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Research Article

The movie Zero Dark Thirty depicts the end of the long 
hunt for Osama Bin Laden. A Central Intelligence Agency 
(CIA) operative who has spent years searching for Osama 
claims that he is living in a compound in Abbottabad, 
Pakistan. She convinces other people, though the evi-
dence is still uncertain. The CIA director brings a small 
group together and says, “I’m about to go look the 
President in the eye, and what I’d like to know . . . is 
where everyone stands on this thing. Now, very simply. 
Is he there, or is he not? . . . Yes or no?” The deputy direc-
tor replies, “We don’t deal in certainty, we deal in prob-
ability. . . . I’d say there’s a sixty percent probability he’s 
there.” Others agree, except for the CIA operative, who 
says, “One hundred percent, he’s there – okay, fine, 
ninety-five percent because I know how certainty freaks 
you guys out – but it’s a hundred!” (Internet Movie Script 
Database, n.d.).

Governments rely routinely and heavily on intuitive 
beliefs about high-stakes outcomes. Little is known about 
how to train the people who make such judgments, 
largely because scientific evaluations of training methods 
are expensive, difficult, and seldom conducted (Fischhoff 
& Chauvin, 2011; Tetlock & Mellers, 2011). A rare oppor-
tunity to test forecasting methods—and extend psychol-
ogy into the geopolitical arena—emerged when IARPA, 
the Intelligence Advanced Research Projects Activity, 
sponsored a forecasting tournament. Five university-
based research groups competed to find innovative ways 
to generate the most accurate probabilistic forecasts of 
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Abstract
Five university-based research groups competed to recruit forecasters, elicit their predictions, and aggregate those 
predictions to assign the most accurate probabilities to events in a 2-year geopolitical forecasting tournament. Our 
group tested and found support for three psychological drivers of accuracy: training, teaming, and tracking. Probability 
training corrected cognitive biases, encouraged forecasters to use reference classes, and provided forecasters with 
heuristics, such as averaging when multiple estimates were available. Teaming allowed forecasters to share information 
and discuss the rationales behind their beliefs. Tracking placed the highest performers (top 2% from Year 1) in elite 
teams that worked together. Results showed that probability training, team collaboration, and tracking improved both 
calibration and resolution. Forecasting is often viewed as a statistical problem, but forecasts can be improved with 
behavioral interventions. Training, teaming, and tracking are psychological interventions that dramatically increased 
the accuracy of forecasts. Statistical algorithms (reported elsewhere) improved the accuracy of the aggregation. Putting 
both statistics and psychology to work produced the best forecasts 2 years in a row.
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high-impact events around the globe. Each group 
recruited participants to forecast events and devised 
unique methods to elicit and combine multiple opinions. 
Each group was then scored on the same accuracy met-
ric, which created a level playing field. This article 
describes the efforts of our group to embed experiments 
into the tournament by randomly assigning forecasters to 
conditions and testing three drivers of accuracy: training, 
teaming, and tracking.

Training

Coping with uncertainty by improving the accuracy of 
forecasts is critical for good decision making. The field of 
judgment and decision making has tested numerous 
ways to improve intuitive probabilities (Arkes, 1991; 
Larrick, 2004; Soll, Milkman, & Payne, in press). Promising 
approaches include statistical training (Fong, Nisbett, & 
Krantz, 1986), feedback (Benson & Onkal, 1992), expo-
sure to multiple perspectives (Ariely et al., 2000; Herzog 
& Hertwig, 2009), exposure to historical analogies 
(Lovallo, Clarke, & Camerer, 2012), decomposition of the 
problem into subsets (Fischhoff, Slovic, & Lichtenstein, 
1978), and explicit consideration of contradictory evi-
dence (Koriat, Lichtenstein, & Fischhoff, 1980).

The forecasting tournament provided an opportunity 
to test methods of debiasing on a wide range of real-
world events extending over long periods. We con-
structed educational modules on scenario training and 
probabilistic-reasoning training that drew on state-of-the-
art recommendations (O’Hagan et al., 2006). Scenario 
training taught forecasters to generate new futures, 
actively entertain more possibilities, use decision trees, 
and avoid biases such as overpredicting change, creating 
incoherent scenarios, or assigning probabilities exceed-
ing 1.0 to mutually exclusive and exhaustive outcomes. 
Probability training guided forecasters to consider refer-
ence classes; average multiple estimates from existing 
models, polls, and expert panels; extrapolate over time 
when variables were continuous; and avoid judgmental 
traps such as overconfidence, the confirmation bias, and 
base-rate neglect. Each training module was interactive 
and included questions and answers to check partici-
pants’ understanding.

