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ABSTRACT

Graphical User Interface (GUI) is not merely a collection of individ-

ual and unrelated widgets, but rather partitions discrete widgets

into groups by various visual cues, thus forming higher-order per-

ceptual units such as tab, menu, card or list. The ability to automat-

ically segment a GUI into perceptual groups of widgets constitutes

a fundamental component of visual intelligence to automate GUI

design, implementation and automation tasks. Although humans

can partition a GUI into meaningful perceptual groups of widgets in

a highly reliable way, perceptual grouping is still an open challenge

for computational approaches. Existing methods rely on ad-hoc

heuristics or supervised machine learning that is dependent on

specific GUI implementations and runtime information. Research

in psychology and biological vision has formulated a set of princi-

ples (i.e., Gestalt theory of perception) that describe how humans

group elements in visual scenes based on visual cues like connec-

tivity, similarity, proximity and continuity. These principles are

domain-independent and have been widely adopted by practition-

ers to structure content on GUIs to improve aesthetic pleasantness

and usability. Inspired by these principles, we present a novel un-

supervised image-based method for inferring perceptual groups of

GUI widgets. Our method requires only GUI pixel images, is inde-

pendent of GUI implementation, and does not require any training

data. The evaluation on a dataset of 1,091 GUIs collected from 772

mobile apps and 20 UI design mockups shows that our method sig-

nificantly outperforms the state-of-the-art ad-hoc heuristics-based

baseline. Our perceptual grouping method creates opportunities

for improving UI-related software engineering tasks.
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1 INTRODUCTION

We do not just see a collection of separated texts, images, buttons,

etc., on GUIs. Instead, we see perceptual groups of GUIwidgets, such

as card, list, tab and menu shown in Figure 1. Forming perceptual

groups is an essential step towards visual intelligence. For example,

it helps us decide which actions are most applicable to certain

GUI parts, such as, clicking a navigation tab, expanding a card,

scroll the list. This would enable more efficient automatic GUI

testing [22, 35]. As another example, screen readers [3, 8] help

visually impaired users access applications by reading out content

on GUI. Recognizing perceptual groups would allow screen readers

to navigate the GUI at higher-order perceptual units (e.g., sections)

efficiently [58]. Last but not least, GUI requirements, designs and

implementations are much more volatile than business logic and

functional algorithms. With perceptual grouping, modular, reusable

GUI code can be automatically generated from GUI design images,

which would expedite rapid GUI prototyping and evolution [37, 38].

Although humans can intuitively see perceptual groups of GUI

widgets, current computational approaches are limited in parti-

tioning a GUI into meaningful groups of widgets. Some recent

work [12, 16] relies on supervised deep learning methods (e.g., im-

age captioning [34, 51]) to generate a view hierarchy for a GUI

image. This type of method is heavily dependent on GUI data avail-

ability and quality. To obtain sufficient GUI data for model training,

they use GUI screenshots and view hierarchies obtained at applica-

tion runtime. A critical quality issue of such runtime GUI data is

that runtime view hierarchies often do not correspond to intuitive

perceptual groups due to many implementation-level tricks. For

example, in the left GUI in Figure 2, the two ListItems in a ListView

has no visual similarity (a large image versus some texts), so they do

not form a perceptual group. In the right GUI, a grid of cards form

a perceptual group but is implemented as individual FrameLayouts.

Such inconsistencies between the implemented widget groups and

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Examples of perceptual groups of GUI widgets (per-

ceptual groups are highlighted in pink box in this paper)

the human’s perceptual groups make the trained models unreliable

to detect perceptual groups of GUI widgets.

Decades of psychology and biological vision research have for-

mulated the Gestalt theory of perception that explains how humans

see the whole rather than individual and unrelated parts. It includes

a set of principles of grouping, among which connectedness, simi-

larity, proximity and continuity are the most essential ones [7, 45].

Although these principles and other related UI design principles

such as CRAP [42] greatly influence how designers and developers

structure GUI widgets [48], they have never been systematically

used to automatically infer perceptual groups from GUI images.

Rather, current approaches [38, 58] rely on ad-hoc and case-specific

rules and thus are hard to generalize on diverse GUI designs.

In this work, we systematically explore the Gestalt principles of

grouping and design the first psychologically-inspired method for

visual inference of perceptual groups of GUI widgets. Our method

requires only GUI pixel images and is independent of GUI imple-

mentations. Our method is unsupervised, thus removing the depen-

dence on problematic GUI runtime data. As shwon in Figure 3, our

method enhances the state-of-the-art GUI widget detection method

(UIED [21, 53]) to detect elementary GUI widgets. Following the

Gestalt principles, the method first detects containers (e.g., card, list

item) with complex widgets by the connectedness principle. It then

clusters visually similar texts (or non-text widgets) by the similarity

principle and further groups clusters of widgets by the proximity

principles. Finally, based on the widget clusters, our method cor-

rects erroneously detected or missing GUI widgets by the continuity

principle (not illustrated in Figure 3, but can be seen in Figure 5).

At the right end of Figure 3, we show the grouping result by the

state-of-the-art heuristic-based method Screen Recognition [58].

Screen Recognition incorrectly partitionsmanywidgets into groups,

such as the bottom navigation bar and the four widgets above the

bar, the card on the left and the text above the card. It also fails to

detect higher-order perceptual groups, such as groups of cards. In

contrast, our approach correctly recognizes the bottom navigation

bar and the top and middle row of cards. Although the text label

above the left card is very close to the card, our approach correctly

recognizes the text labels as separate widgets rather than as a part

of the left card. Our approach does not recognize the two cards

just above the bottom navigation bar because these two cards are

partially occluded by the bottom bar. However, it correctly recog-

nizes the two blocks of image and text and detects them as a group.

Figure 2: Implemented view hierarchy does not necessarily

correspond to perceptual groups

Clearly, the grouping results by our approach correspond more

intuitively to human perception than those by Screen Recognition.

