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Jn 1964, 1 entered the field of 

psychology because 1 believed that 

within it dwelt some o f the most 

fund a m e nta l a nd ch a lJe n g ing 

proble ms of the exta nt sciences. 

Who could not be intrigu ed, for 

example, by the rela tion between 

consciou sness and be ha vior, o r 

the rules guiding interactions in 

social situations, o r the processes 

tha t underlie d evelopme nt from 

infancy to ma turity? Tod ay, in 

1996, my fascination with these 

proble ms is undiminis hed . But I 

have deve loped a certain an gst 

ove r the interve ning 30-something 

years-a constant, nagging feeling 

that our fie ld spe nds a lo t of time 

spinning its wheels without really 

ma king much progress. This prob­

lem s hows up in obvious ways­

for insta nce, in the regulari ty with 

which findings seem no t to repli­

cate. 1t also s hows up in subtler 

ways-for instance, one d oes not 

o ften hea r psychologists saying, 

" Well, this proble m is solved now; 

let's move on to the next one" (as, 

e.g., Johannes Kepler must have 

said m ore tha n three centuries 
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ago, a fter he had cracked the prob­

le m of describing plan etary mo­

tion). 

I have come to believe that a t 

least part of this problem revolves 

around our tools-particularly the 

tools that we use in the critica l do­

mains of data analysis and data in­

terpretation . What we do, I some­

times feel, is akin to trying to build 

a violin using a stone malle t and a 

chain saw. The tool-to-task fit is 

not very good, and, as a result, we 

wind up building a lot of poor­

quality violins. 

My purpose here is to elaborate 

on these issues. In w hat follows, I 

summarize our major data-analy­

sis and data-interpre ta tion tools 

and d escribe what J believe to be 

amiss with them . I then offer some 

alternative techniques for extract­

ing more insigh t and understand­

ing from a d ata set. 

THE UNIVERSALITY OF 

NULL-HYPOTHESIS 

SIGNIFICANCE TESTING 

The vast bulk of data analysis 

and data interpreta tion in the so­

cial and behavioral sciences is car­

ried out using a set of techniques 

co ll ec tive ly kn ow n as n11/l ­

hy poth es is significa nce tes ting 
(NHST). The logic of N HST goes 

as follows. 

1. An investigator begins with the 

hypothesis that some inde pen­

dent variable wiJI have an effect 

on some d e pendent variable. 

At its most genera l level, the 
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hypothesis can be expressed as 

whe re µ 1, ••• , µ 1 a re the 

means2 off popula tion distribu­

tions of the dependent variable 

that correspond to f levels (i .e., 

values) of the inde pendent vari­

able. Equation 1 is generically 

referred to as an alternative hy­
pothesis, or H 1. 

2. Next, the investigator conducts 

an experiment in which j ran­

dom samples of the dependent 

va ri a bl e a re o bta ine d-on e 

sample for each level of the in­

de pendent variable. This exper­

iment y ields the observed sam­

ple mea ns M 1, ••• , M1, which 

are estimates of the population 

means µ 1, ••• ,µ
1
. Generally, it 

is n o t true tha t M 1 = M 2 

= ... = M1; tha t is, there will 

a lways be some differences 

among th e sample m eans. 

What need s to be de termined is 

whe the r the observed diffe r­

ences among the sample mean s 

are due only to random errors 

in measure m e nt o r w h e th e r 

they are due, a t least in part, to 

co r res p o nd in g di ffe r e n ces 

among the population means. 

In fo rm a lly, the in vestigato r 

needs to provide a convincing 

argume nt that the observed ef­

fect is " real. " 

3. To this e nd , the investigator en­

d eavors to compute the proba­

bility (known as p3
) of observ­

ing differences among the Ms 

as grea t as those that were ac­

tually observed given that, in 

fact, the ] popula tion means are 

a ll equal, that is, given that 

µ, ;: µ 2 ;: . . . = IJ.j· (2) 

This hypo thesis that the popu­

la tion mean s a re equal is re­

ferred to as the null hypothesis, 
or H 0 . 
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4. Based on a comparison of the 

computed value of p with a cri­

terion value of p known as u (u 

is usually set at .05), the inves­

tigator makes a binary decision. 

If p is less than u, then the in­

vestigator makes a strong deci­

sion to reject H0 in favor of H 1 

(a decision that is usually 

phrased as "the observed effect 

is statistically significant"). lf fl 
is greater than a, then the in­

vestigator makes a weak deci­

sion to fail to reject H0 . 

Two types of errors can be 

committed in this setting. One 

commits a Type I error when one 

incorrectly rejects a true null 

hypothesis. Jf the null hypoth­

esis is true, then the probability 

of a Type I error is, by defini­

tion, equal to a. One commits a 

Type 11 error when one incor­

rectly fails to reject a false null 

hypothesis. If the null hypoth­

esis is false, a Type LI error is 

committed with probability J3. 
In general, we do not know the 

value of J3 because we have no 

information, and no assump­

tions, regarding the values of the 

actual µ 's, given that the null 

hypothesis is false. Statistical 

power is defined to be (1 - [3), 

which is interpreted as the prob­

ability of correctly rejecting a 

false null hypothesis. Because f3 
is not generally known, neither 

is power. 

5. Finally, based on a series of 

such decisions-that is, reject­

ing or failing to reject a series of 

null hypotheses-the investiga­

tor tries to make sense of the 

data set, no matter how com­

plex it might be. 