Teaming

Numerous studies have shown that predictions based on 
the aggregate of many people’s judgments are generally 
more accurate than predictions based on one person’s 
judgment (e.g., Page, 2007; Soll & Larrick, 2009). This fact 
leads to a variety of psychological questions. When one 
has access to many people who make forecasts, how 
should those people interact in order to generate the 

most accurate aggregations of predictions? Should they 
work alone? Should they communicate? When does com-
munication help? When does it hurt? Our research group 
tested three levels of group influence: no interaction, 
team interaction, and a compromise approach. Each 
approach has pros and cons.

When the costs of group interaction exceed the ben-
efits, forecasters should work alone. Independent fore-
casts will have uncorrelated errors, and those errors 
should balance out in the aggregate. But independent 
forecasting means that group members cannot share 
information, rationales, or processing capacity.

When the benefits of group interaction exceed the 
costs, forecasters should work in teams. Studies have 
demonstrated that groups can make process gains when 
they are cohesive, have strong productivity norms, and 
share a mental model of the task (Kerr & Tindale, 2004; 
Levine & Moreland, 1990). Team interaction motivates 
individuals who wish to perform well in the presence of 
others (Hertel, Kerr, & Messé, 2000). But teams can suffer 
from poor dynamics, social loafing (Latané, Williams, & 
Harkins, 1979), groupthink (Esser, 1998; Janis, 1982), 
information cascades (Bikhchandani, Hirshleifer, & 
Welch, 1992), and misplaced competition (McGrath, 
1984). Teams have a demonstrated failure to search for 
unique information, unshared information, or hypothe-
sis-disconfirming information (Kerr, MacCoun, & Kramer, 
1996; Stasser & Titus, 1985; Sunstein, 2006).

These approaches stake out extreme positions on the 
continuum of independence and interdependence. We 
also examined a compromise approach in which fore-
casters worked alone, but had knowledge of others’ 
beliefs. The benefit of this approach is that forecasters 
have access to a potentially potent signal—the numerical 
distribution of the crowd’s opinions. But the cost is the 
risk of mindless “herding,” or free-riding by using a fre-
quent prediction from the group distribution.

Tracking

A large literature on peer effects in the classroom sug-
gests that students benefit from working in cohorts of 
similar ability levels (see Epple & Romano, 2011, for a 
review). Grouping students by prior performance can 
accelerate learning, especially among high achievers 
(Betts & Shkolnik, 2000). We reasoned that our top 
“superforecasters” might also benefit from homogeneity 
of ability. The beneficial effects of tracking would hinge 
on whether success in geopolitical forecasting was largely 
attributable to luck or skill. If accuracy was a matter of 
luck, the predictions of top forecasters in the first tourna-
ment (Year 1) would be expected to regress to the mean 
in the second (Year 2). But if accuracy was a matter of 
skill, superforecasters would be expected to continue 
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their excellent performance in Year 2 and possibly do 
even better if they were tracked and consequently work-
ing in a much richer intellectual environment.

Method

A 2-year tournament (September 2011–April 2012 for 
Year 1 and June 2012–April 2013 for Year 2) was con-
ducted. Participants from around the world submitted 
probability estimates for 199 geopolitical outcomes on 
the goodjudgmentproject.com Web site; they were 
encouraged to update their beliefs as often as they 
wished before the close of each question.

Design

In Year 1, participants were randomly assigned to condi-
tions of a 3 (training: no training, scenario training,  
or probability training) × 4 (group influence: indepen-
dent, crowd-belief, team, or prediction-market forecast-
ing) factorial design. Scenario and probability training, 
administered at the start of the forecasting year, took 
approximately 45 min, and the modules could be reex-
amined throughout the tournament. Independent fore-
casters and crowd-belief forecasters worked alone, but 
crowd-belief forecasters were given distributional knowl-
edge of others’ forecasts. Team forecasters worked in 
groups of up to 25 members and interacted on a Web 
site. Team members could offer rationales and critiques 
and could share information, including their forecasts 
(but there was no systematic display of team members’ 
predictions). Team forecasters received additional train-
ing in how to help the group be more accurate by main-
taining high standards of evidence and proof. They were 
taught strategies for explaining their forecasts to others, 
offering constructive critiques, and building an effective 
team. Results for prediction-market forecasting are not 
discussed here.

