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In 1964, 1 entered the field of
psychology because I believed that
within it dwelt some of the most
fundamental and challenging
problems of the extant sciences.
Who could not be intrigued, for
example, by the relation between
consciousness and behavior, or
the rules guiding interactions in
social situations, or the processes
that underlie development from
infancy to maturity? Today, in
1996, my fascination with these
problems is undiminished. But I
have developed a certain angst
over the intervening 30-something
years—a constant, nagging feeling
that our field spends a lot of time
spinning its wheels without really
making much progress. This prob-
lem shows up in obvious ways—
for instance, in the regularity with
which findings seem not to repli-
cate. It also shows up in subtler
ways—for instance, one does not
often hear psychologists saying,
“Well, this problem is solved now;
let's move on to the next one” (as,
e.g., Johannes Kepler must have
said more than three centuries
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ago, after he had cracked the prob-
lem of describing planetary mo-
tion).

[ have come to believe that at
least part of this problem revolves
around our tools—particularly the
tools that we use in the critical do-
mains of data analysis and data in-
terpretation. What we do, 1 some-
times feel, is akin to trying to build
a violin using a stone mallet and a
chain saw. The tool-to-task fit is
not very good, and, as a result, we
wind up building a lot of poor-
quality violins.

My purpose here is to elaborate
on these issues. In what follows, [
summarize our major data-analy-
sis and data-interpretation tools
and describe what | believe to be
amiss with them. I then offer some
alternative techniques for extract-
ing more insight and understand-
ing from a data set.

THE UNIVERSALITY OF
NULL-HYPOTHESIS
SIGNIFICANCE TESTING

The vast bulk of data analysis
and data interpretation in the so-
cial and behavioral sciences is car-
ried out using a set of techniques
collectively known as null-
hypothesis significance testing
(NHST). The logic of NHST goes
as follows.

1. An investigator begins with the
hypothesis that some indepen-
dent variable will have an effect
on some dependent variable.
At its most general level, the
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hypothesis can be expressed as

not(py = po = ... =) (1)
where wy, . . ., are the
means” of | population distribu-
tions of the dependent variable
that correspond to | levels (i.e.,
values) of the independent vari-
able. Equation 1 is generically
referred to as an alternative hy-
pothesis, or H;.

. Next, the investigator conducts

an experiment in which | ran-
dom samples of the dependent
variable are obtained—one
sample for each level of the in-
dependent variable. This exper-
iment yields the observed sam-
ple means M, . . . , M;, which
are estimates of the population
means .y, . . . ,p;. Generally, it
is not true that M, = M,
= ... = M that is, there will
always be some differences
among the sample means.
What needs to be determined is
whether the observed differ-
ences among the sample means
are due only to random errors
in measurement or whether
they are due, at least in part, to
corresponding differences
among the population means.
Informally, the investigator
needs to provide a convincing
argument that the observed ef-
fect is “real.”

. To this end, the investigator en-

deavors to compute the proba-
bility (known as p?) of observ-
ing differences among the Ms
as great as those that were ac-
tually observed given that, in
fact, the | population means are
all equal, that is, given that

M=k ==y ()

This hypothesis that the popu-
lation means are equal is re-
ferred to as the null hypothesis,

ot H,.

161



VOLUME 5, NUMBER 6, DECEMBER 1996

4. Based on a comparison of the
computed value of p with a cri-
terion value of p known as o («
is usually set at .05), the inves-
tigator makes a binary decision.
If p is less than «, then the in-
vestigator makes a strong deci-
sion to reject Hy in favor of H,
(a decision that is usually
phrased as “the observed effect
is statistically significant”). If p
is greater than «, then the in-
vestigator makes a weak deci-
sion to fail to reject H,.

Two types of errors can be
committed in this setting. One
commits a Type I error when one
incorrectly rejects a true null
hypothesis. If the null hypoth-
esis is true, then the probability
of a Type | error is, by defini-
tion, equal to a. One commits a
Type Il error when one incor-
rectly fails to reject a false null
hypothesis. If the null hypoth-
esis is false, a Type Il error is
committed with probability B.
In general, we do not know the
value of B because we have no
information, and no assump-
tions, regarding the values of the
actual p's, given that the null
hypothesis is false. Statistical
power is defined to be (1 — B),
which is interpreted as the prob-
ability of correctly rejecting a
false null hypothesis. Because
is not generally known, neither
1S power.

5. Finally, based on a series of
such decisions—that is, reject-
ing or failing to reject a series of
null hypotheses—the investiga-
tor tries to make sense of the
data set, no matter how com-
plex it might be.

Although variants of this proce-
dure constitute the primary means
of making conclusions from the
vast majority of psychology exper-
iments, | do not believe that it is a
fruitful way of interpreting data or
understanding psychological phe-

nomena. On the contrary, [ believe
that reliance on NHST has chan-
neled our field into a series of
methodological cul-de-sacs, and it
has been my observation over the
years (particularly over my 4 years
as editor of Memory & Cognition)
that conclusions made entirely or
even primarily based on NHST are
at best severely limited, and at
worst highly misleading. In the
following section, | articulate the
reasons for these beliefs.