Although variants of this proce­

dure constitute the primary means 

of making conclusions from the 

vast majority of psychology exper­

iments, I do not believe that it is a 

fruitful way of interpreting data or 

understanding psychological phc-

nomena. On the contrary, I believe 

that reliance on NHST has chan­

neled our field into a series of 

methodological cul-de-sacs, and it 

has been my observation over the 

years (particularly over my 4 years 

as editor of Memory & Cog11ifio11) 

that conclusions made entirely or 

even primarily based on NHST are 

at best severely limited, and at 

worst highly misleading. In the 

following section, J articulate the 

reasons for these beliefs. 

I am by no means the first per­

son to issue such charges. Period­

ically, a book or an article decrying 

the enormous reliance we place on 

NHST will appear.4 Sadly, how­

ever, although such airi ngs of the 

issues occasionally attract atten­

tion, they have not (up until now, 

anyway) impelJed widespread ac­

tion ., They have been carefu lly 

crafted and put forth for consider­

ation, only to just kind of dissolve 

away in the vast acid bath of exist­

ing methodological orthodoxy. 

SIX THINGS TO NOT LIKE 
ABOUT NHST 

In this section, l articulate six 

major problems with NHST. As I 

have indicated, they have been de­

scribed before. But they bear re­

peating, and it is useful to consider 

them in concert. 

The Usual Impossibility of a 

Typical Null Hypothesis 

NHST usually revolves around 

the testing of a nuJl hypothesis 

that cou ld not really be true to be­

gin with (see Meehl, 1967, pp. 

108-110, for a careful articulation 

of this issue). For example, sup­

pose an investigator presented 

subjects with digit strings on a 

computer screen to study the ef­

fects of stimulus duration on the 

subsequent recall of the digit 
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strings. Each digit string might be 

shown for one of five exposure du­

rations ranging from, say, 10 ms to 

100 ms, and the investigator 

would measure the proportion of 

digits correctly recalled in each 

condition. In the usual hypothesis­

testing framework, the investiga­

tor would establish the following 

null hypothesis: 

where the µ's refer to the popula­

tion means of the percentage of 

digits recalled for each of the five 

exposure durations. Note that the 

logic of NHST demands that the 

equal signs in Equation 3 mean 

"equal to a n infinite number of 

decimal places." lf one weakens 

this requirement such that the 

equal signs mean "pretty much 

equal,'' then one must add addi­

tional assumptions specifying 

what is meant by "pretty much." 

Although the mathematical ma­

chinery for doing this has been 

worked out (e.g., Hays, 1973), it is 

rarely (if ever) implemented in 

practice. 

This null hypothesis of identical 

population means cannot be liter­

ally correct. As Meehl (1967) has 

pointed out, 

Considering . . . that everything in 

the brain is connected with everything 

else, and that there exist several "gen­

eral stale-variables" (such as arousal, 

attention, anxiety and Lhc like) which 

are known to be at least slightly influ­

enceable by practically any kind of 

stimu lus input, it is highly unlikely 

that any psychologically iliscriminable 

situation which we apply to an exper­

imental subject would exert literally 

zero effect on any aspect of perfor­

mance. (p. 109) 

Alternatively, the µ's can be 

viewed as measurable values on 

the real-number line. Any two of 

them being identical implies that 

their difference (also a measurable 

value on the real-number line) is 
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exactly zero-which has a proba­

bility of zero.6 

Accordingly, differences in ex­

posure duration must lead to per­
formance differences even if such 

differences are small, and the rel­

evant question is not really wheth­

er there are any differences among 

the population means. Rather, the 

relevant questions are, How big 

are the differences? Are they big 

enough for the investigator to care 

about, and, if so, what pattern do 

they form? In short, testing the 

null hypothesis of Equation 2 can­

not provide new information. All 

it can do is indicate whether there 

is enough statistical power to de­

tect whatever differences among 

the population means must be 
there to begin with . As I have 

noted elsewhere (Loftus, 1995), re­

jecting a typical null hypothesis is 
like rejecting the proposition that 

the moon is made of green cheese. 

The appropriate response would 

be "Well, yes, okay ... but so 
what?" 

"Significance" Versus the 

Underlying Pattern of 

Population Means 

A finding of statistical signifi­

cance only constitutes evidence 

(and vague evidence at that, as we 

shall see) that a null hypothesis of 

the sort embodied in Equation 2 is 

false. Such a finding provides no 

information about the form of the 

underlying pattern of population 

means, which is presumably what 

is important for making scientific 

conclusions. 

There are several ways of deal­

ing with this problem. One way is 

to use post hoc tests, whereby de­

cisions whether to reject or fail to 

reject are made for null hypothe­

ses involving particular pairs of 

means. But post hoc tests have 

problems. First, within the hy­

pothesis-testing framework, the 
more such tests are carried out, the 

greater is the probability of com­

mitting at least one Type I error. It 

is possible to adjust for this prob­

lem, but only at the expense of 

raising the probability of commit­

ting a Type I1 error. Second, and 

more generally, post hoc tests fo­

cus on specific pairs of means; 

when there are more than two 

conditions, these tests provide 

only an indirect way of assessing 

the entire pattern of means. 

A second way to address the 

problem is via planned compari­

sons. Use of planned comparisons 

entails first generating a pattern of 

weights-one weight per experi­

mental condition-that constitute 

the prediction of some experimen­

tal hypothesis about the overall 

pattern of population means. The 

correlation between the weights 

and the observed sample means 
then constitutes (essentially) a 

measure of how good the hypoth­
esis is. Use of planned compari­

sons can be an informative and ef­

ficient process. The problem with 

planned comparisons, however, is 

that, in practice, they are rarely 

used. I return to the topic of 

planned comparisons in a later 

section. 