For the evaluation, we construct two datasets: one contains 1,091

GUI screenshots from 772 Android apps, and the other contains

20 UI prototypes from a popular design tool Figma [4]. To ensure

the validity of ground-truth widget groups, we manually check all

these GUIs and confirm that none of these GUIs has the perception-

implementation misalignment issues shown in Figure 2. We first

examine our enhanced version of UIED and observe that the en-

hanced version reaches a 0.626 F1 score for GUI widget detection,

which is much higher than the original version (0.524 F1). With the

detected GUI widgets, our perceptual grouping approach achieves

the F1-score of 0.593 on the 1,091 app GUI screenshots and 0.783

F1-score on the 20 UI design prototypes. To understand the impact

of GUI widget misdetections on perceptual grouping, we extract

the GUI widgets directly from the Android app’s runtime metadata

(i.e., ground-truth widgets) and use the ground-truth widgets as the

inputs to perceptual grouping. With such łperfectly-detectedž GUI

widgets, our grouping approach achieves a 0.672 F1-score on app

GUIs. In contrast, Screen Recognition [58] performs very poorly:

0.123 F1 on the ground-truth widgets and 0.092 F1 on the detected

widgets for app screenshots, and 0.232 F1 on the detected widgets

for UI design prototypes. Although our grouping results sometimes

do not exactly match the ground-truth groups, our analysis shows

that some of our grouping results still comply with how humans

perceive the widget groups because there can be diverse ways to

structure GUI widgets in some cases.

To summarize, this paper makes the following contributions:

• A robust, psychologically-inspired, unsupervised visual in-

ference method for detecting perceptual groups of GUI wid-

gets on GUI images, the code is released on GitHub1.

• A comprehensive evaluation of the proposed approach and

the in-depth analysis of the performance with examples.

• An analysis of how our perceptual grouping method can im-

prove UI-related SE tasks, such as UI design, implementation

and automation.

1https://github.com/MulongXie/GUI-Perceptual-Grouping
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Visualization of Each Step of Our Approach ScreenRecognition

Input GUI Image (2.1) Connectedness 
Container Recognition

(2.2) Similarity  
 Widget Clustering

(2.3) Proximity  
 Recursive Group Pairing

Widget Perceptual Groups(1) Widget Detection

(2) Perceptual Grouping

Grouping Result

Figure 3: Left: Our approach overview: (1) Enhanced UIED [21] for GUI widget detection; (2) Gestalt-principles inspired

perceptual grouping. Right: Grouping result of the state of of the art heuristic-based approach ScreenRecognition [58]

2 GUI WIDGET DETECTION

Our approach is a pixel-only approach. It does not assume any GUI

metadata or GUI implementation about GUI widgets. Instead, our

approach detects text and non-text GUI widgets directly from GUI

images. To obtain the widget information from pixels, it enhances

the state-of-the-art GUI widget detection technique UIED [53]. In

order to fit with subsequent perceptual grouping, our approach

mitigates the incorrect merging of GUI widgets in the containers

by UIED and simplifies the widget classification of UIED.

2.1 UIED-Based GUI Widget Detection

UIED comprises three steps: (1) GUI text detection, (2) non-text

GUI widget detection and (3) merging of text and non-text wid-

gets. UIED uses an off-the-shelf scene text detector EAST [60] to

identify text regions in the GUI images. EAST is designed for han-

dling nature scene images that differ from GUI images, such as

figure-background complexity and lighting effects. Although EAST

outperforms traditional OCR tool Tesseract [47], we find the latest

OCR tool developed by Google [6] achieves the highest accuracy

of GUI text recognition (see Section 4.1). Therefore, in our use of

UIED, we replace EAST with the Google OCR tool.

For locating non-text widgets, our approach adopts the design

of UIED that uses a series of traditional, unsupervised image pro-

cessing algorithms rather than deep-learning models (e.g., Faster

RCNN [31] or YOLO [40]). This design removes the data dependence

on GUI implementation or runtime information while accurately

detecting GUI widgets. UIED then merges the text and non-text

detection results. The purpose of this merging step is not only to

integrate the identified GUI widgets but also to cross-check the

results. Because non-text widget detection inevitably extracts some

text regions, UIED counts on the OCR results to remove these

false-positive non-text widgets. Specifically, this step checks the

bounding box of all candidate non-text widget regions and removes

those intersected with text regions resulting from the OCR.

2.2 Improvement and Simplification of UIED

We find that the UIED detection results often miss somewidgets in a

container (e.g. card). The reason is that, in order to filter out invalid

non-text regions and mitigate over-segmentation that wrongly

segments a GUI widget into several parts, UIED checks the widgets’

bounding boxes and merges all intersected widgets regions into a

big widget region. This operation may cause the wrong neglection

of valid GUIwidgets that are enclosed in some containers. Therefore,

we equip our GUI widget detector with a container recognition

algorithm (see Section 3.2) to mitigate the issue. If a widget is

recognized as a container, then all its contained widgets are kept

and regarded as proper GUI widgets rather than noises.

The original UIED classifies non-text GUI widgets as specific

widget categories (e.g., image, button, checkbox). In contrast, our

GUI widget detector only distinguishes text from non-text widgets.

Although GUI involves many types of non-text widgets, there is

no need of distinguishing actual classes of non-text widgets for

perceptual grouping. GUI widget classes indicate different user in-

teractions and GUI functionalities, but widgets with different classes

can form a perceptual group as long as they have similar visual

properties, such as size, shape, relative position and alignment with

other widgets. Therefore, we do not distinguish different classes of

non-text widgets. However, we need to distinguish non-text wid-

gets from text widgets, as they have very different visual properties

and need to be clustered by different strategies (see Section 3).

3 GUI WIDGET PERCEPTUAL GROUPING

After obtaining text and non-text widgets on a GUI image, the next

step is to partition GUI widgets into perceptual groups (or blocks

of items) according to their visual and perceptual properties.