I am by no means the first per-
son to issue such charges. Period-
ically, a book or an article decrying
the enormous reliance we place on
NHST will appear.* Sadly, how-
ever, although such airings of the
issues occasionally attract atten-
tion, they have not (up until now,
anyway) impelled widespread ac-
tion.” They have been carefully
crafted and put forth for consider-
ation, only to just kind of dissolve
away in the vast acid bath of exist-
ing methodological orthodoxy.

SIX THINGS TO NOT LIKE
- ABOUT NHST

In this section, I articulate six
major problems with NHST. As |
have indicated, they have been de-
scribed before. But they bear re-
peating, and it is useful to consider
them in concert.

The Usual Impossibility of a
Typical Null Hypothesis

NHST usually revolves around
the testing of a null hypothesis
that could not really be true to be-
gin with (see Meehl, 1967, pp.
108-110, for a careful articulation
of this issue). For example, sup-
pose an investigator presented
subjects with digit strings on a
computer screen to study the ef-
fects of stimulus duration on the
subsequent recall of the digit
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strings. Each digit string might be
shown for one of five exposure du-
rations ranging from, say, 10 ms to
100 ms, and the investigator
would measure the proportion of
digits correctly recalled in each
condition. In the usual hypothesis-
testing framework, the investiga-
tor would establish the following
null hypothesis:

By = Bo = B3 = Py = s (3)

where the u's refer to the popula-
tion means of the percentage of
digits recalled for each of the five
exposure durations. Note that the
logic of NHST demands that the
equal signs in Equation 3 mean
“equal to an infinite number of
decimal places.” If one weakens
this requirement such that the
equal signs mean “pretty much
equal,” then one must add addi-
tional assumptions specifying
what is meant by “pretty much.”
Although the mathematical ma-
chinery for doing this has been
worked out (e.g., Hays, 1973), it is
rarely (if ever) implemented in
practice.

This null hypothesis of identical
population means cannot be liter-
ally correct. As Meehl (1967) has
pointed out,

Considering . . . that everything in
the brain is connected with everything
else, and that there exist several “gen-
eral state-variables” (such as arousal,
attention, anxiety and the like) which
are known to be at least slightly influ-
enceable by practically any kind of
stimulus input, it is highly unlikely
that any psychologically discriminable
situation which we apply to an exper-
imental subject would exert literally
zero effect on any aspect of perfor-
mance. (p. 109)

Alternatively, the pn’s can be
viewed as measurable values on
the real-number line. Any two of
them being identical implies that
their difference (also a measurable
value on the real-number line) is
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exactly zero—which has a proba-
bility of zero.®

Accordingly, differences in ex-
posure duration must lead to per-
formance differences even if such
differences are small, and the rel-
evant question is not really wheth-
er there are any differences among
the population means. Rather, the
relevant questions are, How big
are the differences? Are they big
enough for the investigator to care
about, and, if so, what pattern do
they form? In short, testing the
null hypothesis of Equation 2 can-
not provide new information. All
it can do is indicate whether there
is enough statistical power to de-
tect whatever differences among
the population means must be
there to begin with. As | have
noted elsewhere (Loftus, 1995), re-
jecting a typical null hypothesis is
like rejecting the proposition that
the moon is made of green cheese.
The appropriate response would
be “Well, yes, okay ... but so
what?”

“Significance” Versus the
Underlying Pattern of
Population Means

A finding of statistical signifi-
cance only constitutes evidence
(and vague evidence at that, as we
shall see) that a null hypothesis of
the sort embodied in Equation 2 is
false. Such a finding provides no
information about the form of the
underlying pattern of population
means, which is presumably what
is important for making scientific
conclusions.

There are several ways of deal-
ing with this problem. One way is
to use post hoc tests, whereby de-
cisions whether to reject or fail to
reject are made for null hypothe-
ses involving particular pairs of
means. But post hoc tests have
problems. First, within the hy-
pothesis-testing framework, the
more such tests are carried out, the

greater is the probability of com-
mitting at least one Type I error. It
is possible to adjust for this prob-
lem, but only at the expense of
raising the probability of commit-
ting a Type Il error. Second, and
more generally, post hoc tests fo-
cus on specific pairs of means;
when there are more than two
conditions, these tests provide
only an indirect way of assessing
the entire pattern of means.

A second way to address the
problem is via planned compari-
sons. Use of planned comparisons
entails first generating a pattern of
weights—one weight per experi-
mental condition—that constitute
the prediction of some experimen-
tal hypothesis about the overall
pattern of population means. The
correlation between the weights
and the observed sample means
then constitutes (essentially) a
measure of how good the hypoth-
esis is. Use of planned compari-
sons can be an informative and ef-
ficient process. The problem with
planned comparisons, however, is
that, in practice, they are rarely
used. | return to the topic of
planned comparisons in a later
section.