Power 

The third problem with NHST 

has to do with lack of attention to 

statistical power. NHST has come 

to revolve critically around the 

avoidance of Type I errors, mainly 

because the probability of a Type I 
error (a) can be computed. In con­

trast, the probability of a Type II 

error (13), and concomitantly 
power (1 - 13), usually cannot be 

computed because computation of 

13 and power requires a specific, 
quantitative hypothesis (e.g., µ 2 

= µ 1 + 10 in a two-condition ex­

periment), and such quantitative 
hypotheses are exceedingly rare in 

the social sciences. 
Lack of power analysis is partic-
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ularly troublesome when an inves­

tigator concludes that some null 

hypothesis is true (rather than 

making the logically correct deci­

sion of failing to reject the null hy­

pothesis). 7 In such a case, one can­
not be sure whether there are in 

fact relatively small differences 

among the population means (a 

conclusion that is justifiable only if 

there is high power) or whether 

there may be large differences 

among population means that are 

undetected (a conclusion that is 
implied by low power). In short, 

with high power, an investigator 

may be justified in accepting the 

null hypothesis "for all intents and 

purposes," but the lower the 

power, the less acceptable is such 

a conclusion. 

As noted, lack of power analy­

sis often stems from the lack of 

quantifiable alternative hypothe­

ses that characterizes the social sci­
ences in general, and psychology 

in particular. Nonetheless, there 

are ways of conveying the overall 

state of statistical power in some 

experiment (particularly through 

use of confidence intervals, as is 

illustrated in an example in the 

section on "Alternatives"). 

The Artificial 

"Effects/Non-Effects" Dichotomy 

A related problem is not, strictly 

speaking, a problem in the logic of 

NHST. Rather, it is a problem that 

arises because investigators, like 

all humans, arc averse to making 

decisions that are both compli­

cated and weak, such as "we fail to 

conclude that the null hypothesis 

is false." Rather, people prefer 

simple, strong decisions, such as 

"the null hypothesis is true." This 

fact of human nature fosters an ar­

tificial dichotomy that revolves 

around the arbitrary nature of the 

.05 a level. 

Most people, if pressed, will 

agree that there is no essential dif-
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ference between, say, finding that 

p = .050 and finding that p = .051. 

However, investigators, journal 

editors, reviewers, and scientific 

consumers often forget this and 

behave as if the .05 cutoff were 

somehow real rather than arbi­

trary. Accordingly, the world of 

perceived psychological reality 
tends to become divided into " real 

effects" (p ~ .05) and " non­

effects" (p > .05) . Statistical con­

clusions about such real effects 

and non-effects made in Results 

sections then somehow are sancti­

fied and transmuted into conclu­

sions that endure into Discussion 

sections and beyond, where they 

insidiously settle in and become 

part of our discipline's general 

knowledge structure. The mischief 

thereby stirred up is incalculable. 

For instance, when one experi­

ment shows a significant effect (p 

~ .05), and an attempted replica­

tion shows no significant effect (p 

> .05), a "failure to replicate" is 

proclaimed. Feverish activity en­
sues, as Method sections are 

scoured and new experiments run, 

in an effort to understand the cir­

cumstances under which the effect 

does or does not show up-and all 

because of an arbitrary cutoff at 
the .05 a level. No wonder there is 

an epidemic of " conflicting" re­

sults in psychological research! 

This state of affairs is analogous to 

a chaotic phenomenon in which 
small initial differences lead to 

enormous differences in the even­

tual outcomes. In the case of data 
analysis, chaos is inimical to un­

derstanding, and it is more appro­

priate that similar results (e.g., p 
= .050 and p = .051) yield similar 

conclusions than that similar re­

sults yield entirely different con­

clusions . 

The Hypothesis-Testing Tail Wags 

the Theory-Constru ction Dog 

Central to NHST is computation 

of p, the probability of the data 

given the null hypothesis. How­

ever, this probability is difficult or 

impossible to compute unless rou­

tine, simplifying assumptions are 

made about the nature of the psy­

chological processes under consid­
eration. These assumptions then 

insinuate themselves into, and be­

come integral to, much of psycho­

logical theory. Some of the most 

common such assumptions are 

these: 

1. The dependent variable is ob­
tained by adding up numerical 

" effects" (i.e., is a linear combi­

nation of those effects)-effects 

due to the independent vari­

ables, to the interactions among 

the independent variables, and 

to various sources of "error." 

2. The errors are distributed ac­

cording to Gaussian (normal) 

distributions. 

3. The variances of these error dis­

tributions are equal across vari­

ous conditions. 

Thus, the nature of the data­

analysis technique generally dic­

tates the nature of psychological 

theory, which, in turn, engenders 

strong biases against formulating 

theories incorporating other per­

haps more realistic or interesting 

assumptions . Accordingly, psy­

chological theory becomes generic 
linear-model theory, and a lot of 

potential for insight is lost. One 

might summarize the situation as 

"Off-the-shelf assumptions pro­

duce off-the-shelf conclusions." 