3.1 Gestalt Laws and Approach Overview

Our approach is inspired by psychology and biological-vision re-

search. Perceptual grouping is a cognitive process in which our

minds leap from comprehending all of the objects as individuals

to recognizing visual patterns through grouping visually related

elements as a whole [26]. This process affects the way we design

GUI layouts [42] from alignment, spacing and grouping tool sup-

port [4, 44] to UI design templates [24] and GUI frameworks [2]

It also explains how we perceive GUI layouts. For instance, in the

examples in Figure 1, we subconsciously observe that some visually
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similar widgets are placed in a spatially similar way and identify

them as in a group (e.g. a card, list, multitab or menu).

Previous studies rely on ad-hoc, rigid heuristics to infer UI struc-

ture without a systematic theoretical foundation. Our approach is

the first attempt to tackle the perceptual grouping of GUI widgets

guided by an influential psychological theory (named Gestalt psy-

chology [7]) that explains how the human brain perceives objects

and patterns. Gestalt psychology’s core proposition is that human

understands external stimuli as wholes rather than as the sums of

their parts [46]. Based on the proposition, the Gestaltists studied

perceptual grouping [26] systematically and summarized a set of

łgestalt laws of groupingž [45]. In our work, we adopt the four most

effective principles which greatly influence GUI design [48] in prac-

tice as the guideline for our approach design: (1) connectedness

(2) similarity (3) proximity and (4) continuity.

We define a group of related GUI widgets as a layout block of

items. A typical example is a list of list items in the GUI, or a card

displaying an image and some texts. The fundamental intuition

is: if a set of widgets have similar visual properties and are placed

in alignment with similar space between each other, they will be

łperceivedž as in the same layout block by our approach according

to the Gestalt principles. In detail, our approach consists of four

grouping steps in accordance with four Gestalt principles. First, it

identifies containers along with their contained widgets that fulfil

the connectedness law. Second, it uses an unsupervised clustering

method DBSCAN [25] to cluster text or non-text GUI widgets based

on their spatial and size similarities. Next, it groups proximate and

spatially aligned clusters to form a larger layout block following

the proximity law. Finally, in line with the continuity principle,

our approach corrects some mistakes of GUI widget detection by

checking the consistency of the groups’ compositions.

3.2 Connectedness - Container Recognition

In Gestalt psychology, the principle of uniform connectedness is

the strongest principle concerned with relatedness [41]. It implies

that we perceive elements connected by uniform visual properties

as being more related than those not connected. The forms of the

connection can be either a line connecting several elements or a

shape boundary that encloses a group of related elements. In the

GUI, the presentation of the connectedness is usually a box con-

tainer that contains multiple widgets within it, and all the enclosed

widgets are perceived as in the same group. Thus, the first step of

our grouping approach is to recognize the containers in a GUI.

In particular, we observe that a container is visually a (round)

rectangular wireframe enclosing several children widgets. The card

is a typical example of such containers, as shown in Figure 1(a).

Therefore, with the detected non-text widgets, the algorithm first

checks if a widget is of rectangle shape by counting how many

straight lines its boundary comprises and how they compose. Specif-

ically, we apply the geometrical rule that a rectangle’s sides are

made of 4 straight lines perpendicular to each other. Subsequently,

our approach determines if the widget’s boundary is a wireframe

border by checking if it is connected with any widgets inside its

boundary. If a widget satisfies the above criteria, it will be identified

as a container, and all widgets contained within it are partitioned

into the same perceptual group.

Cluster Non-text
Area Conflicts Resolving Cluster Non-text

Horizontal Cluster Non-text
Vertical

 Cluster Text
Horizontal ClusterText

Vertical  Conflicts Resolving

Clustering Result Final Goups

Figure 4: Widget clustering, cluster conflict resolving and

final resulting groups in which we use the same color to paint

the widgets in the same subgroup and highlight higher-order

groups in pink boxes

3.3 Similarity - Widget Clustering

The principle of similarity suggests that elements are perceptually

grouped together if they are similar to each other [9]. Generally,

similarity can be observed in aspects of various visual cues, such

as size, color, shape or position. For example, in the second GUI of

Figure 1, the image widgets are of the same size and aligned with

each other in the same way (i.e., same direction and spacing), so

we visually perceive them as a group. Likewise, the text pieces on

the right of the image widgets are perceptually similar even though

they have different font styles and lengths because they have the

same alignment with neighbouring texts.

3.3.1 Initial Widget Clustering. Our approach identifies similar

GUI widgets by their spatial and visual properties and aggregates

similar GUI widgets into blocks by similarity-based clustering. It

clusters texts and non-text widgets through different strategies.

In general, similar non-text widgets in the same block (e.g. a list)

usually have similar sizes and align to one another vertically or

horizontally with the same spacing. Texts in the same block are

always left-justified or top-justified (assume left-to-right text orien-

tation), but their sizes and shapes can vary significantly because

of different lengths of text contents. Thus, the approach clusters

the non-text widgets by their center points (𝐶𝑒𝑛𝑡𝑒𝑟𝑋 ,𝐶𝑒𝑛𝑡𝑒𝑟𝑌 ) and

areas, and it clusters texts by their top-left corner (𝑇𝑜𝑝, 𝐿𝑒 𝑓 𝑡)

Our approach uses the DBSCAN (Density-Based Spatial Cluster-

ing of Applications with Noise) algorithm [25] to implement the

clustering. Intuitively, DBSCAN groups the points closely packed to-

gether (points with many nearby neighbors), while marking points

whose distance from the nearest neighbor is greater than the maxi-

mum threshold as outliers. In the GUI widget clustering context, the

point is the GUI widget, and the distance is the difference between

the values of the widgets’ attribute that the clustering is based on.