Power

The third problem with NHST
has to do with lack of attention to
statistical power. NHST has come
to revolve critically around the
avoidance of Type I errors, mainly
because the probability of a Type I
error (a) can be computed. In con-
trast, the probability of a Type II
error (B), and concomitantly
power (1 — B), usually cannot be
computed because computation of
B and power requires a specific,
quantitative hypothesis (e.g., p,
= p,; + 10 in a two-condition ex-
periment), and such quantitative
hypotheses are exceedingly rare in
the social sciences.

Lack of power analysis is partic-
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ularly troublesome when an inves-
tigator concludes that some null
hypothesis is true (rather than
making the logically correct deci-
sion of failing to reject the null hy-
pothesis).” In such a case, one can-
not be sure whether there are in
fact relatively small differences
among the population means (a
conclusion that is justifiable only if
there is high power) or whether
there may be large differences
among population means that are
undetected (a conclusion that is
implied by low power). In short,
with high power, an investigator
may be justified in accepting the
null hypothesis “for all intents and
purposes,”” but the lower the
power, the less acceptable is such
a conclusion.

As noted, lack of power analy-
sis often stems from the lack of
quantifiable alternative hypothe-
ses that characterizes the social sci-
ences in general, and psychology
in particular. Nonetheless, there
are ways of conveying the overall
state of statistical power in some
experiment (particularly through
use of confidence intervals, as is
illustrated in an example in the
section on “Alternatives’).

The Artificial
“Effects/Non-Effects”” Dichotomy

A related problem is not, strictly
speaking, a problem in the logic of
NHST. Rather, it is a problem that
arises because investigators, like
all humans, are averse to making
decisions that are both compli-
cated and weak, such as “we fail to
conclude that the null hypothesis
is false.” Rather, people prefer
simple, strong decisions, such as
“the null hypothesis is true.” This
fact of human nature fosters an ar-
tificial dichotomy that revolves
around the arbitrary nature of the
.05 « level.

Most people, if pressed, will
agree that there is no essential dif-
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ference between, say, finding that
p = .050 and finding that p = .051.
However, investigators, journal
editors, reviewers, and scientific
consumers often forget this and
behave as if the .05 cutoff were
somehow real rather than arbi-
trary. Accordingly, the world of
perceived psychological reality
tends to become divided into “‘real
effects” (p = .05) and “non-
effects” (p > .05). Statistical con-
clusions about such real effects
and non-effects made in Results
sections then somehow are sancti-
fied and transmuted into conclu-
sions that endure into Discussion
sections and beyond, where they
insidiously settle in and become
part of our discipline’s general
knowledge structure. The mischief
thereby stirred up is incalculable.
For instance, when one experi-
ment shows a significant effect (p
= .05), and an attempted replica-
tion shows no significant effect (p
> .05), a “failure to replicate” is
proclaimed. Feverish activity en-
sues, as Method sections are
scoured and new experiments run,
in an effort to understand the cir-
cumstances under which the effect
does or does not show up—and all
because of an arbitrary cutoff at
the .05 a level. No wonder there is
an epidemic of “conflicting’” re-
sults in psychological research!
This state of affairs is analogous to
a chaotic phenomenon in which
small initial differences lead to
enormous differences in the even-
tual outcomes. In the case of data
analysis, chaos is inimical to un-
derstanding, and it is more appro-
priate that similar results (e.g., p
= .050 and p = .051) yield similar
conclusions than that similar re-
sults yield entirely different con-
clusions.

The Hypothesis-Testing Tail Wags
the Theory-Construction Dog

Central to NHST is computation
of p, the probability of the data

given the null hypothesis. How-
ever, this probability is difficult or
impossible to compute unless rou-
tine, simplifying assumptions are
made about the nature of the psy-
chological processes under consid-
eration. These assumptions then
insinuate themselves into, and be-
come integral to, much of psycho-
logical theory. Some of the most
common such assumptions are
these:

1. The dependent variable is ob-
tained by adding up numerical
“effects” (i.e., is a linear combi-
nation of those effects)—effects
due to the independent vari-
ables, to the interactions among
the independent variables, and
to various sources of “error.”

2. The errors are distributed ac-
cording to Gaussian (normal)
distributions.

3. The variances of these error dis-
tributions are equal across vari-
ous conditions.

Thus, the nature of the data-
analysis technique generally dic-
tates the nature of psychological
theory, which, in turn, engenders
strong biases against formulating
theories incorporating other per-
haps more realistic or interesting
assumptions. Accordingly, psy-
chological theory becomes generic
linear-model theory, and a lot of
potential for insight is lost. One
might summarize the situation as
“Off-the-shelf assumptions pro-
duce off-the-shelf conclusions.”

For example, suppose an exper-
iment is designed to investigate
whether the rate of forgetting de-
pends on degree of original learn-
ing. In this experiment, word lists
are taught to subjects whose recall
is tested following intervals that
vary from 0 to 5 days. There are
two groups of subjects. The high-
learning subjects are allowed to
learn the lists to a criterion level of
100% correct; the low-learning
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subjects learn the lists to a lower
criterion level. The major data
from this experiment are forget-
ting curves of the sort shown in
Figure 1, which plots memory per-
formance as a function of retention
interval.