For example, suppose an exper­
iment is designed to investigate 

whether the rate of forgetting de­

pends on degree of original learn­

ing. In this experiment, word lists 

are taught to subjects whose recall 

is tested following intervals that 

vary from 0 to 5 days. There are 

two groups of subjects. The high­

learning subjects are allowed to 

learn the lists to a criterion level of 

100% correct; the low-learning 
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subjects learn the lis ts to a lower 

criterion level. The major data 

from this experiment are forget­

ting curves of the sort shown in 

Figure 1, which plots memory per­
formance as a function of retention 

interval. 
The default data-analysis proce­

dure in such an experiment would 

be to carry out a two-way analysis 

of variance (ANOVA). Let us sup­

pose that the experimental power 

is sufficiently great that the 

ANOV A reveals statistically signif­

icant main effects of both learning 

level and retention interval, along 

with a significant interaction. It is 

evident in Figure 1 that the inter­

action reflects a shallower " slope" 

for the low-learning than for the 

high-learning condition (i.e ., the 

change in memory performance 

over the 5 days is greater for the 

high-learning group, so that the 

vertical difference between the 

curves becomes smaller with in­

creasing retention interval). The 

typical conclus ion issuing from 

these observations would be that 

forgetting is slower following low 

learning than following high learn­

ing (this logic was used by Sla­

mecka & McElree, 19838
). 

This standard data-analysis pro­

cedure, along with the concomi­

tant conclusion, would mask a 

very interesting regularity in the 
data, however: As is indicated by 

the horizontal lines on the figure, 

the horizontal difference between 

the high-learning and low­

learning forgetting curves is con­

stant. As I have shown (Loftus 

1985; see also Loftus & Bamber, 

1990), such horizontal equality is, 

under very general assumptions, a 

necessary and sufficient condition 

to infer equal high- and low-learn­

ing forgetting rates. Indeed, the 

Figure 1 curves were generated 

from exponential decay equations 

of the following form: 

Low learning: p = e-o.Jt 

High learning: p = e - 0
·
3<

1 
+ 

2
> 
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Fig. 1. Forgetting curves fo llowing high and low learning. Horizonta l lines are 
meant to indicate that the two curves are horizontally parallel. 

where p is performance and t is 

fo rge ttin g time (in d ays) . The 

eq ua l fo rge tting ra tes a re ex­

pressed by the same exponential 

decay parame te r (0.3) in both 

equations. 

In this exam ple, the principa l 

fin ding is (or should be) that the 
horizontal difference between the 

two curves is constant. It is this 

finding that implies no difference 

between the forgetting ra tes of the 

high- and low-learning groups . 

However, investigators working 

wi th in the h y po thes is-test ing 

framework would tend to miss this 

critical regularity, or would dis­

miss it, for at least two reasons. 

First, it is not immediately obvious 

how a standard significance test 

that is relevant to the finding could 

be carried ou t, 9 and without a sig­

nificance test, a finding is not gen­

erally deemed "valid." Second, 

the logic of the linear mod el with­

in w hich s tandard ANOVA is 

couched focuses on differences be­

tween the dependent variable at a 

fixed level ofthe independent vari­
able (vertical differences), rather 

than differences between the inde­

pendent variable at a fixed level of 

the dependent variable (horizontal 

differences). 

NHST Provides Only Imprecise 

Information About the Validity 

of the Null Hypothesis 

The final problem, which has 

been hammered at by Bayesian 

statisticians (e.g., Berger & Berry, 
1988; see also Cohen, 1994) for de­

cades, is this: By convention, one 

rejects some null hypothesis when 

(1) p(observed da talnull hypothesis) 

< .05, 

but rejecting the null hypothesis 

implies the conclusion that 

(2) p(null hypothesislobserved data) is 

small. 

(What else could be meant by the 

phrase " reject the null hypothe­
sis" ?) But without additional infor­

mation, there is no logical basis for 
concluding the validity of State-
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ment 2 given the finding embod­

ied in Statement 1. Indeed, the 
probability of the null hypothesis 

given the d ata could be shown to 

be an y th ing g iven suita ble as­

sumptions about the prior (pre­

data) probability that the n ull hy­

pothesis is true. Without specific 

assumptions abou t this prior prob­

abili ty, the exact probability of the 

null hy pothesis given the ob­

served d ata is unknown. In short, 

the common belief that the precise 

quantity .05 refers to any thing 

meaningful or interesting is illu­

sory . 

Al TERNA TIVES 

now suggest fo ur (b y no 

means mutually exclusive) alterna­

tives to traditional NHST. My ma­

jor goal in making each of these 

suggestions is simple and modest: 

to increase our ability to under­

stand wha t a d ata set is trying to 

tell us. These techniques are not 

fancy or esoteric . They are just 

sensible. 

Plot Data Rather Than 

Presenting Them as 

Tables-Plus-F-and-p-Values 

In a previous article (Loftus , 

1993b), I d escribed some fictional 

data collected by a fictional psy­

chologist named Jen nifer Loeb. 

The story went as follows. Loeb 

was interested in memory for vi­

sual ma terial and carried out a task 

in which visual stimuli were dis­

played and then recalled . There 

were three inde pendent variables 

in Loeb's experiment, all varied at 

the time of stimulus p resentation: 

s timulus exposure duration (eight 

values, ranging from 20 ms to 230 

ms), verbal encoding of the stimuli 

(whether naming them was pro­
hibited or required), and uncer­

tainty about where the s timuli 

would appear (high or low). Based 
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on a specific theory, Loeb had 

three predictions. First, she pre­

dicted her performance measure to 

be an increasing linear function of 
stimulus exposure duration. Sec­

ond, she predicted the slope of 

this function to be higher with 

than without verbal encoding. 

Third, she predicted the slope to 

be higher with low than with high 

spatial uncertainty . 