The Year 2 experiment replicated the most effective 
approaches in Year 1, examined a new prediction mar-
ket, and tested tracking separately from regular teams. 
The design was a 2 (training: no training or probability 
training) × 3 (group influence: independent, team,  
or prediction-market forecasting) factorial design, with  
an additional condition for elite tracking. (Again, results 
for prediction-market forecasting are not reported  
here.) Teams were slightly smaller than in Year 1 (i.e., 
maximum of 15 members). We examined tracking  
by placing the 60 top performers of Year 1 (5 from  
each condition) in five teams of 12 members each (super-
forecaster teams). (See Supplemental Method in the 
Supplemental Material available online for the instruc-
tions and training materials.)

Participants

We recruited forecasters via professional societies, 
research centers, alumni associations, science blogs, and 
word of mouth. Entry into the tournament required a 
bachelor’s degree or higher and completion of a battery 
of psychological and political tests that took an average 
of 2 hr. Individuals who met the requirements were 
largely U.S. citizens (76%) and males (83%); their average 
age was 36. Almost two thirds (64%) had some post-
graduate training. Year 1 participants were invited to par-
ticipate again in Year 2; we also recruited new participants 
for Year 2.

Year 1 began with 2,246 participants (1,593 survey 
respondents and 653 prediction-market traders). Survey 
respondents were randomly assigned to nine conditions 
(average of 177 participants per condition). Attrition was 
7%. Year 2 started with 1,648 participants (943 survey 
respondents and 705 prediction-market traders who were 
either new recruits or returnees). Assignment to condi-
tions proceeded as follows: (a) Year 1 forecasters in con-
ditions that remained in Year 2 stayed put; (b) Year 1 
crowd-belief forecasters were randomly assigned to the 
independent- or team-forecasting condition (unless they 
were in the top 2% from Year 1 and consequently 
assigned to the superforecaster condition); (c) forecasters 
who received scenario training in Year 1 were randomly 
assigned to no training or probability training; and (d) 
new recruits were randomly assigned to conditions so 
that slightly more than 200 were placed in each of the 
four combinations of training and group influence, 375 
were placed in each prediction market, and 60 served in 
the elite tracking condition. Thus, in Year 2, the no-train-
ing condition included some participants who had previ-
ously received scenario training, which tipped the scale 
against finding a statistically significant effect of training. 
Attrition in Year 2 was only 3%, presumably because 
most participants (86%) were returnees and quite familiar 
with the task.

Questions and measures

All forecasters were given the goal of minimizing their 
average Brier score (Brier, 1950). This score measures indi-
vidual accuracy; 0 is the best score, and 2 is the worst 
score. The Brier scoring rule is proper because forecasters 
are incentivized to report truthfully. Scores are sums of 
squared deviations between forecasts and reality (occur-
rence of the event = 1, nonoccurrence of the event = 0), so 
extreme, incorrect forecasts are heavily punished. If a fore-
caster said a two-outcome event (i.e., the event occurs or 
does not occur) was 90% likely to occur (and 10% likely 
not to occur) and the event did occur, the Brier score 
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would be calculated as (.9 − 1)2 + (.1 − 0)2, which equals 
.02. If the event did not occur, the Brier score would be  
(.9 − 0)2 + (.1 − 1)2, which equals 1.62. The sum of these 
squared deviations was averaged over days and questions 
for each participant.

Eighty-five and 114 questions closed and were 
included in the Brier scores in Years 1 and 2, respectively 
(see Supplemental Method for a list of the questions). 
Most questions were binomial; the rest were multinomial, 
with three to five outcomes, or conditional, with two 
antecedents and two outcomes. Questions remained 
open for an average of 102 days (range = 2–418 days). 
Forecasters were asked questions such as, “Will Italy’s 
Silvio Berlusconi resign, lose re-election/confidence vote, 
or otherwise vacate office before 1 January 2012?” They 
predicted the chance the event would occur, on a scale 
from 0% (certain it will not occur) to 100% (certain it will 
occur). Participants were encouraged to return to the 
Web site and update their prediction until the question 
closed.