The default data-analysis proce-
dure in such an experiment would
be to carry out a two-way analysis
of variance (ANOVA). Let us sup-
pose that the experimental power
is sufficiently great that the
ANOVA reveals statistically signif-
icant main effects of both learning
level and retention interval, along
with a significant interaction. It is
evident in Figure 1 that the inter-
action reflects a shallower “slope”
for the low-learning than for the
high-learning condition (i.e., the
change in memory performance
over the 5 days is greater for the
high-learning group, so that the
vertical difference between the
curves becomes smaller with in-
creasing retention interval). The
typical conclusion issuing from
these observations would be that
forgetting is slower following low
learning than following high learn-
ing (this logic was used by Sla-
mecka & McElree, 19838).

This standard data-analysis pro-
cedure, along with the concomi-
tant conclusion, would mask a
very interesting regularity in the
data, however: As is indicated by
the horizontal lines on the figure,
the horizontal difference between
the high-learning and low-
learning forgetting curves is con-
stant. As I have shown (Loftus
1985; see also Loftus & Bamber,
1990), such horizontal equality is,
under very general assumptions, a
necessary and sufficient condition
to infer equal high- and low-learn-
ing forgetting rates. Indeed, the
Figure 1 curves were generated
from exponential decay equations
of the following form:

Low learning: p = e %

High learning: p = e 03t +2)
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Fig. 1. Forgetting curves following high and low learning. Horizontal lines are
meant to indicate that the two curves are horizontally parallel.

where p is performance and ! is
forgetting time (in days). The
equal forgetting rates are ex-
pressed by the same exponential
decay parameter (0.3) in both
equations.

In this example, the principal
finding is (or should be) that the
horizontal difference between the
two curves is constant. It is this
finding that implies no difference
between the forgetting rates of the
high- and low-learning groups.
However, investigators working
within the hypothesis-testing
framework would tend to miss this
critical regularity, or would dis-
miss it, for at least two reasons.
First, it is not immediately obvious
how a standard significance test
that is relevant to the finding could
be carried out,” and without a sig-
nificance test, a finding is not gen-
erally deemed “‘valid.” Second,
the logic of the linear model with-
in which standard ANOVA is
couched focuses on differences be-
tween the dependent variable at a
fixed level of the independent vari-
able (vertical differences), rather

than differences between the inde-
pendent variable at a fixed level of
the dependent variable (horizontal
differences).

NHST Provides Only Imprecise
Information About the Validity
of the Null Hypothesis

The final problem, which has
been hammered at by Bayesian
statisticians (e.g., Berger & Berry,
1988; see also Cohen, 1994) for de-
cades, is this: By convention, one
rejects some null hypothesis when

(1) plobserved datajnull hypothesis)
< .05,

but rejecting the null hypothesis
implies the conclusion that

(2) p(null hypothesisjobserved data) is
small.

(What else could be meant by the
phrase “reject the null hypothe-
sis’’?) But without additional infor-
mation, there is no logical basis for
concluding the validity of State-
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ment 2 given the finding embod-
ied in Statement 1. Indeed, the
probability of the null hypothesis
given the data could be shown to
be anything given suitable as-
sumptions about the prior (pre-
data) probability that the null hy-
pothesis is true. Without specific
assumptions about this prior prob-
ability, the exact probability of the
null hypothesis given the ob-
served data is unknown. In short,
the common belief that the precise
quantity .05 refers to anything
meaningful or interesting is illu-

sory.

ALTERNATIVES

I now suggest four (by no
means mutually exclusive) alterna-
tives to traditional NHST. My ma-
jor goal in making each of these
suggestions is simple and modest:
to increase our ability to under-
stand what a data set is trying to
tell us. These techniques are not
fancy or esoteric. They are just
sensible.

Plot Data Rather Than
Presenting Them as
Tables-Plus-F-and-p-Values

In a previous article (Loftus,
1993b), 1 described some fictional
data collected by a fictional psy-
chologist named Jennifer Loeb.
The story went as follows. Loeb
was interested in memory for vi-
sual material and carried out a task
in which visual stimuli were dis-
played and then recalled. There
were three independent variables
in Loeb’s experiment, all varied at
the time of stimulus presentation:
stimulus exposure duration (eight
values, ranging from 20 ms to 230
ms), verbal encoding of the stimuli
(whether naming them was pro-
hibited or required), and uncer-
tainty about where the stimuli
would appear (high or low). Based
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on a specific theory, Loeb had
three predictions. First, she pre-
dicted her performance measure to
be an increasing linear function of
stimulus exposure duration. Sec-
ond, she predicted the slope of
this function to be higher with
than without verbal encoding.
Third, she predicted the slope to
be higher with low than with high
spatial uncertainty.