Figure 4 illustrates the clustering process. For non-text widgets,

our approach performs the clustering three times based on three

attributes respectively. It first clusters the widgets by 𝐶𝑒𝑛𝑡𝑒𝑟𝑥 for

the horizontal alignment, then by 𝐶𝑒𝑛𝑡𝑒𝑟𝑌 for the vertical align-

ment and finally by 𝑎𝑟𝑒𝑎. These operations produce three clus-

ters: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛𝑜𝑛−𝑡𝑒𝑥𝑡
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛𝑜𝑛−𝑡𝑒𝑥𝑡
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛𝑜𝑛−𝑡𝑒𝑥𝑡𝑎𝑟𝑒𝑎 . Our

approach then clusters the text widgets twice based on their top left
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(b) Misclassified Widget

(a) Missed Widget

Widget Detection Group Pairing Subgroup of Widgets

Missed Widget

Misclassified 
 Widget

Figure 5: Examples of widget detection error correction. (1st

column - green box: non-text; red-box: text; 2nd column

- same color: higher-order perceptual group; 3rd column -

same color: subgroup of widgets)

corner point (𝑇𝑜𝑝, 𝐿𝑒 𝑓 𝑡) for left-justified (vertical) and top-justified

(horizontal) alignment. It produces the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑡𝑒𝑥𝑡
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

based on

the texts’𝑇𝑜𝑝 , and the𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑡𝑒𝑥𝑡
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

based on the texts’ 𝐿𝑒 𝑓 𝑡 . The

resulting clusters are highlighted by different colors and numbers

in Figure 4. We only keep the clusters with at least two widgets and

discard those with only one widget.

3.3.2 Cluster Conflicts Resolving. It is common that some widgets

can be clustered into different clusters by different attributes, which

causes cluster conflicts. For example, as illustrated in Figure 4,

several non-text widgets (e.g., the bottom-left image) are both in a

vertical cluster (marked in blue) and a horizontal cluster (marked

in red). The intersection of clusters illustrates the conflict. The

approach shall resolve such cluster conflicts to determine to which

group the widget belongs. This conflict-resolving step also complies

with the similarity principle that suggests the widgets in the same

perceptual group should share more similar properties.

The conflict resolving step first calculates the average widget

areas of the groups to which the conflicting widget has been as-

signed. In accordance with the similarity principle, the widget is

more likely to be in a group whose average widget area is similar

to the conflicting widget’s area. In addition, another observation

is that repetitive widgets in a group have similar spacing between

each other. So for a widget that is clustered into multiple candidate

groups, the approach checks the difference between the spacing of

this widget and its neighboring widgets in a group and the average

spacing between other widgets in that group. It keeps the widget in

the group where the conflicting widget has the largest widget-area

similarity and the smallest spacing difference compared with other

widgets in the group. For example, the bottom-left image widget

will be assigned to the vertical cluster rather than the horizontal one

according to our conflict resolving criteria. After conflict resolving,

our approach produces the final widget clustering results as shown

in the right part of Figure 4. We use different colors and indices to

illustrate the resulting non-text (nt) and text (t) clusters.

3.4 Proximity - Iterative Group Pairing

So far, GUI widgets are aggregated into groups as per the connected-

ness and similarity principles. Some groups are close to each other

and similar in terms of the number and layout of the contained

widgets, which may further form a larger perceptual group even

though these groups may contain different types of widgets. For

example, in the clustering result of Figure 4, we can observe that

the clusters nt-0, t-0, t-0-1 and nt-2 are proximate and have the

same or similar number of widgets aligned in the same way. We

can see this feature intentionally or subconsciously and perceive

them as in the same large group as a whole. Gestalt psychology

states that when people see an assortment of objects, they tend to

perceive objects that are close to each other as a group [9]. The

close distance, also known as proximity, of elements is so powerful

that it can override widget similarity and other factors that might

differentiate a group of objects [50]. Thus, the next step is based on

widget clusters’ proximity and composition similarity to pair the

clusters into a larger group (i.e., layout block).

If two groups 𝐺𝑟𝑜𝑢𝑝𝑎 and 𝐺𝑟𝑜𝑢𝑝𝑏 are next (proximate) to each

other (i.e., no other groups in between), and they contain the same

number of widgets and the widgets in the 𝐺𝑟𝑜𝑢𝑝𝑎 and the 𝐺𝑟𝑜𝑢𝑝𝑏
share the same orientation (vertical or horizontal), our approach

combines 𝐺𝑟𝑜𝑢𝑝𝑎 and 𝐺𝑟𝑜𝑢𝑝𝑏 into a larger block. A widget in

𝐺𝑟𝑜𝑢𝑝𝑎 and its closet widget in 𝐺𝑟𝑜𝑢𝑝𝑏 will be paired and form a

subgroup of widgets. Our approach first combines the two prox-

imate groups containing the same type of widgets, and then the

groups containing different types of widgets. The formed larger

block can be iteratively combined with the proximate groups until

no more proximate groups are available.

Sometimes there are different numbers of widgets in the two

proximate groups but the two groups may still form one larger

perceptual block. For example, the cluster nt-2 in Figure 4 has one

less widget compared to nt-0, t-0 and t-0-1 because the bottom

widget in the right column is occluded by the float action button

and thus missed by the detector. Another common reason for the

widget number difference is that widgets in a group may be set as

invisible in some situations, and thus they do not appear visually.

Therefore, if the difference between the number of widgets in the

two proximate groups is less than 4 (empirically determined from

the ground-truth groups in our dataset), our approach also combines

the two groups into a larger block.

As shown in the final groups in Figure 4, our approach identifies

a set of perceptual groups (blocks), including the multitab at the

top and the list in the main area. Each list item is a combined

widget of some non-text and text widgets (highlighted in the same

color). These perceptual groups encode the comprehension of the

GUI structure into higher-order layout blocks that can be used in

further processing and applications.

3.5 Continuity - Detection Error Correction

The GUI widget detector may make two types of detection errors -

missed widgets and misclassified widgets. Missed widgets means

that the detector fails to detect some GUI elements on the GUI (e.g.,

the bottom-right icon in Figure 5(a)). Misclassified widgets refer to

the widgets that the detector reports the wrong type, for example,
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Figure 6: Examples of GUI widget detection and perceptual grouping results (red box - text widget, green box - non-text widget,

pink box - perceptual group). Metadata-based means grouping the ground-truth widgets directly from GUI metadata.

the top-right small icon (i.e., a non-text widget) in the middle card

in Figure 5(b) is misclassified as a text widget due to an OCR error.