Incentives

Forecasters who met the minimum participation require-
ments received $150 at the end of Year 1 and $250 at the 
end of Year 2, regardless of their accuracy. Year 2 return-
ees were given a $100 bonus. Forecasters also received 
status rewards for their performance via leader boards 
that displayed the Brier scores for the top 10% of fore-
casters in each experimental condition and their own 
score. Those who served in teams (regular teams and 
superforecaster teams) also saw team Brier scores 
(defined as medians rather than means, to encourage 
harmony) for the teams in their condition.

Results

The analyses we present are based on Brier scores, but 
all main effects and interactions held up with spherical 
and logarithmic rules, the two next most widely used 
proper-scoring rules. These rules differ in how severely 
they penalize extreme overconfidence, with the spherical 
rule being the most lenient, the logarithmic rule the most 
punitive, and the Brier scale intermediate. Our findings 
were robust across all three metrics.

Figure 1 illustrates the effects of training (left side) and 
teaming and tracking (right side) on standardized Brier 
scores, averaged over days, questions, and forecasters. 
Because forecasters chose their own questions, we 
removed selection effects by standardizing scores within 
questions. Lower scores indicate greater accuracy.

Training

Training improved Year 1 Brier scores, F(2, 1586) = 14.29, 
p < .001. Probability training was more effective than sce-
nario training, t(1053) = 2.23, p = .026, and scenario train-
ing was more effective than no training, t(1056) = 3.25,  
p < .001. In Year 2, accuracy was better among partici-
pants with probability training than among those with no 
training, F(1, 882) = 19.12, p < .001. Remarkably, a brief 
probabilistic training module paid off over an extended 
time (see also Lichtenstein & Fischhoff, 1980).

Teaming

Group influence was also a driver of accuracy in Years 1 
and 2, F(2, 1586) = 60.68, p < .001, and F(1, 882) = 62.76, 
p < .001, respectively. Figure 1 shows that in Year 1, team 
forecasters were more accurate than crowd-belief 

–0.5

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

None Y1 Prob Y1 Scen Y1 None Y2 Prob Y2 Inds Y1 CBs Y1 Teams Y1 Inds Y2 Teams Y2 SFs  Y2

M
ea

n 
St

an
da

rd
iz

ed
 B

rie
r S

co
re

Training Teaming and Tracking

Fig. 1.  Effects of training, teaming, and tracking on average Brier scores in Year 1 (Y1) and Year (Y2). The bars at the left show results 
for the no-training (“None”), probability-training (“Prob”), and scenario-training (“Scen”) conditions; the bars at the right show results for 
independent forecasters (“Inds”), crowd-belief forecasters (“CBs”), team forecasters (“Teams”), and superforecasters (“SFs”). Error bars 
represent ±2 SEs.



Winning a Geopolitical Forecasting Tournament 5

forecasters, t(1036) = 5.52, p < .001, and crowd-belief 
forecasters were more accurate than independent fore-
casters, t(1120) = 5.92, p < .001. Communication allowed 
participants to motivate one another, share news articles, 
and exchange rationales. A greater number of comments 
made by individuals within teams was associated with 
greater accuracy, r = –.19 in Year 1 and –.22 in Year 2, 
t(471) = –5.08, p < .001, and t(415) = –5.24, p < .001, 
respectively. (Recall that lower scores indicate greater 
accuracy.) Greater accuracy in teams was due to mem-
bers who gathered and shared information, encouraged 
one another, and discussed issues. In addition to show-
ing a main effect of group influence, Year 2 data showed 
an interaction between training and group influence, F(1, 
882) = 5.78, p = .018. Predictions of untrained, indepen-
dent forecasters were much less accurate than predic-
tions of all other forecasters.

Training and teaming over time

As noted, questions remained open for an average of 
about 3 months. Therefore, training and teaming could 
have had beneficial effects at different points in the life 
cycle of a question. For example, training might have 
been most effective early, by teaching forecasters to con-
sider multiple reference classes. Team interaction might 
have been most helpful later on, after individuals had 

time to gather information. To find out whether the  
timing of training and teaming effects differed, we com-
puted Brier scores for forecasts made in the first week, 
the middle 2 weeks, and the last week for all questions 
that remained open for at least a month. Table 1 summa-
rizes these average scores.