Table 1, which shows a com-
mon way of presenting data like
Loeb's, lists the values of her per-
formance measure for all 32 (8 x 2
% 2) conditions. Accompanying
NHST results—long compendia of
F ratios and p values correspond-
ing to the main ANOVA plus sub-
sidiary tests—are generally pro-
vided as part of the text (often
spanning many tedious pages).

Most people find such tabular-
cum-text data presentation diffi-
cult to assimilate. That is not sur-
prising. Decades of cognitive
research, plus millennia of com-
mon sense, teach us that the hu-
man mind is not designed to inte-
grate information that is presented
in this form. There is too much of
it, and it cannot be processed in
parallel.

An alternative way of present-
ing Loeb’s data is shown in Figure
2. Performance is plotted as a func-
tion of exposure duration for the
verbal-encoding conditions (top
panel) and the no-verbal-encoding
conditions (bottom panel). The
two curves within each panel are
for the low-uncertainty and high-

uncertainty conditions. Best-
fitting linear functions are drawn
through the data points. With the
data presented like this, one can
acquire in a glance—or at most, a
couple of glances—the same infor-
mation that it would have taken
practically forever to get out of Ta-
ble 1. A picture really is worth a
thousand words. "’

Provide Confidence Intervals

The Figure 2 plot indicates that
Loeb’s obtained pattern of sample
means confirms her predictions
pretty well. The curves are gener-
ally linear, verbal encoding yields
a higher slope than no verbal en-
coding, and low uncertainty yields
a higher slope than high uncer-
tainty.

However, this plot provides no
indication of the sort of error vari-
ance that is typically included as
part of an ANOVA. Figure 3 rem-
edies this deficiency: It shows the
same data along with 95% confi-
dence intervals (i.e., intervals that
show the range of values within
which the true population means
lie with 95% probability). In this
within-subjects design, the confi-
dence intervals were computed us-
ing a method Masson and | have
described elsewhere (Loftus &
Masson, 1994).

Figure 3 illustrates my second
suggestion, which is to put confi-
dence intervals around all sample
statistics that are important for

Table 1. Performance as a function of exposure duration for four conditions

Exposure duration (in milliseconds)

making conclusions. Figure 3 pro-
vides most of the crucial informa-
tion about Loeb’s data. The ob-
served pattern of sample means
provides the best estimate of the
underlying pattern of population
means upon which conclusions
should be based. The provision of
confidence intervals allows the
reader to assess the degree of sta-
tistical power: The smaller the con-
fidence intervals, the greater the
power. Power, in contrast to its
profoundly convoluted interpreta-
tion within the hypothesis-testing
framework, can be simply inter-
preted in this graphic presentation
as an indication of how seriously
the observed pattern of sample
means should be taken as a reflec-
tion of the underlying pattern of
population means.

One could analyze these data
further by, for instance, comput-
ing the slope for each of the four
Verbal Encoding X Uncertainty
conditions for each subject. These
four slopes could then be plotted
along with their confidence inter-
vals. One could go still further by,
for instance, computing mean
slope differences along with their
confidence intervals. Such proce-
dures correspond to graphic illus-
trations of various kinds of inter-
actions. Creative use of such
procedures allows one to jettison
NHST entirely.

Confidence Intervals as a

Guide to Accepting the

Null Hypothesis

The provision of confidence in-
tervals is particularly useful when
one wants to accept some null hy-
pothesis “for all intents and pur-
poses.” Another fictional data set

Coqdilion 20 50 8(.1 . 110 140 170 200 230 (also introduced in Loftus, 1993b)
NVEHU 0.287 0.503 0.843 1.005 1.468 1.664 2,102 2.257 involves a clinician whom I call
VE,HU 0.461 1.192 1.399 2.360 3.008 3.236 3.908 4.649 Christopher Sanders. In this ac-
NVE,LU  0.099 0.536 1.192 1.461 1.626 2.048 2.657 2.874 count, Sanders developed a clini-
VE, LU 0.683 1.475 2.822 3.747 4.863 5.397 6.861 7.849

cal technique, designed to de-
crease agoraphobia, that is
cheaper than the generally used
standard technique. Sanders ran a

Note. NVE = no verbal encoding; VE = verbal encoding; HU = high spatial
uncertainty; LU = low spatial uncertainty.
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Fig. 2. Loeb’s data.

simple experiment to compare his
technique with the standard tech-
nique. In this experiment, 40 ago-
raphobic individuals were ran-
domly assigned to be administered
either the standard or the Sanders
treatment. A year later, each indi-
vidual’s agoraphobia was assessed
on a 10-point scale. Sanders’s hope
was that there would be no differ-
ence between the two treatments,
in which case his treatment, being
cheaper, would presumably be
preferred to the standard treat-
ment.

Sanders got his hoped-for re-
sult, and reported it thusly: “The
mean agoraphobia scores of the
standard and the Sanders groups

were 5.05 and 5.03. The difference
between the two groups was not
statistically significant, p > .05.”
Sanders went on to conclude that
the cheaper Sanders technique
was therefore the preferred one.

