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In this paper, some psychometric models will be presented that belong to the larger class 
of latent response models (LRMs). First, LRMs are introduced by means of an application in 
the field of componential item response theory (Embretson, 1980, 1984). Second, a general 
definition of LRMs (not specific for the psychometric subclass) is given. Third, some more 
psychometric LRMs, and examples of how they can be applied, are presented. Fourth, a 
method for obtaining maximum likelihood (ML) and some maximum a posteriori (MAP) esti­
mates of the parameters of LRMs is presented. This method is then applied to the conjunctive 
Rasch model. Fifth and last, an application of the conjunctive Rasch model is presented. This 
model was applied to responses to typical verbal ability items (open synonym items). 

Key words: latent response models, componential IRT, conjunctive Rasch model, incomplete 
data, EM algorithm, verbal ability, open synonym items. 

Cognitive Componential Item Response Theory 

One of the best known item response theory (IRT) models is the one-parameter 
logistic, or Rasch model (Fischer, 1974; Rasch, 1980). This is a model for a dichoto­
mous random variable Y pi, usually denoting correct/incorrect, characterized by the 
following probability of a correct response: 

exp (/3p - 8;) 
P( Yp; = 1; /3 p, 8;) = ( ) 

1 + exp f3 P - 8; 
(1) 

In (1), the indices p (p = 1, ..• , P) and i (i = 1, ... , l) denote, respectively, the 
persons and the items. The parameters f3p and 8; are usually denoted as ability and item 
difficulty. 

As an example, we consider a person's response to a typical verbal intelligence test 
item: a question asking for one or more synonyms of a given word (e.g., woods, ship, 
job), which will be called an open synonym item (the somewhat unusual formulation in 
which more than one synonym may be given as a response, will be justified later). The 
response to such an item is scored correct if the correct synonym is among the syn­
onyms the subject has given as a response. 

We now consider two different conceptualizations of the solution process. First, 
from the point of view of the Rasch model, the solution process is considered as being 
governed by a single person characteristic and a single item characteristic, of which the 
first has a monotone increasing relation with the probability of a correct response, and 
the second a monotone decreasing one. This is a purely formal conceptualization of the 
solution process. 
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FIGURE l. 
Covert responses in two subprocesses (generating and evaluating) of the solution process of an open synonym 

item. 

Second, in cognitive psychology, typically a verbal description is given of the 
solution process (i.e., the cognitive theory). For example, the process involved in 
solving an open synonym item can be considered as consisting of two subprocesses: 
generating and evaluating (De Boeck, 1988). In the generating process, words that are 
candidates for being synonyms are generated, and in the evaluating process, each is 
evaluated as to whether they are a synonym. This is illustrated in Figure 1 for the 
stimulus word woods. 

The strength of the cognitive psychologist's approach in comparison with the 
psychometrician's, is that complex behavior is considered as the result of more ele­
mentary behavior. On the other hand, the strength of the psychometrician's approach 
is that when theory is expressed as a mathematical model, it can be tested in an 
unequivocal way. 

It is possible to integrate the two approaches such that the strengths of both are 
combined. For the present example, this is possible by assuming that a (different) Rasch 
model holds for the generating and the evaluating process, and that a correct response 
will only be given if both processes resulted in a correct response. For the generating 
process, a correct response is a covert list containing a correct synonym, and for the 
evaluating process this is the (covert) evaluation of this particular candidate as a correct 
one. This model is characterized by the following probability of a correct response: 

P(Ypi = 1; /3pl• /3p2• 8n, 8;z) 

= P(Xpil = 1; /3pt. 8n) X P(Xpi2 1; /3pz, 8n). (2) 

In (2), Xpil andXp;2 are nonobservable random variables (called latent responses in the 
following) that indicate, respectively, whether or not the generating and evaluating 
process resulted in a correct response. The right-hand side of (2) results from the 
assumption that both latent responses have to be correct for the observable response to 
be correct also, and the assumption of local stochastic independence (LSI) between 
X pil and X piZ. In the following, this model will be denoted as the conjunctive Rasch 
model. The conjunctive Rasch model can be considered as a relaxation ofEmbretson's 
(1980, 1984) multicomponent latent trait model (MLTM), in the sense that it does not 
require the X pil 's and the X piZ 's to be observed in order for it to be applicable to some 
set of Yp;'s. 
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To test the cognitive theory, it is useful if the latent responses can be made ob­
servable. This is possible by making use of subtasks. The essential characteristic of 
subtasks is that the (observable) responses they yield to are assumed to conform to the 
model for the latent responses. For the present example, one can construct a gener­