It is hard to recognize and correct these detection errors from the

individual widget perspective, but applying the Gestalt continuity

principle to expose such widget detection errors by contrasting

widgets in the same perceptual groups can mitigate the issue. The

continuity principle states that elements arranged in a line or curve

are perceived to be more related than elements not in a line or curve

[41]. Thus, some detection errors are likely to be spotted if a GUI

area or a widget aligns with all the widgets in a perceptual group

in a line but is not gathered into that group.

Our approach tries to identify and fix missed widgets as follows.

It first inspects the subgroups of widgets in a perceptual group and

checks if the widgets in the subgroups are consistent in terms of the

number and relative position of the contained widgets. If a subgroup

contains fewer widgets than its counterparts, then the approach

locates the inconsistent regions by checking the relative positions

and areas of other subgroups’ widgets. Next, the approach crops the

located UI regions and uses the widget detector upon the cropped

regions with relaxed parameters (i.e. double of the minimum area

threshold for valid widgets) to try to identify the missed widget, if

any. For example, the tiny icon at the bottom right in Figure 5(a)

is missed because its area is so small that the detector regards it

as a noisy region and hence discards it in the initial detection. By

analyzing the resulting perceptual group and its composition, our

approach finds that seven of the eight subgroups have two widgets

(marked in the same color), while the subgroup at the bottom right

has only one widget. It crops the area that may contain the missed

widget according to the average sizes and average relative positions

of the two widgets in the other seven subgroups. The missed tiny

icon can be recovered by detecting the widget with the relaxed

valid-widget minimum area threshold in the missing area.

Our approach uses the exact mechanism that contrasts the sub-

groups to identify the misclassified widgets, but here it focuses on

widget type consistency. As shown in Figure 5(b), our approach

groups the three cards in a perceptual group. By contrasting the

widgets in the three cards, it detects that the middle card has text

widgets at the top right corner, while the other two cards have a

non-text widget at the same relative positions. Based on the conti-

nuity principle, our approach re-classifies the top-right widget in

the middle card as non-text with a majority-win strategy.

4 EVALUATION

We evaluate our approach in two steps: (1) examine the accuracy

of our enhanced version of UIED and compare it with the orig-

inal UIED [21]; (2) examine the accuracy of our widget percep-

tual grouping approach and compare it with the state-of-the-art

heuristic-based method Screen Recognition [58].

4.1 Accuracy of GUI Widget Detection

Compared with the original UIED [21], our GUI widget detector

uses the latest Google OCR tool and improve the text and non-text
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Table 1: Overall results of widget detection (IoU > 0.9)

Our Enhanced Revision Original UIED

Type Precision Recall F1 Precision Recall F1

Non-Text 0.589 0.823 0.687 0.431 0.469 0.449

Text 0.678 0.693 0.686 0.402 0.720 0.516

All Widgets 0.580 0.680 0.626 0.490 0.557 0.524

widget merging by container analysis. We evaluate GUI widget

detection from the three perspectives: text widget detection, non-

text widget detection and the final widget results after merging. To

be consistent with the evaluation setting in the UIED paper [21], we

run experiments on the same Rico dataset of Android app GUIs [36]

and regard the detected widgets whose intersection over union

(IoU) with the ground truth widget is over 0.9 as true positive. The

ground-truth widgets are the leaf widgets (i.e., non-layout classes)

extracted from the GUI’s runtime view hierarchy.

Table 1 shows the widget detection performance of the enhanced

and the original UIED. Our enhanced version achieves a much

higher recall (0.823) for non-text widgets than the original UIED

(0.469), and meanwhile, it also improves the precision (0.589 over

0.431). This significant improvement is due to the more intelligent

container-aware merging of text and non-text widgets by our en-

hanced version. As the original UIED is container-agnostic, it erro-

neously discards many valid widgets contained in other widgets as

noise. For GUI text, the Google OCR tool used in the enhanced ver-

sion achieves much higher precision (0.678) than the EAST model

used in the original UIED (0.402), with a slight decrease in recall

(0.693 versus 0.720). The improvements in both text and non-text

widgets result in a much better overall performance (0.626 F1 by

the enhanced version versus 0.524 by the original UIED).

4.2 Perceptual Grouping Performance

We evaluate our perceptual grouping approach on both Android

app GUIs and UI design prototypes. Figure 6 shows some perceptual

grouping results by our approach. These results show our approach

can reliably detect GUI widgets and infer perceptual groups for

diverse visual and layout designs.

4.2.1 Datasets. Our approach simulates how humans perceive the

GUI structure and segment a GUI into blocks of widgets according

to the Gestalt principles of grouping. To validate the recognized

blocks, we build the ground-truth dataset from two sources: An-

droid apps and UI design prototypes. The ground truth annotates

the widget groups according to the GUI layout and the widget styles

and properties as shown in Figure 7.

Android App GUI Dataset The ground truth of widget groups

can be obtained by examining the layout classes used to group other

widgets in the implementations. However, as shown in Figure 2, the

layout classes do not always correspond to the perceptual groups

of GUI widgets. Therefore, we cannot use the GUI layout classes

directly as the ground truth. Instead, we first search the GUIs in

the Rico dataset of Android app GUIs [36] that use certain Android

layout classes that may contain a group of widgets (e.g., ListView,

FrameLayout, Card, TabLayout). Then we manually examine the

candidate GUIs to filter out those whose use of layout classes has

obvious violations against the Gestalt principles. Furthermore, the

Rico dataset contains many highly-similar GUI screenshots for an
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Figure 7: Examples of Android app GUI and UI design proto-

type, view hierarchy and ground truth

application. To increase the visual and layout diversity of GUIs

in our dataset, we limit up to three distinct GUI screenshots per

application. Distinction is determined by the number and type of

GUI widgets and the GUI structure. We obtain 1091 GUI screenshots

from 772 Android applications. Using this dataset, we evaluate both

detection-based and metadata-based grouping. Detection-based

grouping processes the detected widgets, while metadata-based

grouping uses the widgets obtained from the GUI metadata (i.e.,

assumes the perfect widget detection).