What is implied by the phrase
“not significantly different” in
Sanders’s report? We cannot tell,
because Sanders provided no indi-
cation of statistical power, evalua-
tion of which would be critical for
justifying his accepting the null
hypothesis of no treatment differ-
ence.

Sanders’s report is consistent
with many possible outcomes, two
of which are presented in Figure 4.
In the top panel, small confidence
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intervals reflect high experimental
power. If this were Sanders’s out-
come, acceptance of the null hy-
pothesis would be reasonable: It is
readily apparent that the actual
difference between the Sanders
and standard population means
must be quite small. In contrast, in
the bottom panel, large confidence
intervals reflect low statistical
power. If this were Sanders’s out-
come, acceptance of the null hy-
pothesis would be unconvincing:
The actual difference between the
population means for the two
treatments could vary widely.

There is a noteworthy epilogue
to this story: When pressed at a
professional conference, Sanders
further defended his acceptance of
the null hypothesis by pointing
out that the t value he obtained in
his [ test was very small—
“Practically zero!” he declared
proudly. And so it was that Sand-
ers committed the common error
of equating smallness of the test
statistic with permissibility of ac-
cepting the null hypothesis. Ironi-
cally, it can be shown easily that,
given a particular mean difference,
the smaller the f value, the lower is
power—and hence, the less appro-
priate it is to accept the null hy-
pothesis.

Plus Ca Change, Plus C’est la

Méme Chose

The notion of using confidence
intervals in this way—as a guide to
accepting a null hypothesis “for all
intents and purposes’’—is not
new. Thirty-four years ago, the
following suggestion appeared in
the pages of the Psychological Re-
view,

In view of our long-term strategy of
improving our theories, our statistical
tactics can be greatly improved by
shifting emphasis away from overall
NHST in the direction of statistical es-
timation. For example [when testing a
presumed null pre-treatment differ-
ence between two groups, an investi-
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Fig. 3. Loeb’s data plotted with confidence intervals.

gator] would do better to obtain
a . .. confidence interval for the pre-
treatment difference. If the interval is
small and includes zero, [the investi-
gator] is on fairly safe ground; but if
the interval is large, even though it in-
cludes zero, it is immediately apparent
that the situation is more serious. In
both cases, H, would have been ac-
cepted. (Grant, 1962, p. 57)

Confidence Intervals and

Statistical Significance

A section on confidence inter-
vals would be incomplete without
a discussion of the question: How
do you make a decision about
whether some variable has an ef-

fect by just looking at confidence
intervals?'' The answer is, you
cannot.'? This, I assert, is an ad-
vantage rather than a disadvan-
tage of using plots plus confidence
intervals rather than depending on
NHST. As I have already argued, a
major difficulty with NHST is that
it reduces data sets into a series of
effect/no-effect decisions, and this
process, artificial as it is, leads the
field astray in many ways. It im-
poses the illusion of certainty on a
domain that is inherently ambigu-
ous. Simply showing data, with
confidence intervals, provides a
superset of the quantitative infor-
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Fig. 4. Two possible outcomes of
Sanders’s experiment, illustrating
high and low power.

mation that is provided by a hy-
pothesis-testing procedure, but it
does not foster the false security
embodied in a concrete decision
that is based on a foundation of
sand.

Meta-Analysis and Effect Size

An increasingly popular tech-
nique is that of meta-analysis (e.g.,
Schmidt, 1996; Rosenthal, 1995).
Meta-analysis entails considering
a large number of independent
studies of some phenomenon
(e.g., gender differences in spatial
ability) and (essentially) averaging
the observed effects across studies
to arrive at an overall effect. This
technique is particularly useful
when two conditions are being
compared, but trickier when the
question under investigation in-
volves more than two conditions.

As an illustration, consider the
question of gender differences in
spatial ability. Suppose that, in
fact, there is some difference in
spatial ability between the popula-
tion of males and the population of
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females. The direction and magni-
tude of this difference might be in-
vestigated in many (say, 25) sepa-
rate studies. Each individual study
produces some observed gender
difference (presumably the mean
male spatial score minus the mean
female spatial score) that consti-
tutes that experiment’s estimate of
the mean difference between the
populations. Meta-analysis would
entail averaging all 25 reported dif-
ferences, thereby arriving at a sin-
gle estimated difference that is
(roughly speaking) five times as
accurate as any of the individual
estimates.

One problem with this tech-
nique is the number that should be
extracted from each of the individ-
ual studies. One could simply use
the raw difference, whatever it
might be. The problem with this
approach is that different studies
presumably used somewhat dif-
ferent measures of spatial ability,
different ways of carrying out the
experiment, different populations
of subjects, and so on; thus, the
raw measures would not be com-
parable across the studies. The
typical solution is to compute effect
size, which, in its simplest incarna-
tion, is the mean difference ob-
served in a given experiment di-
vided by the obtained estimate
from that experiment of the popu-
lation standard deviation. It is
these effect sizes that are then av-
eraged to arrive at an overall esti-
mate of the population effect size.