Team interaction improved forecasts in all three peri-
ods of Year 1, F(2, 1463) = 11.130, p < .001; F(2, 1583) = 
8.30, p < .001; and F(2, 1583) = 4.56, p < .011, as well as 
in all three periods of Year 2, F(1, 832) = 9.74, p = .002; 
F(1, 882) = 27.43, p < .001; and F(1, 834) = 27.34, p < .001. 
Training improved forecasts in all periods of Year 1, F(2, 
1463) = 6.20, p < .001; F(2, 1583) = 7.76, p < .001; and F(2, 
1583) = 6.24, p < .002, and in the middle period of Year 
2, F(1, 882) = 6.10, p = .014. In short, both team interac-
tion and training were generally beneficial throughout 
the duration of a question.

It is reasonable to ask whether the beneficial effects of 
training or teaming were due to the fact that both vari-
ables simply encouraged forecasters to make later fore-
casts (and presumably more informed forecasts) or to 
update forecasts more often. We addressed this question 
using regressions in which we predicted Brier scores 
from dummy variables representing training and team-
ing. Then we tested whether the effects of training and 
teaming remained significant when we added predictors 
for timing (i.e., the date on which the first forecast was 

Table 1.  Average Brier Score Accuracy by Time Period in Years 1 and 2

Condition First week Middle 2 weeks Last week

Year 1
Individual forecasters  
  No training 0.44 0.40 0.31
  Scenario training 0.41 0.40 0.29
  Probability training 0.40 0.36 0.29
Crowd-belief forecasters  
  No training 0.42 0.39 0.30
  Scenario training 0.39 0.38 0.28
  Probability training 0.36 0.34 0.23
Team forecasters  
  No training 0.42 0.33 0.22
  Scenario training 0.36 0.33 0.24
  Probability training 0.35 0.30 0.19

Year 2
Individual forecasters  
  No training 0.46 0.39 0.26
  Probability training 0.42 0.36 0.24
Team forecasters  
  No training 0.38 0.32 0.16
  Probability training 0.40 0.28 0.16
Superforecasters 0.25 0.19 0.07

Note: The time periods refer to the period during which the forecast was made; only 
questions that were open for at least a month were included in these calculations.
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made) and updating (i.e., the number of forecasts made 
per question).

In separate regressions for Years 1 and 2, participants 
were treated as random effects. For both years, training 
and teaming remained significant predictors even when 
timing and updating were included as predictors. For 
Year 1, probability training, scenario training, crowd-
belief forecasting, and team forecasting remained signifi-
cant predictors, t(1588) = –4.58, p < .001; t(1588) = 2.70, 
p < .001; t(1588) = –6.72, p < .001; and t(1588) = –10.99, 
p < .001, respectively. For Year 2, probability training and 
team forecasting again remained significant predictors, 
t(883) = –3.38, p < .001, and t(883) = –7.03, p < .001, 
respectively. Results suggested that our manipulations 
had beneficial effects over and beyond those of timing 
and updating.

Tracking

Figure 1 also displays perhaps the most surprising driver 
of accuracy. The best performers from Year 1 (i.e., the 
top 2%) were placed together in elite teams in Year 2. 
These superforecasters outperformed all other groups by 
a wide margin. There was no evidence of Year 2 regres-
sion to the mean; political forecasting appeared to be at 
least somewhat skill based, and the acquisition of skill 
accelerated when top performers worked together.

Measures of engagement

Forecasters were required to make predictions for 25 
questions annually in order to receive payments, but 
most participants made considerably more. We looked at 
the number of questions responded to as a measure of 
engagement. This number averaged 48 in Year 1 and 65 
in Year 2. This measure varied with group influence  
in Years 1 and 2, F(2, 1583) = 10.48, p < .001, and  
F(1, 882) = 17.66, p < .001, respectively. Teams attempted 
fewer questions than individuals (or crowd-belief fore-
casters in Year 1). Number of questions attempted also 
varied with training in Year 1, F(2, 1583) = 3.65, p = .026. 
Forecasters with either form of Year 1 training attempted 
fewer questions than those without training. A compari-
son of superforecasters with regular teams in Year 2 
showed that superforecasters responded to 95 questions 
on average, whereas regular teams responded to 61, 
t(270) = 6.88, p < .001.