UI Design Prototypes We collect 20 UI design prototypes

shared on a popular UI design website (Figma [4]). These UI design

prototypes are created by professional designers for various kinds

of apps and receive more than 200 likes. This small set of UI design

prototypes demonstrates how professional designers structure the

GUIs and group GUI widgets from the design rather than the im-

plementation perspective. As a domain-independent tool, Figma

supports only elementary visual elements (i.e., text, image and

shape). Designers can create any widgets using these elementary

visual elements. Due to the lack of explicit and uniformwidget meta-

data in the Figma designs, we evaluate only the detection-based

grouping on these UI design prototypes.

4.2.2 Metrics. The left part of Figure 7 shows an example in our An-

droid app GUI dataset. We see that the layout classes (e.g., ListView,

TabLayout) in the view hierarchy map to the corresponding percep-

tual groups. In our dataset, specific layout classes are generalized
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Figure 8: Performance at different edit distance thresholds

to blocks, as we only care about generic perceptual groups in this

work. Following the work [16] for generating GUI component hi-

erarchy from UI image, we adopt the sequence representation of

a GUI component hierarchy. Through depth-first traversal, a view

hierarchy can be transformed into a string of GUI widget names

and brackets (ł[]ž and ł()ž corresponding to the blocks). This string

represents the ground-truth perceptual groups of an app GUI. As

discussed in Section 2.1, perceptual grouping is based on the wid-

gets’ positional and visual properties while the actual classes of

non-text widgets are not necessary. Thus, the ground-truth string

only has two widget types: Text and Non-text. Specifically, it con-

verts TextView in the view hierarchy to text and all other classes

as Non-text. Similarly, as shown in the right part of Figure 7, the

designers organize texts and non-text widgets (images or shape

compositions referred to as frames) into a hierarchy of groups.

Based on the design’s group hierarchy, we output the ground-truth

string of perceptual groups. The perceptual groups łperceivedž by

our approach are output in the same format for comparison.

We compute the Levenshtein edit distance between the two

strings of a ground-truth block and a perceived block. The Leven-

shtein edits inform us of the specific mismatches between the two

blocks, which is important to understand and analyze grouping

mistakes. If the edit distance between the ground-truth block and

the perceived block is less than a threshold, we regard the two

blocks as a candidate match. We determine the optimal matching

between the string of ground-truth blocks and the string of the

perceived blocks by minimizing the overall edit distance among all

candidate matches. If a perceived group matches a ground-truth

group, it is a true positive (TP), otherwise a false positive (FP). If

a ground-truth group does not match any perceived group, it is a

false negative (FN). Based on the matching results, we compute:

(1) precision (TP/(TP+FP)) (2) recall (TP/(TP+FN)), and (3) F1-score

((2*precision*recall) / (precision+recall))

4.2.3 Performance on Android App GUIs. We experiment with five

edit distance thresholds (0-4). The distance 0 means the two blocks

have the perfect match, and the distance 4 means as long as the

unmatched widgets in the two blocks are no more than 4, the two

blocks can be regarded as a candidate match. As shown in Figure 8,

for detection-based grouping, the precision, recall and F1-score is

0.437, 0.520 and 0.475 at the distance 0. As the distance threshold in-

creases (i.e., the matching criterion relaxes), the precision, recall and

F1-score keeps increasing to 0.652, 0.776 and 0.709 at the distance

threshold 4. As shown in Figure 8 and Table 2, the metadata-based

grouping with the ground-truth GUI widgets achieves a noticeable

improvement over the detection-based grouping with the detected

Table 2: Performance comparison (edit distance≤1)

Widgets Approach #Bock Precision Recall F1

Metadata
Our Approach 1,465 0.607 0.754 0.672

Screen Recog 1,038 0.131 0.116 0.123

Detection
Our Approach 1,260 0.546 0.650 0.593

Screen Recog 992 0.103 0.083 0.092

widgets, in terms of all three metrics, especially for recall. This sug-

gests that improving GUI widget detection will positively improve

the subsequent perceptual grouping.

As the examples in Figure 6 show, our approach can not only

accurately process GUIs with clear structures (e.g., the first row),

but it can also process GUIs with large numbers of widgets that are

placed in a packed way (e.g., the second and third rows). Further-

more, our approach is fault-tolerant to GUI widget detection errors

to a certain extent, for example, the second row of detection-based

grouping for screenshot and design. The map and the pushed-aside

partial GUI result in many inaccurately detected GUI widgets in

these two cases. However, our approach still robustly recognizes

the proper perceptual groups.

We compare our approach with the heuristic-based grouping

method (Screen Recognition) proposed in Zhang et.al. [58] (which

received the distinguished paper award at CHI2021). The results in

Table 2 shows that Screen Recognition can hardly handle visually

and structurally complicated GUIs based on a few ad-hoc and rigid

heuristics. Its F1 score is only 0.092 on the detected widgets and

0.123 on the ground-truth widgets. This is because its heuristics

are designed for only some fixed grouping styles such as cards and

multi-tabs. In contrast, our approach is designed to fulfil generic

Gestalt principles of grouping.

We manually inspect the grouping results by our approach

against the ground-truth groups to identify the potential improve-

ments. Figure 9 presents four typical cases that cause the perceived

groups to be regarded as incorrect. For the detection-based group-

ing, the major issue is GUI widget over-segmentation (a widget is

detected as several widgets) or under-segmentation (several widgets

are detected as one widget). In the first row, the detector segments

the texts on the right side of the GUI into several text and non-text

widgets. As indicated by the same color in the Grouping Result col-

umn, our approach still successfully partitions the widgets on the

same row into a block, and recognizes the large group containing

these row blocks. But as shown in the Group Comparison column,

one widget in the second, third and fourth detected blocks do not

match those in the corresponding ground-truth blocks. In the sec-

ond row, the GUI widget detector merges close-by multi-line texts

as a single text widget, while these text widgets are separate wid-

gets in the ground truth. Again, our approach recognizes the overall

perceptual groups correctly, but the widgets in the corresponding

blocks do not completely match.