Planned Comparisons (Contrasts)

My final suggestion, which I al-
luded to earlier, is to carry out
planned comparisons on a data
set. Planned comparisons is a tech-
nique that has been strongly advo-
cated and clearly described by
many investigators (see, e.g.,
Abelson, 1995). In my opinion,
however, it is a technique that is
surprisingly underutilized.

Briefly, carrying out a planned
comparison involves the following
steps.

1. First, one generates a quantita-
tive hypothesis (even a rela-
tively simple one will do) about
the underlying pattern of pop-
ulation means corresponding to
the conditions in some experi-
ment. Suppose, for example,
that a researcher is investigat-
ing the relation between prob-
lem-solving time and alcohol
consumption. The researcher
designs an experiment in which
subjects are assigned to one of
five groups that differ in
amount of alcohol consumed—
0,1, 2, 3, or 4 oz—and problem-
solving time is measured for
each group. A hypothesis to be
tested is that problem-solving
time increases linearly with
number of ounces of consumed
alcohol.

2. Next, hypothesis in hand, the
researcher generates weights—
one weight per condition—that
correspond to the hypothesized
pattern of means. One con-
straint is that the weights must
sum to zero; thus, in this exam-
ple, appropriate weights repre-
senting the linearity hypothesis
would be —2, —1, 0, 1, and 2.

3. The experiment is carried out,
and the means—in this exam-
ple, the five mean problem-
solving times—are computed.

4. Finally, the researcher (essen-
tially) computes an over-
conditions correlation between
the weights and the sample
means. The magnitude of the
Pearson r* that emerges reflects
the goodness of the hypothesis.
Various other more sophisti-
cated procedures can also be
carried out, but the nature of
these procedures is beyond the
scope of this article.
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CONCLUSIONS

[ have tried to provide a variety
of reasons why NHST, as typically
utilized, is barren as a means of
transiting from data to conclu-
sions. [ have tried to provide some
examples of techniques—standard
techniques, not bizarre or fancy
ones—to replace standard NHST.
These techniques are as follows:
first, to plot the data rather than
putting them in tabular form; sec-
ond, to put confidence intervals
around important sample statis-
tics; third, to use meta-analysis;
and fourth, to use planned com-
parisons. These techniques are all
designed to assist in the ultimate
goal of understanding what it is
that some data set is trying to tell
us.
This article is titled ‘“Psychology
Will Be a Much Better Science
When We Change the Way We
Analyze Data.” | hope that my ar-
guments make it clear why | be-
lieve this to be true. I believe that
in order for any science to progress
satisfactorily, its primary data-
analysis techniques must provide
genuine insight into whatever
phenomena its practitioners set
out to investigate. The primary
data-analysis technique of psy-
chology—NHST—does not, as |
have tried to demonstrate, meet
this criterion.

Acquisition of insight is often
difficult in the social sciences,
which are cursed with large num-
bers of uncontrollable variables,
and hence error variance that has
to be dealt with somehow. | be-
lieve that, historically, social scien-
tists have embraced NHST proce-
dures because they provide the
appearance of objectivity. These
procedures may indeed be objec-
tive in the sense that they provide
rules for making scientific deci-
sions. But such objectivity is not,
alas, sufficient for insight. I believe
that these rules provide only the
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illusion of insight, which is worse
than providing no insight at all.
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Notes

1. Address correspondence to
Geoffrey Loftus by e-mail: gloftus@
u.washington.edu.

2. Actually, NHST can be applied
to any population parameter. | use
means here because means are by far
the parameter of greatest concern in
social science experiments.

3. A brief note of clarification is in
order here. The entity | have referred
to as p, which is computed from the
data, is Fisher's exact level of signifi-
cance (Fisher, 1925), The related entity
known as a is the Neyman-Pearson
probability of a Type I error, which is
decided upon before the data are col-
lected. The Neyman-Pearson ap-
proach to statistics has been “hybrid-
ized” with what is known as the
Fisher approach over the years (as has
been splendidly described by Gigeren-
zer et al., 1989, pp. 78-109), even
though these two approaches are quite
different. It is the resulting mishmash
that has been almost universally
taught as “the statistical method” over
the past half century. A detailed anal-
ysis of this issue is beyond the scope of
this article, but Gigerenzer et al. made
a convincing case that the confusion of
the Fisher and Neyman-Pearson ap-
proaches is responsible for much of
what has gone astray with modern sta-
tistical practice. The description of
NHST that I provide here—and that |
inveigh against—is, essentially, a de-
scription of this commonly used hy-
bridized approach.

4. A sample of these writings is, in
chronological order: Tyler (1935),
Jones (1955), Nunnally (1960), Roze-
boom (1960), Grant (1962), Bakan
(1966), Meehl (1967), Lykken (1968),
Carver (1978), Meehl (1978), Berger
and Berry (1988), Gigerenzer et al.
(1989), Rosnow and Rosenthal (1989),
Cohen (1990), Meehl (1990), Loftus
(1991), Carver (1993), Cohen (1994),

Loftus and Masson (1994), Maltz
(1994), and Schmidt (1996).