Another measure of engagement is the number of pre-
dictions made per question. This measure reflects the 
tendency to sustain attention. The average number of 
predictions per question was 1.5 in Year 1 and 1.8 in Year 
2. This measure varied with group influence in Year 1, 
F(2, 1583) = 10.17, p < .001. Independent forecasters and 

crowd-belief forecasters made an average of 1.3 predic-
tions per question, and teams made an average of 1.5. 
Group influence also had an effect in Year 2, F(1, 882) = 
6.23, p = .013. Independent forecasters made an average 
of 1.4 predictions per question, and regular teams made 
an average of 1.6. The surprising result was that super-
forecasters made an average of 7.8 predictions per ques-
tion. Their engagement was extraordinary.

Decomposition of skill

Brier scores can be decomposed into three additive 
parts—variability, calibration, and resolution—two of 
which bear on forecasting skill (Murphy & Winkler, 
1987).1 Variability is a function of the base rate for events. 
For example, rain is harder to predict in Philadelphia 
than in Tucson because Philadelphia weather is more 
variable. Because variability bears on question difficulty 
rather than skill, we do not discuss it further.

Calibration reflects the degree to which forecasters 
display appropriate humility. It is the average mean 
squared error between forecasts for events and the rela-
tive frequencies of those events when the forecasts were 
made. To calculate calibration, we created small proba-
bility bins of .500 to .525, .526 to .575, .576 to .625, and 
so forth. We then computed the mean squared error 
between forecasts in each bin and the relative frequency 
of the corresponding events. Zero indicates perfect cali-
bration, and larger scores indicate worse calibration.

Calibration improved with training in Years 1 and 2, 
F(2, 1586) = 3.16, p = .04, and F(1, 938) = 3.78, p < .05, 
respectively. In Year 2, calibration also benefited from 
group influence, F(1, 938) = 7.07, p = .008, and tracking. 
Superforecasters were better calibrated than forecasters 
who had received probability training and were working 
on regular teams, t(293) = 11.03, p < .001. Figure 2 shows 
calibration curves for binary questions in the three train-
ing conditions in Year 1, and Figure 3 shows calibration 
curves for binary questions in the two training conditions 
and the superforecaster condition in Year 2. Forecasts 
were sorted according to predicted likelihood of the 
event (confidence) and placed in bins. For each bin, the 
relative frequency of “correct” predictions is plotted; a 
prediction was considered to be correct if the outcome 
judged most likely actually occurred (Fischhoff et al., 
1978). Note that all points in Figures 2 and 3 fall below 
the identity lines, which means that forecasters were 
overconfident; overconfidence was worse among fore-
casters without training than among those with training.

Figures 2 and 3 show that calibration tended to be 
remarkably good. Calibration was worst at forecasts of 
100%. The problem was a lack of updating. Forecasts of 
100% made in the early days of a question (i.e., first 20% 
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of days) were accurate only about 70% of the time. The 
same forecasts made in the final 20% of days of a ques-
tion were correct about 90% of the time. But overall, our 
geopolitical forecasters were well calibrated. Prior 
research has shown high calibration among meteorolo-
gists predicting rain (Murphy & Winkler, 1984), expert 
bridge players predicting the chances that they will make 

a contract (Keren, 1987), and racetrack bettors predicting 
the winning horse ( Johnson & Bruce, 2001). In each of 
these prior studies, individuals obtained systematic, 
unambiguous feedback over repeated occasions. Our 
forecasters also received clear feedback (their Brier 
scores), and they, too, benefited from extended learning 
opportunities.
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Resolution, the third component of the Brier score 
decomposition, represents appropriate decisiveness, or 
skill at differentiating signals from noise. Higher scores 
indicate greater resolution (see Fig. 4 for average scores). 
Resolution varied with group influence in Year 1, F(2, 
1586) = 78.53, p < .001, and Year 2, F(1, 871) = 60.92, p < 
.001. Resolution also varied with training in both years, 
F(2, 1586) = 18.50, p < .001, and F(1, 871) = 16.23, p < .001, 
respectively. Tracking also enhanced resolution, t(293) = 
4.12, p < .001. It is clear that superforecasters’ accuracy 
was in large part due to their greater resolution relative to 
all other groups. In sum, calibration and resolution both 
benefited from training, teaming, and tracking.

