received 
$3.00 for serving in the experiment. 

RESULTS AND DISCUSSION 
Two dependent measures were used: 

mean rating scale judgments between pairs 
of words in the SR test and mean 
proportion of associative responses each 
pair of concept words had in common on 
the WA test. 

These data were treated as proximity 
measures and served as input to a 
multidimensional scaling program based 
upon the nonmetric scaling procedure 
developed by Shepard (1962a, b) and 
modified by Kruskal (1964a, b). This 
program subsequently generated a 
psychological space for the six concepts in 
each task. Both Euclidean and city-block 
distance metrics were used in computing 
these scaling solutions. 

While the pervasiveness of the Euclidean 
spatial model makes the Euclidean distance 
metric a reasonable one to use for 
in terpreting simi1arity relations, there are 
data to suggest that, in some cases, the 
city-block metric is more appropriate 
(Attneave, 1950; Hyman & WeIl, 1967). 
Moreover, because our geometrie model is 
one in which the diagonal distances have 
no apparent mathematical interpretation 
(one must always perform the operations 
of differentiation and integration 
separately; they cannot be done 
simultaneously), there is reason to expect 
the underlying metric of the model to be 
city block. 

To establish the reasonableness of the 
scaling solutions, a measure was utilized 
which indexes the goodness of fit of each 
solution to the proximity data. This 
goodness-of-fit measure is called "stress," 
and a good fit is indicated by low stress. 
Stress indices for solutions in one, two, and 
three dimensions, based upon both 
Euclidean and city-block distances, appear 
in Table 1. 
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Table 1 
Stress Measures for Multidimensional Scaling Solutions in One, Two, and Three Dimensions 

Word Association Similarity Rating 

Dimensions Euclidean, City Block Euclidean City Block 

One .086915 .086915 .129602 .129602 
Two .000000 .000408 .000001 .055526 
Three .000000 .000000 .000000 .000000 

The stress in three dimensions is 
"perfeet" (i.e., zero) in all cases, according 
to Kruskal's (I964a) criteria. Low stress in 
two dimensions (particularly with the 
Euclidean metric) may be the result of 
having only six data points, since, as 
mentioned earlier, four of the six points in 
Fig. 1 He on a plane. However, the 
two·dimensional solution does have an 
interpretation and, for this reason, it is 
presented (with Euclidean distances) in 
Fig.2. 

The six points in Fig.2 are divided into 
two groups by the vertical axis, such that 
those points to the right of this line 
(momentum, force, work, and power) all 
involve the concept of mass, while those to 
the left (acceleration and velocity) do not. 
This division of concepts paralleIs a 
division of the subject matter of mechanics 
into dynamies and kinematics. 

The configuration of points in Fig. 2 is 
also divided into two groups by an 
horizontal axis. Those concepts below the 
axis (velocity and momentum) involve 
uniform motion, while !hose above this 
line (acceleration, force, work, and power) 
involve accelerated motion. There is a 
similar interpretation, although not an 
identical configuration, for the 
two-dimensional solutions with city-block 
distances. 

Because the two-dimensional solutions 
with Euclidean distances have essentially 
zero stress, the three-dimensional 
Euclidean solutions may be nonsingular 
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Fig. 2. Scaling solution in two 
dimensions with Euclidean distance. 

246 

(cf. Shepard, 1962b, 1966). Moreover, 
with only six data points, the likelihood of 
fmding zero stress by chance is good 
(Klahr, 1969). However, in the case of 
city-block distance, the stress is zero in 
three dimensions but not in two 
dimensions. (It should be noted that, as 
yet, there is no procedure for determining 
whether a given stress value is 
"significantly different" from zero). 
Therefore, the three-dimensional solution 
with city-block distance may also be a 
representation of the underlying structure 
of the proximity data. 

The rank-order correlations between 
distances in the geometrie model and 
distances in the three-dimensional scaling 
solution for the city block metric were .90 
for the WA test and .85 for the SR test 
(p< .01 in both cases). The correlation 
between scaled distances on the WA and 
SR test was .87 (p< .01). In the case of 
Euclidean distance, these correlations were 
.90 (p< .01), .85 (p< .01), and .89 
(p< .01), respectively. 