Table 1, which shows a com­

mon way of presenting data like 

Loeb's, lists the values of her per­

formance measure for all 32 (8 x 2 

x 2) conditions . Accompanying 

NHST results-long compendia of 

F ratios and p values correspond­

ing to the main ANOV A plus sub­

sidiary tests-are generally pro­

vided as part of the text (often 

spanning many tedious pages). 

Most people find such tabular­
cum-text data presentation diffi­

cult to assimilate. That is not sur­
prising. Decades of cognitive 

research, plus millennia of com­

mon sense, teach us that the hu­

man mind is not designed to inte­

grate information that is presented 

in this form. There is too much of 

it, and it cannot be processed in 

parallel. 

An alternative way of present­

ing Loeb's data is shown in Figure 

2. Performance is plotted as a func­

tion of exposure duration for the 

verbal-encoding conditions (top 

panel) and the no-verbal-encoding 

conditions (bottom panel). The 

two curves within each panel are 
for the low-uncertainty and high-

uncertainty conditions. Best­

fitting linear functions are drawn 

through the data points. With the 

data presented like this, one can 

acquire in a glance-or at most, a 

couple of glances-the same infor­

mation that it would have taken 

practically forever to get out of Ta­

ble 1. A picture really is worth a 

thousand words. 10 

Provide Confidence Intervals 

The Figure 2 plot indicates that 

Loeb's obtained pattern of sample 

means confirms her predictions 

pretty well. The curves are gener­

ally linear, verbal encoding yields 

a higher slope than no verbal en­

coding, and low uncertainty yields 

a higher slope than high uncer­

tainty. 

However, this plot provides no 

indication of the sort of error vari­

ance that is typically included as 

part of an ANOV A. Figure 3 rem­

edies this deficiency: It shows the 

same data along with 95% confi­

dence intervals (i.e. , intervals that 

show the range of values within 

which the true population means 

lie with 95% probability). In this 
within-subjects design, the confi­

dence intervals were computed us­

ing a method Masson and I have 

described e lsewhere (Loftus & 

Masson, 1994). 

Figure 3 illustrates my second 

suggestion, which is to put confi­

dence intervals around all sample 

statistics that arc important for 

Table 1. Perfor111n11ce as a fu11ctio11 of t•xposurc durntio11 for fou r co11ditio11s 

Exposure duration (m millbecond ~) 

Condition 20 50 80 110 140 170 200 230 

NVE,HU 0 .287 0 .503 0 .843 1.005 1.468 1.664 2. 102 2. 257 
V[,HLJ 0.461 1.192 1.399 2.360 3.008 3.236 .J .908 4.649 
NVE ,LU 0 .099 0 .536 1.192 1.461 1.626 2.048 2.657 2.874 

VE.LU 0 .683 1.475 2.822 3.747 4 .863 5. 397 6.861 7.849 

Note. NVE = no verbal encoding; VE = verbal encoding; HU = high spatial 
uncertainty; LU = low spatial uncertainty. 
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making conclusions. Figure 3 pro­

vides most of the crucial informa­

tion about Loeb's data. The ob­

served pattern of sample means 
provides the best estimate of the 

underlying pattern of population 

means upon which conclusions 

should be based. The provision of 

confidence intervals allows the 

reader to assess the degree of sta­

tistical power: The smaller the con­

fidence intervals, the greater the 
power. Power, in contrast to its 

profoundly convoluted interpreta­

tion within the hypothesis-testing 

framework, can be simply inter­

preted in this graphic presentation 

as an indication of how seriously 

the observed pattern of sample 

means should be taken as a reflec­

tion of the underlying pattern of 

population means. 

One could analyze these data 

further by, for instance, comput­

ing the s lope for each of the four 
Verbal Encoding x Uncertainty 

conditions for each subject. These 

four slopes could then be plotted 

along with their confidence inter­

vals. One could go still further by, 

for instance, computing mean 

s lope differences along with their 
confidence intervals. Such proce­

dures correspond to graphic illus­

trations of various kinds of inter­
actions. Creative use of such 

procedures allows one to jettison 

NHST entirely. 

Confidence Intervals as a 

Guide to Accepting the 
Null Hypothesis 

The provision of confidence in­

tervals is particularly useful when 

one wants to accept some null hy­

pothesis "for all intents and pur­

poses." Another fictional data set 

(also introduced in Loftus, 1993b) 

involves a clinician whom I call 

Christopher Sanders. In this ac­

count, Sanders developed a clini­

ca l technique, designed to de­

crease agoraphobia, that is 

cheaper than the generally used 

standard technique. Sanders ran a 
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simple experiment to compare his 
technique with the standard tech­

nique. In this experiment, 40 ago­

raphobic indiv iduals were ran­

domly assigned to be ad ministered 

either the standard or the Sanders 

treatment. A yea r later, each indi­

vidual's agoraphobia was assessed 

on a 10-point scale. Sanders's hope 

was that there would be no d iffer­

ence between the two treatments, 

in which case his treatmen t, being 

cheaper, would p resumably be 

preferred to the s tandard trea t­

men t. 

Sanders got h is hoped-for re­

sult, and reported it thusly: "The 

mean agoraphobia scores of the 

standard and the Sanders groups 

were 5.05 and 5.03. The difference 

between the two groups was not 

statis tically significant, p > .05." 

Sanders went on to conclude that 

the cheaper Sanders technique 

was therefore the preferred one. 