Discussion

This article reports the first long-term, real-world tests  
of the efficacy of three psychological manipulations—
training, teaming, and tracking—in improving the accu-
racy of geopolitical forecasts. All three manipulations 
significantly reduced forecasting errors. The most impres-
sive aspect of training was that, although the module 
took only about 45 min to complete, the benefits lasted 
across two periods (each about 8 to 10 months long). 
Results strongly disconfirm the expectations of pro-inde-
pendence theorists. Team forecasters were more accurate 
than crowd-belief forecasters, and crowd-belief forecast-
ers outperformed independent forecasters. Team com-
munication produced enlightened cognitive altruism: 
sharing of news articles and exchange of rationales. 
Finally, the pooling of top performers into elite teams 
with the exalted title of “superforecasters” was the equiv-
alent of a “steroid injection.” Communication, effort, and 

engagement reached levels that far exceeded our wildest 
expectations.

Other factors also contribute to good forecasting. 
Dispositional variables predict skill. Our participants 
came from a wide range of backgrounds and fields of 
education. Better forecasters had higher scores on mea-
sures of fluid and crystallized intelligence and open-
mindedness (results discussed in Mellers, Stone, Metz, 
Ungar, & Tetlock, 2013). Also, certain statistical algorithms 
are better than others. As reported elsewhere, our best 
algorithm in this competition assigned differential weights 
to forecasters, applied a temporal discounting function, 
and included a nonlinear transformation that “extremized” 
the aggregate predictions (for discussion of these statisti-
cal algorithms, see Baron, Ungar, Stone, Mellers, & 
Tetlock, in press; Satopää et al., 2014; and Satopää, 
Jensen, Mellers, Tetlock, & Ungar, in press).

No one knows how much further improvement is pos-
sible in geopolitical forecasting—or how close research is 
to the optimal forecasting frontier. There are almost cer-
tainly pockets of inherent uncertainty in our questions 
that made it impossible to achieve perfect or near-perfect 
Brier scores.

Consider a Year 1 question, introduced on September 
1, 2011, that asked whether there would be a lethal con-
frontation (i.e., one resulting in at least one civilian death) 
of government forces in the South or East China Sea by 
December 31, 2011. Our best-performing forecasters ini-
tially assigned low probabilities to this event (roughly 
20%, which reflects the base rate of such events in 
4-month periods) and gradually decreased their probabil-
ity estimates with the passage of time. On December 11, 
a South Korean coast guard officer was stabbed to death 
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Fig. 4.  Average resolution score as a function of group influence (“Inds” = independent forecasters; 
“CBs” = crowd-belief forecasters) in Year 1 (Y1) and as a function of group influence and tracking 
(“SFs” = superforecasters) in Year 2 (Y2). Error bars represent ±2 SEs.
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with a shard of broken glass by a Chinese fisherman 
apprehended for operating illegally in South Korean 
waters. The murder caught everyone by surprise. Trained 
teams received an average Brier score of 1.44 on  
this question, performing even worse than untrained, 
independent forecasters, who received an average Brier 
score of 1.31. This question is an example of what 
Kahneman and Miller (1986) deemed close-call counter-
factuals, events that human observers can easily imagine 
turning out otherwise, and illustrates the difficulty of 
making accurate predictions in a geopolitical forecasting 
tournament.

In closing, some methods of geopolitical forecasting 
really are better than others. We used training, teaming, 
and tracking to improve forecasts that were then aggre-
gated with statistical algorithms. Our psychological inter-
ventions reduced the errors in individual forecasts for 
events ranging from military conflicts and global leader-
ship changes to international negotiations and economic 
shifts. Statistical algorithms for combining individual fore-
casts reduced errors in aggregations (Baron et al., 2014; 
Satopää et al., 2014; Satopää et al., in press). The best 
approach to geopolitical forecasting relied on a combina-
tion of psychological interventions and statistical algo-
rithms. To improve geopolitical forecasts, one needs 
insights from both statistics and psychology.
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Note

1. This decomposition is expressed as follows: Brier score = 
calibration − resolution + variability or Brier score = (1/N) * 
Σnk(fk – o–k)

2 – (1/N) * Σnk(o
–
k – o–)2 + o– * (1 – o–), where N is the 

number of forecasts, k refers to a category of identical forecasts, 
fk is the forecast in category k, n

k
 is the number of forecasts 

in category k, o–
k
 is the base rate for category k, and o– is the 

overall base rate.
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