5. This situation may finally be
changing. Symposia at both the 1996
American Psychological Society (APS)
convention and the 1996 American
Psychological Association (APA) con-
vention have aired the shortcomings
of NHST as the primary data-analysis
technique in the social sciences. (The
papers from the APS symposium will
appear in a Special Section of the Jan-
uary 1997 issue of Psychological Science,
Vol. 8.) An APA task force has been
set up to study the value of NHST,
and at least one journal editor has
tried to discourage NHST (Loftus,
1993a, which provoked the observa-
tion by Greenwald, Gonzalez, Harris,
& Guthrie, 1996, that every recent em-
pirical article in Loftus’s journal, Mem-
ory & Cognition, has used NHST none-
theless).

6. One caveat is in order here.
There are some experiments in which
a null hypothesis could genuinely be
true. A good example (attributable to
Greenwald et al., 1996) is a qualitative
null hypothesis such as that a defen-
dant in a murder case is actually the
murderer. In such a case, the null hy-
pothesis could certainly be true, and
rejecting it (say, based on DNA
matches) would be a meaningful con-
clusion. However, these kinds of ex-
periments are the exception rather
than the rule in the social sciences.

7. As indicated earlier, it is usually
known on a priori grounds that a null
hypothesis cannot be literally correct.
However, as | discuss in more detail in
a later section, given sufficient power
along with close-to-equal sample
means, one can justifiably accept a
null hypothesis “for all intents and
purposes.”

8. Actually, Slamecka and McElree
found no significant interaction be-
tween degree of original learning and
retention interval, and hence con-
cluded that forgetting rate did not de-
pend on degree of original learning.
However, different data sets using the
same general paradigm show different
forms of interactions that would lead
variously to the conclusion that forget-
ting is faster for high learning, that for-
getting is slower for high learning, and
that rates of forgetting for high and
low learning do not differ (a meta-
finding that should, in and of itself,
provoke suspicion that something is
fundamentally amiss). In any event, it
is the logic of the data-analysis tech-
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nique, not the conclusion, that is pri-
marily at issue here.

9. This is not to say such a test
could not be invented; it simply is not
part of general statistical knowledge or
(what is probably more important)
part of present statistics computer
packages.

10. One might argue that tables are
useful when a reader needs exact val-
ues of the data points. However, such
situations are quite rare, and when
they do occur, exact values are obtain-
able from the investigators—a process
that is particularly easy in these days
of electronic communication.

11. In numerous statistics classes
and in other forums in which I have
discussed this issue, a question that I
can absolutely count on is, In a two-
condition situation, what is the rela-
tion between error-bar overlap and the
reject/fail-to-reject decision?

12. At least, not usually. In a two-
group design, finding nonoverlapping
95% confidence intervals implies that a
two-tailed, « = .05 t test would lead to
a conclusion of “statistically signifi-
cant.” However, if the error bars do
overlap, or if there are more than two
conditions in the experiment, the rela-
tion between the pattern of confidence
intervals and statistical significance is
not immediately apparent.
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The Water-Level Task:

An Intriguing Puzzle
Ross Vasta and Lynn S. Liben'

Department of Psychology, SUNY Brockport, Brockport, New York (R.V.), and
Department of Psychology, The Pennsylvania State University,
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Take a moment to look at Figure
1. It presents one of several varia-
tions of an intriguing problem
known as the water-level task
(WLT). The correct response to the
problem is to draw a horizontal
line across the bottle, reflecting the
general principle that the surface
of a liquid is invariantly horizontal
regardless of the orientation of its
container. Variations of the task
have included presenting the tilted
bottle alone, using real containers
rather than drawings, and asking
subjects whether a waterline in a
tilted container looks “‘correct”
(rather than having them draw a
line).?

The WLT might appear to be a
simple problem. In reality, re-
searchers have found that a sur-
prisingly large proportion of ado-

lescents and adults draw slanting
lines in the tilted bottles (often
with considerable confidence!),
and are unable to articulate or
identify the physical principle un-
derlying the task. Determining
which subjects are most likely to
make errors, and why they do so,
has been a 30-year scientific puzzle
that continues to challenge inves-
tigators.

In this article, we begin by trac-
ing the WLT to its source and orig-
inal purpose—Piaget’s work on
children’s spatial development.
We then examine how the task
provided an inadvertent battle-
ground for the theoretical debate
surrounding gender differences
that emerged during the 1970s. Fi-
nally, we consider current at-
tempts to explain the fascinating
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data that continue to be generated
by the WLT, and we suggest some
directions future research might
take.

ORIGINS OF
THE PROBLEM

The WLT was developed by Pi-
aget and Inhelder (1948/1956) as
part of their investigation of chil-
dren’s emerging spatial concepts.
Piaget and Inhelder proposed that
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