What is implied by the phrase 
"not signi ficantly d iffe ren t" in 

Sanders's report? We cannot tell, 

because Sanders provided no indi­

cation of s tatistical power, evalua­

tion of which would be critical for 

justifying his accepting the null 

hypothesis of no treatment differ­

ence. 

Sanders' s report is consis tent 

with many possible ou tcomes, two 

of which are presented in Figure 4. 

In the top panel, small confide nce 

Copyright l 1996 Americ.m Psychological Socidy 

intervals reflect high experimental 

power. If this were Sanders's out­

come, acceptance of the null hy­

pothesis would be reasonable: It is 

readily apparen t tha t the actual 

difference between the Sanders 

and s tandard popula tio n means 

must be quite small . In contrast, in 

the bottom pa nel, large confidence 

in te rva ls reflec t low s tatistica l 

power. ff this were Sanders's out­

come, acceptance of the null hy­

pothesis would be unconvincing: 

The actual difference between the 

popula tio n mean s fo r th e two 

treatments could vary widely. 

There is a noteworthy epilogue 

to this story: When pressed at a 

professio nal conference, Sanders 

furthe r defended his acceptance of 

the null hypothesis by pointing 

out that the I value he obtained in 

hi s I tes t was ve ry s m a ll­

"Practica lly zero!" he decla red 

proudly. And so it was that Sand­
ers committed the common error 

of equating smallness of the test 

statistic with permissibility of ac­

cepting the null hypothesis. Ironi­

cally, it ca n be shown easily that, 

gi ven a par ticular mea n differe nce, 

the smaller the t value, the lower is 

power- and hence, the less appro­

priate it is to accept the nu ll hy­

pothesis. 

Plus <;a Change, Plus C'es t la 

M eme Chose 

The notion of using confidence 

in tervals in this way-as a guide to 

accepting a null hypothesis "for all 

intents and p urposes"- is no t 

new. Thirty-four years ago, the 

following suggestion appeared in 
the pages of the Psychological Re­

view. 

In view of our long-term strategy of 

improving our theories, our statistical 

tactics can be g rea tly Improved by 

shifting emphasis away from overall 

N HST in the d irection of sta tistical es­

timation . For example [when testing a 

p resumed null pre- treatment d iffe r­

ence between two grou ps, an investi-
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Fig. 3. Loeb's data plotted with confidence intervals. 

gator] wou ld do better to obtain 

a ... confidence interval for the pre­

treatment difference. If the interval is 

small and includes zero, [the investi­

gator] is on fairly safe ground; but if 

the interval is large, even though it in­

cludes zero, it is immediately apparent 

that the situation is more serious. In 

both cases, H0 would have been ac­

cepted. (Grant, 1962, p . 57) 

Confidence Intervals and 
Statistical Significance 

A section on confidence inter­

vals would be incomplete without 

a discussion of the question: How 

do you make a decision abou t 

whether some variable has an ef-

feet by just looking at confidence 

intervals? 11 The answer is, you 

cannot. 12 This, I assert, is an ad­

vantage rather than a disadvan­

tage of using plots plus confidence 

intervals rathe r than depending on 

NHST. As I have already argued, a 

major difficulty with NHST is that 

it reduces data sets into a series of 

effect/no-effect decisions, and this 

process, artificial as it is, leads the 
field astray in many ways. It im­

poses the illusion of certainty on a 

domain that is inherently ambigu­
ous. Simply showing data, with 

confidence intervals, provides a 
superset of the quantitative infor-

Published by Cambridge University Press 

10 

. ~ 8 
(ii 

~ 6 
:0 
_g 4 
c. 

"' & 2 
< 

10 

High Power: 
Small Confidence Intervals 

Low Power: 
Large Confidence Intervals 

Slandard Sanders 
Trealmenl 

Fig. 4. Two possible outcomes of 
Sa nders's experiment, illustrating 
high and low power. 

mation that is provided by a hy­
pothesis-testing procedure, but it 

does not foster the false security 

embodied in a concrete decision 

that is based on a foundation of 

sand . 

Meta-Analysis and Effect Size 

An increasingly popular tech­
nique is that of meta-analysis (e.g., 

Schmidt, 1996; Rosenthal, 1995). 

Meta-analysis entails considering 

a large number of independent 

s tudies of some phenomenon 

(e.g., gender differences in spatial 

ability) and (essentially) averaging 

the observed effects across studies 

to arrive at an overall effect. This 

technique is particularly useful 
when two conditions are being 

compared, but trickier when the 

question under investigation in­

volves more than two conditions . 

As an illustration, consider the 

question of gender differences in 
spatial ability. Suppose that, in 

fact, there is some difference in 

spatial ability between the popula­

tion of males and the population of 
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females. The direction and magni­

tude of this difference might be in­

vestigated in many (say, 25) sepa­

rate studies. Each individual study 

produces some observed gender 

difference (presumably the mean 

male spatial score minus the mean 

female spatial score) that consti­

tutes that experiment's estimate of 

the mean difference between the 

populations. Meta-analysis would 

entail averaging all 25 reported dif­

ferences, thereby arriving at a sin­

gle estimated difference that is 
(roughly speaking) five times as 

accurate as any of the individual 

estimates. 

O ne problem with thi s tech­

nique is the number that should be 

extracted from each of the individ­

ual studies. One could simply use 

the raw difference, whatever it 

might be. The problem with this 

approach is that different studies 

presumably used somewhat dif­

ferent measures of spatial ability, 

different ways of carrying out the 

experiment, different populations 

of subjects, and so on; thus, the 

raw measures would not be com­

parable across the s tudies. The 

typical solution is to compute effect 
size, which, in its simplest incarna­

tion, is the mean difference ob­

served in a given experiment di­

vided by the obtained estimate 

from that experiment of the popu­
lation standard deviation . It is 

these effect sizes that are the n av­

eraged to arrive at an overall esti­

mate of the population effect size. 