ating and an evaluating subtask for every open synonym item. For example, a gener­
ating subtask for the open synonym item involving woods is the following: "Give a list 
of words that come to your mind as you are searching for a synonym for woods.'' And 
the evaluating subtask is a kind of multiple choice item in which a list of synonym 
candidates is presented and from which the correct synonyms have to be chosen. The 
link between the responses to the open synonym items, and the responses to the 
generating and evaluating subtasks is established by the assumption that the models for 
these latter manifest responses are also assumed to hold for the latent responses that 
underly the manifest responses to the open synonym items (i.e., P(Xpil = 1; f3pt, Bil) 

and P(X piZ = 1; f3pz, 8;2 ) in the right-hand side of (2)). 
Our approach to testing the cognitive hypothesis, which is also suggested by De 

Boeck (1988), assumes that we have at our disposal parameter estimates of the model 
for the open synonym items as well as for the models for the generating and the 
evaluating items. In essence, testing is a comparison of, on the one hand, the item and 
person parameter estimates obtained using the responses to the open synonym items, 
and on the other hand, the parameter estimates obtained using the responses to the 
generating and evaluating subtasks. 

The use of subtasks to test a cognitive theory about responses to complex tasks has 
been introduced in psychometrics by Embretson (1980, 1984). Her approach is different 
from ours in that she does not estimate the parameters of the model for the complex 
items. Instead, she uses a two-step procedure in which she first estimates the Rasch 
model parameters of the subtasks, and then uses these estimates to predict the re­
sponses on the complex task. A comparison between these predictions and the re­
sponses that have actually been given, constitutes the core of her approach to testing 
the cognitive hypothesis. Performing comparisons on the level of the parameters, as in 
our approach, has some advantages, as will be shown in the final section. 

The idea of modelling complex behavior such that this model's parameters are 
related in some well-specified way to the parameters of models for more elementary 
behavior, is not new. In particular, using response time as the variable to be modeled 
instead of correctness, this is also the basic idea in R. J. Sternberg's (1977) componen­

tial analysis (see also Goldman & Pellegrino, 1984; and Pellegrino & Kail, 1982). 

Latent Response Models 

We will use the conjunctive Rasch model to introduce the definition of latent 

response models (LRMs). The derivation of the conjunctive Rasch model is based on 
a distinction between two types of random variables: the observed ( Yp; 's) and the latent 
(X pi! 'sand X piZ 's) random variables. The observed random variables are related to the 
latent ones through the following rule: Yp; equals 1 (correct response) if and only ifboth 
X pi! and X piZ equal 1, and 0 otherwise. A rule that specifies the relationship between 
the latent and observed random variables will be called a condensation rule. The rule 
specified above, will be called the conjunctive condensation rule. Now, the conjunctive 
Rasch model simply follows from the assumption of a Rasch model for the X pi! 'sand 
Xp;z 'sin combination with the conjunctive condensation rule. 

A LRM is a model for a set of N variables Y n (n = 1, ... , N). In psychometric 
applications (involving a complete design), N always equals P x I, the number of 
persons times the number of items, and every n is associated with a particular person-
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item pair (p, i). TheN Yn 's are considered as a whole because the models for each of 

them separately are related by means of common parameters. In the LRM framework, 

there is no restriction on the type of Yn 's. In particular, they can be discrete and 
continuous, and they can be scalar or vector-valued. 

The definition of probabilistic LRMs involves two key aspects: 1., the definition of 
latent random variables, and 2., the definition of a condensation rule. First, for every 

Y n, a set of K latent random variables X nk (k = 1, ... , K) is defined. In vector 
notation, Xn = (X n 1 , ••• , X nK) 1 • In principle, not every X nk has to be defined for a 
particular Y n, but in order to keep the notation simple, it is assumed that for every Y n 

a complete vector Xn is defined. 

Second, a condensation rule is defined as a function that specifies the relationship 

between Y n and Xn. Using C as a generic symbol for a condensation rule, this rela­
tionship can be expressed as follows: 

Because a function is a many-to-one mapping, Y n can be considered as a condensation 

ofXn. 
We will now present three examples of condensation rules. Each of them is in­

volved in a psychometric model that will be presented in the following. First, we 
consider the conjunctive condensation rule, which is defined for dichotomous (0/1) 

Xnk 's only. It can be written as follows: 

K 

C(Xn) = 0 Xnk· 
k=! 