While using the ground-truth widgets from the GUI metadata

to mitigate the GUI widget misdetection, the grouping results see

the improvement but suffer from two other problems. First, the

widgets in the metadata contain some widgets that are visually oc-

cluded or hidden. The third row in Figure 9 illustrates this problem,

where some widgets are actually occluded behind the menu on the

left, but they are still available in the runtime metadata and are
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Figure 9: Typical causes of grouping mistakes (red box - text
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group, red dashed box - unmatched ground-truth widget)

extracted as the ground-truth widgets. This results in a completely

incorrect grouping. The issue of widget occlusion or modal window

could be mitigated as follows: train an image classifier to predict

the presence of widget occlusion or modal window, then follow

the figure-ground principle [1] to separate foreground modal win-

dow from the background, and finally detect the perceptual groups

on the separated model window. Second, alternative ways exist to

partition the widgets into groups. For example, for the GUI in the

fourth row, the ground truth contains eight blocks, each of which

has one image and one text while our grouping approach partitions

these blocks into four rows of a large group, and each row contains

two blocks (as indicated by the same color in Grouping Result). Per-

ceptually, both ways are acceptable but the group differences cause

the grouping result by our approach to be regarded as incorrect.

4.2.4 Performance on UI Design Prototypes. Tested on the 20 UI

design prototypes, our approach achieves the precision of 0.750,

the recall 0.818 and the F1-score 0.783. The third column in Figure 6

shows some results of our grouping approach for the UI design

prototypes, where we see it is able to infer the widget groups well

for different styles of GUI designs. GUI widget detection is more

robust on UI design prototypes due to the more accurate GUI wid-

get detection, which leads to the improvement of the subsequent

grouping of detected widgets. As shown in Figure 6, the widgets in

a UI design prototype is usually scattered, while the real app GUIs

are packed. Both GUI widget detection and perceptual grouping

become relatively easier on less packed GUIs.

4.2.5 Processing Time. As the GUI widget grouping can be used as

a part of various automation tasks such as automated testing, the

runtime performance can be a concern. We record the processing

time while running our approach over the dataset to get a sense of

its efficiency. Our experiments run on a machine with Windows

10 OS, Intel i7-7700HQ CPU, and 8GB memory. Our approach com-

prises two major steps: widget detection and perceptual grouping.

We improved and refactored the original UIED to boost the run

performance of the widget detection, and now it takes an average

of 1.1s to detect the widgets in a GUI, which significantly exceeds

the original UIED that takes on average 9s per GUI. The grouping

process is also efficient, which takes an average of 0.6s to process a

GUI. In total, the average processing time of the entire approach

is 1.7s per GUI image. Furthermore, as our approach does not in-

volve any deep learning techniques, it does not require advanced

computing support such as GPU.

5 RELATED WORK

Our work falls into the area of reverse-engineering the hidden

attributes of GUIs from pixels. There are two lines of closely related

work: GUI widget detection and GUI-to-text/code generation.

GUI widget detection is a special case of object detection [31, 40,

49]. Earlier work [38] uses classic computer vision (CV) algorithms

(e.g., Canny edge and contour analysis) to detect GUI widgets. Re-

cently, White et al. [52] apply a popular object detection model

YOLOv2 [40] to detect GUI widgets in GUI images for random GUI

testing. Feng et al. [15] apply Faster RCNN [31] to obtain GUI wid-

gets from app screenshots and construct a searchable GUI widget

gallery. Chen et al. [20] proposed an approach to complete icon la-

beling in mobile applications. A recent study by Xie et al. [21] shows

that both classic CV algorithms and recent deep learning models

have limitations when applied to GUI widget detection, which has

different visual characteristics and detection goals from natural

scene object detection. They design a hybrid method UIED inspired

by the figure-ground [1] characteristic of GUI, which achieves the

start-of-the-art performance for GUI widget detection.

GUI-to-text/code generation also receives much attention. To

improve GUI accessibility, Chen et al. [18] propose a transformer-

based image captioning model for producing labels for icons. To

implement GUI view hierarchy, REMAUI [38] infers three Android-

specific layouts (LinearLayout, FrameLayout and ListView) based

on hand-craft rules to group widgets. Recently, Screen Recogni-

tion [58] develops some heuristics for inferring tabs and bars. How-

ever, these heuristic-based widget grouping methods cannot handle

visually and structurally complicated GUI designs (e.g., nested per-

ceptual groups like a grid of cards). Alternatively, image captioning

models [34, 51] have been used to generate GUI view hierarchy

from GUI images [12, 16]. Although these image-captioning based

methods get rid of hard-coded heuristics, they suffer from GUI

data availability and quality issues (as discussed in Introduction
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and illustrated in Figure 2). These methods also suffer from code

redundancy and no explicit image-code traceability issues (see Sec-

tion 6.2). The perceptual groups recognized by our approach could

help to address these issues.

None of the existing GUI widget detection and GUI-to-code ap-

proaches solve the perceptual grouping problem in a systematic

way as our approach does. ReDraw [37] and FaceOff [59] solves

the layout problem by finding in the codebase the layouts con-

taining similar GUI widgets. Some other methods rely on source

code or specific layout algorithm (e.g., Android RelativeLayout) to

synthesize modular GUI code or layout [11, 13] or infer GUI duplica-

tion [54]. All these methods are GUI implementation-oriented, and

hard to generalize for other application scenarios such as UI design

search, UI automation, robotic GUI testing or accessibility enhance-

ment. In contrast, our approach is based on domain-independent

Gestalt principles and is application-independent, so it can support

different downstream SE tasks (see Section 6).