Correlations between relative distances 
are a simple means of comparing different 
scaling solutions or one scaling solution 
and the distances between points in a 
geometrie model. While alternative 
procedures have recently become available 
(cf. carron, 1968; carron & Chang, 1969), 
we feet that the magnitude of the above 
correlations warrants the condusion that 
the psychological spaces produced by 
scaling solutions in three dimensions for 
the two tasks are reasonably similar to one 
another. This suggests that the SR and WA 
tasks, although quite different, are in some 
respects accessing the same underlying 
structure. Moreover, the magnitude of the 
correlation between scaled and logical 
distances tentatively supports the 
proposition that the geometrie model 
describes this structure. 

While the two-dimensional scaling 
solution of the proximity data can be 
interpreted, we regard the 
three-dimensional solution as a more 
parsimonious explanation of the obtained 
similarity relations because (1) it is in 
agreement with our apriori model for the 
underlying structure of these relations 
(cf. Klahr, 1969), and (2) it has the 
capabiIity (not inherent in the 
two-dimensional interpretation) of 
generating a large variety of potential 
stimulus points. 

In the present study, our stimulus points 
were limited to those that had verbal labels 
in mechanics. With words as stimuli, the 
underlying dimensions are not likely to be 
dear or compelling. Therefore, on grounds 
suggested by Torgerson (I 958), the 
Euclidean metric is the most reasonable 
way of accounting for our data. However, 
we feel the model in Fig. 1 is more readily 
interpreted using the city-block metric. 
Unfortunately, the six points in Fig. 1 lie 
such that the rank order of interpoint 
distances is virtually the sarne, regardless of 
metric (r = .99). As a result, we cannot 
make an empirical assessrnent as to which 
distance metric is more appropriate. 

As a final test of our model, rank order 
correlations were computed between initial 
proximity measures for each task and 
logical distances using both the city block 
and Euclidean metric. These correlations 
were .90 for the WA task and .83 for the 
SR task with the city block metric and .91 
and .83, respectively, with the Euclidean 
metric (p< .01 in all cases). There is 
considerable sirnilarity between these 
correlations and those obtained between 
the logical distances and scaled distances, 
thus substantiating the hypothesis that the 
three-dimensional solution does describe 
the underlying structure of the original 
proximity data. 

Because the present study utilized only 
six stimulus points from Fig. 1, our results 
must be interpreted with caution. 
Additional studies using a greater number 
of points are needed and metric scaling 
should be used as a check on nonmetric 
procedures. Finally, a word is in order 
regarding the notion of similarity which is 
at the heart of this study. Since our 
stimulus points represented rather complex 
concepts, subsequent work may require a 
distinction between similarity as a 
multidimensional stimulus attribute and 
similarity as a derived cognitive relation 
(Torgerson, 1965). 
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3. power (p) = d/dt (jmd2x/dt2 dx), work (w) 
= f md 2 x/dt2 dx, force (f) = md2 x/dt2 , 

momentum (M) = mdx/dt, acceleration (a) -
d2 x/dt2

, velocity (v) = dx/dt. 

On the asymmetry of the phase-difference 
function in binocular flicker 

M. C. CORBALLIS,l McGill University, 
Montreal, Canada 

Foley and Stager have reported that, for 
right-eye dominant Ss, the function 
relating critical flicker frequency (CFF) to 
the phase lag of pulses to the left eye 
behind pulses to the right eye is concave 
downwards for lags between 0 and 180 deg 
and concave upwards between 180 and 
360 deg. This implies a cyclic function 
such that maximum and minimum CFFs 
occur not at but slightly above 0 and 
180 deg, respectively, which in turn 
suggests faster processing of information to 
the left than to the right eye. A possible 
explanation is that the two cerebral 
hemispheres contributed differently to the 
resolution of flicker, with the more 
important contribution coming from the 
right hemisphere. 