Second, we consider the disjunctive condensation rule, which is also defined for di­
chotomous Xnk's only. It can be written as follows: 

K 

C(Xn) = 1- 0 (1 - Xnk)· 
k=! 

And third, we consider the so-called drop-off condensation rule, which is also defined 
for dichotomous X nk 's. This condensation rule results in a polytomous Y n involving 
K + 1 categories. It can be written as follows: 

C(Xn) = 0 if Xnt = 0 

= 1 if X n! = 1 and X n2 = 0 

= K if X n 1 = X n2 = · · · = X nK = 1. 

This condensation rule is involved in a type of psychological process involving K 

components that are executed sequentially, but in such a way that passing the 
(k + 1)-th component is only possible if the k-th component was also passed. The 
application of a model involving this condensation rule assumes that it is possible to 
categorize the different responses according to the component at which the (first) error 
occurs. This condensation rule is denoted as the drop-off condensation rule, because at 

every level of Y n a set of Xn -patterns drops off. 
Many more interesting condensation rules exist. An overview of condensation 
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rules as they are involved in existing models is given by Maris (1992). Some examples 
of existing models that can be formulated as LRMs are the following: Thurstone's 
(1927) model of comparative judgment (with the condensation rule being dichotomisa­

tion), Verhelst and Verstralen's (1993) unfolding model (with the condensation rule 
being collapsing), sequential processing stages models (Luce, 1986; with the conden­
sation rule being addition), and ML factor analysis as formulated by Rubin and Thayer 
(1982) (with the condensation rule being omission), which is a LRM for a vector-valued 

Yn. 
At this point, we did not yet specify a probability distribution function (PDF) for 

the Yn 's. However, given a particular condensation rule, this PDF is completely spec­
ified by a particular PDF for each of the Xn 's. This can be expressed as follows: 

f(Yn; 9) = ( g(Xn; 9) dJJ-(Xn). 
J'!tc 

(4) 

In (4),fandg denote the PDFs of Yn and Xn, respectively. These functions are usually 
different for different values of n, but for simplicity we will not index them. Instead, we 
let their arguments (Yn and Xn) indicate their particular form. The parameters of these 
PDFs are denoted by 01 (t = 1, ... , 1), and in vector notation, 9 = ( 01 , ••• , OT) 1 • 

In this notation, no distinction is made between particular types of parameters like the 
item and person parameters of psychometric models. The essential point in (4) is the 
integral over the range <lAc. This integral is used as a generic symbol for both summa­
tion over discrete and integration over continuous variables. This range <lAc is com­
pletely specified by the condensation rule C. The integration is with respect to a 
dominating measure 1-'- (see Billingsley, 1986, p.442). In the discrete case, J-1- simply has 
the value I for all Xn in the sample space, and the integral can be replaced by a 
summation sign. The continuous case is more complicated, and will not be treated here. 

In order for f to be a PDF, we make the technical assumption that C is a measur­
able function. And in order for this PDF to be nondegenerate, we assume that C is such 
that the complete probability mass is not concentrated in a single point, and for a 
continuous Y n, thatf is continuous on all interior points of its domain. This assumption 
holds for all condensation rules that are considered in this paper. 

LRMs have two kinds of advantages: conceptual and technical. The conceptual 
advantages are twofold. First, the concept of LRMs is well suited for the development 
of new models based on particular psychological assumptions on the process that 
generates the observations. These psychological assumptions only have to be trans­
lated in a condensation rule that operates on a set of latent responses. A second 
conceptual advantage is that it may be clarifying to see that existing models that appear 
to be different at first sight, nevertheless belong to the same general class. 

The technical advantage is that a relatively simple algorithm exists that can be used 
for the computation of the maximum likelihood (ML) and some maximum a posteriori 

(MAP) estimates of the parameters of LRMs. 

Some LRMs with Applications to Psychometrics 

From hereon, we will only consider psychometric LRM models. Thus, the index n 

has to be replaced by the double index pi. In particular, Yn is replaced by Ypi• Xnk by 
Xpik and Xn by Xpi· The three LRMs to be presented are all based on Rasch models 
for the Xpik 's. These K models (fork = 1, ... , K) are characterized by the following 
probability: 
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exp (/3pk- 8;d 
P(X pik = 1 ; 13 pb 5 ik) = 

1 
+ (a s;, ) 

exp ,.., pk - v ik 

In the following, we will use 1r pik as a shorthand notation for this probability. 