Planned Comparisons (Contrasts) 

My final suggestion, which I al­

luded to earlier, is to carry out 

planned comparisons on a data 

set. Planned comparisons is a tech­

nique that has been strongly advo­

cated and clearly described by 

many investigators (see, e.g., 

Abelson, 1995) . In my opinion, 

however, it is a technique that is 

surprisingly underutilized. 

Briefly, carrying out a planned 

comparison involves the following 

steps. 

1. First, one generates a quantita­

tive hypothesis (even a rela­

tively simple one will do) about 

the underlying pattern of pop­

ulation means corresponding to 

the conditions in some experi­

ment. Suppose, for example, 

that a researcher is investigat­

ing the relation between prob­

lem-solving time and alcohol 

consumption . The researcher 

designs an experiment in which 

subjects are assigned to one of 
fiv e groups that differ in 

amount of alcohol consumed-

0, 1, 2, 3, or 4 oz-and problem­

solving time is measured for 

each group. A hypothesis to be 

tested is that problem-solving 

time increases linearly with 

number of ounces of consumed 
alcohol. 

2. Next, hypothesis in hand, the 

researcher generates weights-­

one weight per condition- that 
correspond to the hypothesized 

pattern of means. One con­

straint is that the weights must 

sum to zero; thus, in this exam­

ple, appropriate weights repre­
senting the linearity hypothesis 

would be -2, - 1, 0, 1, and 2. 

3. The experiment is carried out, 

and the means--in this exam­

p le, the five mean problem­

solving times--are computed. 

4. Finally, the researcher (essen­

tia 11 y) computes an over­
conditions correlation between 

the weights and the sample 

means. The magnitude of the 

Pearson r2 that emerges reflects 

the good ness of the hypothesis. 

Various other more sophisti­

cated procedures can also be 

carried out, but the nature of 

these procedures is beyond the 

scope of this article. 
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CONCLUSIONS 

I have tried to provide a variety 

of reasons why NHST, as typically 

utilized, is barren as a means of 

transiting from data to conclu­

sions. I have tried to provide some 

examples of techniques-standard 

techniques, not bizarre or fancy 

ones-to replace standard NHST. 

These techniques are as follows: 

first, to plot the data rather than 

putting them in tabular form; sec­
ond, to put confidence intervals 

around important sa mple s tatis­

tics; third, to use meta-analysis; 

and fourth, to use planned com­

parisons. These techniques are all 

designed to assist in the ultimate 

goal of understanding what it is 

that some data set is trying to tell 

us. 

This article is titled " Psychology 

Will Be a Much Better Science 

When We Change the Way We 

Analyze Data." l hope that my ar­

guments make it clear why I be­

lieve this to be true. I believe that 

in order for any science to progress 

sa tisfactorily, its primary data­

analysis techniques must provide 

genuine ins ight into whatever 

phenomena its practitioners set 

out to investigate. The primary 
data-analysis technique of psy­

chology-NHST-does not, as I 
have tried to demonstrate, meet 

this criterion . 

Acquisition of insight is often 

difficult in the social sciences, 

which are cursed with large num­

bers of uncontrollable variables, 

and hence error variance that has 

to be dealt with somehow. I be­

lieve that, historically, social scien­

tists have embraced NHST proce­

dures because they provide the 

appearance of objectivity. These 

procedures may indeed be objec­

tive in the sense that they provide 
rules for making scientific deci­

sions. But such objectivity is not, 

alas, sufficient for insight. I believe 

that these rules provide only the 
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il/11sio11 of insight, which is worse 

than providing no insight at all. 
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Notes 

1. Address cor respondence to 
Geoffrey Loftus by e-mail: gloftus(il 
u . washington.edu. 

2. Actually, NHST can be applied 
to any population parameter. I use 
means here because means arc by far 
the parameter of grea test concern in 
socia l science experiments. 

3. A brief note o f clarification is in 
order here . The entity I have referred 
to as p, which is computed from the 
data, is Fisher's exact level of signifi­
cance (Fisher, 1925). The related entity 
known as a is the Neyman-Pearson 
probability of a Type I error, which is 
decided upon before the data are col­
lecte d . T he Neyma n-Pearson ap­
proach to statistics has been " hybrid­
ized" with what is known as the 

Fisher approach over the years (as has 
been splendidly described by Gigeren­
zer e t al. , 1989, pp. 78-109), even 
though these two approaches are quite 
different. It is the resulting mishmash 
that has been a lmost un iversally 
taught as " the statistical method" over 
the past half century. A detailed anal­
ysis of this iss ue is beyond the scope of 
this article, but Gigerenzer et al. made 
a convincing case that the confusion of 
the Fisher and Neyman-Pearson ap­
proaches is responsible for much of 
what has gone astray with modern sta­
tistical practice. The description of 
N HST that I provide here-and tha t I 
inveigh against- is, essentially, a de­
scription of this commonly used hy­
bridized approach. 