In the computer vision community, some machine learning tech-

niques [33, 55, 57] have been proposed to predict structure in the

visual scene, i.e., so-called scene graphs. These techniques can infer

the relationships between objects detected in an image and describe

these relationships by triplets (<subject, relation, object>). However,

such relationship triplets cannot represent complex GUI widget

relations in perceptual groups. Furthermore, these techniques also

require sufficient high-quality data for model training, which is a

challenging issue for GUIs.

6 PERCEPTUAL GROUPING APPLICATIONS

Our perceptual grouping method fills in an important gap for auto-

matic UI understanding. Perceptual groups, together with elemen-

tary widget information, would open the door to some innovative

applications in software engineering domain.

6.1 UI Design Search

UI design is a highly creative activity. The proliferation of UI design

data on the Internet enables data-drivenmethods to learn UI designs

and obtain design inspirations [14, 23, 36]. However, this demands

effective UI design search engines. Existing methods often rely on

the GUI metadata, which limits their applicability as most GUI

designs exist in only pixel format. GalleryDC [15] builds a gallery

of GUI widgets and infer elementary widget information (e.g., size,

primary color) to help widget search. Unfortunately, this solution

does not apply to the whole and complex UIs. Chen et al. [17] and

Rico [36] use image auto-encoder to extract image features through

self-supervised learning, which can be used to find visually similar

GUI images. However, the image auto-encoder encodes only pixel-

level features, but is unaware of GUI structure, which is very critical

to model and understand GUIs. As such, given the GUI in the left

of Figure 2, these auto-encoder based methods may return a GUI

like the one on the right of Figure 2, because both GUIs have rich

graphic features and some textural features. Unfortunately, such

search results are meaningless, because they bear no similarity in

terms of GUI structure and perceptual groups of GUI widgets. Our

approach can accurately infer perceptual groups of GUI widgets

from pixels. Based on its perceptual grouping results, a UI design

search would become structure-aware, and finds not only visually

but also structurally similar GUIs. For example, a structure-aware

UI design search would return a GUI like the one in 2nd-row-1st-

column of Figure 6 for the left GUI in Figure 2.

6.2 Modular GUI-to-Code Generation

Existing methods for GUI-to-code generation either use hand-craft

rules or specific layout algorithms to infer some specific implemen-

tation layout [13, 38], or assume the availability of a codebase to

search layout implementations [37, 59]. Image-captioning based

GUI-to-Code methods [12, 16, 29, 30] are more flexible as they learn

how to generate GUI view hierarchy from GUI metadata (if avail-

able). However, the nature of image captioning is to just describe

the image content, but it is completely unaware of GUI structure

during the code generation. As such, the generated GUI code is

highly redundant for repetitive GUI blocks. For example, for the

card-based GUI design in Figure 1(a), it will generate eight pieces

of repetitive code, one for each of the eight cards. This type of gen-

erated code is nothing like the modular GUI code developers write.

So it has little practicality. Another significant limitation of image

captioning is that the generated GUI layouts and widgets have no

connection to the corresponding parts in the GUI image. For a GUI

with many widgets (e.g., those in the 2nd and 3rd rows in Figure 6),

it would be hard to understand how the generated code implements

the GUI. With the support of our perceptual grouping, GUI-to-code

generation can encapsulate the widget grouping information into

the code generation process and produce much less redundant and

more modular, reusable GUI code (e.g., extensible card component).

6.3 UI Automation

Automating UI understanding from pixels can support many UI

automation tasks. A particular application of UI automation in

software engineering is automatic GUI testing. Most existing meth-

ods for automatic GUI testing rely on OS or debugging infrastruc-

ture [5, 10, 32, 43]. In recent years, computer vision methods have

also been used to support non-intrusive GUI testing [27, 28, 39, 52].

However, these methods only work at the GUI widget level through

either traditional widget detection [38] or deep learning models like

Yolo [40]. Furthermore, they only support random testing, i.e., ran-

dom interactions with some widgets. Some studies [19, 22, 56] show

that GUI testing would be more effective if the testing methods

were aware of more likely interactions. They propose deep learning

methods to predict such likely interactions. However, the learning

is a completely black box. That is, they can predict where on the

GUI some actions could be applied, but they do not know what will

be operated and why so. Our approach can inform the learning

with higher-order perceptual groups of GUI widgets so that the

model could make an explainable prediction, for example, scrolling

is appropriate because this part of GUI displays a list of repetitive

blocks. It may also guide the testing methods to interact with the

blocks in a perceptual group in an orderly manner, and ensure all

blocks are tested without unnecessary repetitions. Such support

for UI automation would also enhance the effectiveness of screen

readers which currently heavily rely on accessibility metadata and

use mostly elementary widget information.

341



Psychologically-Inspired, Unsupervised Inference of Perceptual Groups of GUI Widgets from GUI Images ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

7 CONCLUSION AND FUTUREWORK

This paper presents a novel approach for recognizing perceptual

groups of GUI widgets in GUI images. The approach is designed

around the four psychological principles of grouping - connect-

edness, similarity, proximity and continuity. To the best of our

knowledge, this is the first unsupervised, automatic UI understand-

ing approach with a systematic theoretical foundation, rather than

relying on ad-hoc heuristics or model training with GUI metadata.

Through the evaluation of both mobile app GUIs and UI design pro-

totypes, we confirm the high accuracy of our perceptual grouping

method for visually and structurally diverse GUIs. Our approach

fills the gap of visual intelligence between the current widget-level

detection and the whole-UI level GUI-to-code generation. As a

pixel-only and application-independent approach, we envision our

approach could enhance many downstream software engineering

tasks with the visual understanding of GUI structure and percep-

tual groups, such as structure-aware UI design search, modular

and reusable GUI-to-code generation, and layout-sensitive UI au-

tomation for GUI testing and screen reader. Although our current

approach achieves very promising performance, it can be further

improved by dealing with widget occlusion or modal window. More-

over, we will investigate semantic grouping that aims to recognize

both interaction and content semantics of perceptual groups.
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