B inocular critical flicker frequency 
(CFF) varies as a function of interocular 
phase difference. When the pulses to each 
eye are exactly in phase (O-deg phase 
difference), CFF is higher than when they 
are completely out of phase (180-deg phase 
difference) (Baker & Bott, 1951; 
Kinsbourne & Coughlin, 1969; Perrin, 
1954; Thomas, 1955). There is also 
evidence that the phase-difference function 
is asymrnetrical. Foley & Stager (1965) 
reported two experiments in which each 
pulse to the left eye was made to lag 
behind the corresponding pulse to the right 
eye in 45-deg steps, ranging from 0 to 
180 deg in one experiment and from 180 
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to 360 deg in the other. The data, averaged 
over six Ss in the first experiment and over 
five Ss in the second, are shown in Fig. 1. 
It can be seen that the function is concave 
downwards between 0 and 180 deg and 
concave upwards between 180 and 
360 deg. All Ss were female, right-eye 
dominant, and four of them served as Ss in 
both experiments. Further details can be 
obtained from Foley and Stager's original 
report. 

Foley and Stager interpret the 
asymrnetry of the function as evidence that 
neural impulses from the right eye are 
given more weight at some central locus 
than neural impulses from the left eye. 
Thus the difference in CFF between 0 and 
45 deg is rather small, because at 45 deg an 
impulse from the nondominant left eye 
arrives during an "on" phase for the 
dominant right eye, and consequently has 
little effect. By contrast, the difference 
between 315 and 360 deg is relatively 
large, because at 315 deg the left-eye 
impulse arrives centrally du ring a right-eye 
"off' phase, and so has a greater effect in 
reducing CFF. This account is plausible 
only if special prominence is given to the 
neural impulses generated by the onset of 
light to the left eye, since exactly the 
opposite argument would hold for neural 
impulses initiated by the offset oflight. 

AN ALTERNATIVE 
INTERPRETATION 

F oley and Stager explieitly reject a 
suggestion by Sampson (1962) that the 
phase-difference function depends on 
differences between the eyes in the time 

taken centrally to integrate information. 
According to Sampson, information to the 
left eye is integrated more slowly than that 
to the right eye, so that when light pulses 
are in phase peripherally the corresponding 
neural impulses are out of phase centrally , 
and when they are out of phase 
peripherally they are in phase centrally. 
This suggestion is implausible on two 
counts: First, it suggests that CFF is 
highest when flicker is out of phase 
centrally , whereas on intuitive grounds, at 
least, one would expect the opposite; and 
secondly, it implies that the difference in 
integration time between the two eyes is 
equal to the period of one semicycle of 
flicker, which is improbable. Nevertheless, 
Foley and Stager's data can be taken as 
evidence forinterocular differences in 
processing time, though not quite in the 
manner that Sampson proposed. 

The data points in Fig. 1 suggest a cyclic 
function that is displaced slightly to the 
right, so that maximum and minimum CFF 
might be said to occur, not precisely at 0 
and 180 deg, respectively, but slightly 
above these values. This is consistent with 
the notion that left-eye information is 
processed somewhat more rapidly than 
right-eye information, and that a slight 
delay of input to the left eye is therefore 
necessary to restore symmetry centrally . 
To exarnine this idea in more detail, 
equations of the form Y = a cos (X - b) + C 

were fitted to the data for each S in 
each experiment by the method of least 
squares. Y represents CFF, and X the 
interocular phase difference. The 
calculated constants, a, b, and c, are shown 
in Table 1, and the continuous curves 
plotted in Fig. 1 are the averaged curves 
derived from the fitted equations. 

Table 1 indicates that in every case but 
one the constant b is positive, which can be 
interpreted to mean that processing of 
left-eye information was faster than that of 
right-eye information. The actual time 
differences may be estimated from the 
formula 

lOOOx b 
t = 360 x c msec 

and these values are also shown in Table 1. 
These time differences could have arisen 
from two sources. They could reflect a bias 
in the calibration of the equipment, so that 
when the setting was at 0 deg, for example, 
the actual interocular phase difference was 
slightly positive. Alternatively, they could 
have occurred in the processing of 
information by the Ss, as suggested above. 
The fact that the time lags for Ss 1, 2, and 
5 were fairly consistent between 
experiments, compared with the relatively 
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