4. A sample of these writings is, in 
chrono logica l o rder: Tyler (1935), 
Jones (1955), Nunnally (1960), Roze­
boom (1960), Grant (1962), Bakan 
(1966), Meehl (1967), Lykken (1968), 
Carver (1978), Meehl (1978), Berger 
and Berry (1988), Gigcrenzer et al. 
(1989), Rosnow and Rosenthal (1989), 
Cohen (1990), Meehl (1990), Loftus 
(1991), Carver (1993), Cohen (1994), 

Loftus and Masson (1994), Maltz 
(1994), and Schmidt (1996). 

5. This situation may finally be 
changing. Symposia at both the 1996 
American Psychological Society (APS) 
convention and the 1996 American 
Psychological Association (APA) con­
vention have aired the shortcomings 
of NHST as the primary da ta-analysis 
technique in the social sciences. (The 
papers from the APS symposium will 
appear in a Special Section of the Jan­
uary 1997 issue of Psycliological Science, 
Vol. 8.) An APA task force has been 
set up to study the value of NHST, 
and al least one journal editor has 
tried to discourage N HST (Loftus, 
1993a, which provoked the observa­
tion by Greenwald, Gonzalez, Harris, 
& Guthrie, 1996, that every recent em­
pirical article in Loftus's journal, Mem­

ory & Cog11itio11, has used NHST none­
theless). 

6. One caveat is in order here. 
There arc some experiments in w hich 

a null hypothesis could genuinely be 
true. A good example (attributable to 
Greenwald cl al. , 1996) is a qualitative 
null hypothesis such as tha t a defen­
dant in a murder case is actually the 
murderer. In such a case, the null hy­
pothesis could certainly be true, and 
rejectin g it (say , based on DNA 
matches) would be a meaningful con­
clusion. However, these kinds of ex­
periments are the exception rather 
than the rule in the social sciences. 

7. As indicated earlier, it is usually 
known on a priori grounds that a null 

hypothesis cannot be literally correct. 
However, as I d iscuss in more detail in 
a later section, given sufficient power 
a lo ng w ith close-to-equ al sa mple 
means, one can justifiably accept a 
null hypothesis " for a ll intents and 
purposes." 

8. Actually, Slamecka and McE!ree 
found no significant interaction be­
tween degree of original learning and 
re tentio n interval , a nd hence con­
cluded that forgetting rate did not de­
pend on degree of original learning. 
However, different data sets using the 
same general paradigm show different 
forms of interactions that would lead 
variously to the conclusion tha t forget­
ting is faster for high learning, that for­
getting is slower for high learning, and 
that ra tes of forgetting for high and 
low learning do not differ (a meta­
finding tha t should, in and of itself, 
provoke suspicion that something is 
fundamentally amiss). In any event, it 
is the logic of the data-analysis tech-
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nique, not the conclusion, that is pri­
marily at issue here. 

9. This is not to say such a test 
could not be invented; it simply is not 
part of general statistical knowledge or 
(what is probably more important) 
part of present statistics computer 
packages. 

10. One might argue that tables are 
useful when a reader needs exact val­
ues of the data points. However, such 
situations a re quite rare, and when 
they do occur, exact values are obtain­
able from the investiga tors-a process 
that is particularly easy in these days 
of e lectronic communica tion. 

11 . In numerous sta tistics classes 
and in other forums in which I have 
discussed this issue, a question that I 
can absolutely count on is, In a two­
cond ition situa tion, what is the rela­
tion between e rror-bar overlap and the 
reject/fa il-Lo-reject decision? 

12. At least, not usually. In a two­
group desig n, finding nonoverlapping 
95% confidence intervals implies that a 
two-tailed, a = .05 I test would lead to 
a conclusion of "statistically signifi­
cant. " However, if the error bars do 
overlap, or if there are more than two 
conditions in the experiment, the rela­
tion between the pattern of confidence 
inte rvals and statistical significance is 
not immedia tely apparent. 
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An Intriguing Puzzle 
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Take a moment to look at Figure 

l. It presents one of several va ria­

tions of a n intrigu in g problem 

known as the wa ter-level task 

(WLT). The correct response to the 

problem is to draw a horizontal 

line across the bottle, re flecting the 

general principle that the surface 

of a liquid is invarian tly horizontal 

regardless of the orienta tion of its 

container. Variations of the task 

have included presen ting the ti lted 

bottle alone, using real containers 

ra ther than drawings, and asking 

subjects whe ther a waterline in a 

tilted container looks "correct" 

(rather than having them draw a 

line).2 

The WL T might appear to be a 

sim p le proble m . In rea lity , re­
searchers have found that a sur­

prisingly large proportion of ado-

lescents and adults draw sla nting 

lines in the tilted bottles (ofte n 

w ith cons iderable co nfide nce!), 

and are unable to articulate or 

id entify the physical principle un­

de rlyin g the task. Determ ining 

which subjects a re most likely to 

make errors, and w hy they do so, 

has been a 30-yea r scientific puzzle 

that continues to challenge inves­
tigators. 

ln this a rticle, we begin by trac­

ing the WL T to its source and orig­

inal purpose- Piaget's wo rk on 

childre n' s spa tia l develo pme nt. 

We then examine how the task 

provided a n inad ve rte nt ba ttle­

ground for the theoretical debate 

surrounding gende r differences 

that emerged du ring the 1970s. Fi­

na lly , we cons ider current a t­

tempts to explain the fascina ting 
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data that continue to be generated 

by the WLT, and we suggest some 
directions fu ture research might 

take . 

ORIGINS OF 

THE PROBLEM 

The WLT was developed by Pi­

aget and lnhelder (1948/1956) as 

part of their investigation of chil­

dren's emerging spatial con cepts. 
Piaget and Inhelder proposed that 
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