The Conjunctive Rasch Model 

The conjunctive Rasch model is characterized by the following probability: 

K 

P(Yp; = 1; JlP, o;) = n '1Tpik· 

k=l 

(5) 

(6) 

In (6), lip = (f3pt, ••• , /3pK)
1 and oi = (5il, ... , 5;K)t. In the following, we will use 

'1Tp; as a shorthand notation for this probability. Equation (6) follows from the conjunc­
tive condensation rule and the assumption of LSI between the X pik 's. Because the 
7T pik 's are within the range (0, 1), it follows from (6) that every 7T pik (for k = 1, ..• , 
K) imposes an upper limit on '1Tpi· This fact allows us to introduce the notion of 
necessary ability levels. In particular, if 5;k = a for some k, then f3pk = a is a necessary 
ability level for '1Tp; to be equal to 0.5. 

The conjunctive Rasch model is a model for psychological processes that involve 
a number of events, occurring serially or in parallel, whose outcomes all have to be of 
a particular kind (e.g., correct) for the observable response ( Yp;) to be of a particular 
kind also. In other words, it is a model for psychological processes that involve multiple 

requirements. 

Embretson (1980) was the first to present the conjunctive Rasch model. Later, 
Embretson (1984) also presented the following modification of the conjunctive Rasch 
model: 

P(Ypi = 1; flp, 0;, a, g)= (a X 7Tp;) + [g X (1- '1Tp;)], (7) 

in which a and g are parameters. This model is a LRM with (K + 1) Xpik 's, involving 
the conjunctive condensation rule. The first K Xpik 'sand their joint PDF are the same 
as those of the conjunctive Rasch model. The PDF of X pi(K + l) is locally stochastically 
dependent on the first K Xpik 's. In particular, it can be defined as follows: 

P(Xpi(K+l) = 11Xpil• ••• , Xp;K; a, g)= a if V k: Xpik 1 

= g if 3 k: X pik = 0. 

The psychological interpretation of X pi(K + 1) given by Embretson, is that it represents 
the outcome of the integration of the other X pik 's (considering them as partial results) 
if X pik = 1 for all k = 1, ... , K, and of an alternative method for solving the item if 
Xpik = 0 for some k = 1, ... , K. No inter-individual nor inter-item differences are 
assumed with respect to this component. 

It is very easy to generalize the conjunctive Rasch model to cases in which, 
depending on the item type, different Xp;k's are assumed to be involved {e.g., items 
with many, and items with few X pik 's). One such mixed model, resulting from this 
generalization, is the one in which responses to complex items and their subtasks are 
considered jointly. 
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The Disjunctive Rasch Model 

The disjunctive Rasch model is characterized by the following probability: 

K 

P(Yp; = 1; (Jp, 8;) = 1 0 (l- '1Tp;k)· 

k=l 

529 

(8) 

In the following, we will also use '1T pi as a shorthand notation for this probability. 
Equation (8) follows from the disjunctive condensation rule and the assumption of LSI 
between the X pik 's. Given the range of the '1T pik 's, it follows from (8) that every '1T pik 

(for k = 1 , ... , K) imposes a lower limit on '1T pi. This fact allows us to introduce the 
notion of sufficient ability levels. In particular, if 5ik = a for some k, then f3pk = a is 
a sufficient ability level for '1Tpi to be equal 0.5. 

The disjunctive Rasch model is a model for psychological processes involving a 
number of events of which at least one outcome has to be of a particular kind (e.g., 
correct) for the observable response to be of a particular kind also. More specifically, 
it is a model for a psychological process that involves multiple strategies (multiple 
solution strategies, multiple sources of information, ... ). An example of such a process 
is character recognition in tachistoscopic presentations. This task involves the presen­
tation of a screen with a fixation point, followed by a timed presentation of a word, of 
which the character on the fixation point has to be given as a response. Two concurrent 
strategies can be used to solve this task, a position that is also taken by McClelland and 
Rumelhart (1981) in their account of some basic findings on letter perception. One 
strategy involves the use of information on the physical properties of that particular 
character, and the other the use of context information (i.e., the information that 
becomes available by recognizing the neighbouring characters or the whole word). This 
hypothesis can be tested by examining the task difficulty parameters of the two strat­
egies, the 5n 'sand 5i2 's. According to the hypothesis, the task difficulty parameters of 
the character information strategy should depend on the character itself, whereas the 
task difficulty parameters of the context information strategy should depend on the 
redundancy of the character on that position in that particular word. 

The Drop-off Rasch Model 

The drop-off Rasch model is characterized by the following set of probabilities: 

P(Yp; = 0; (Jp, 8;) = 1- '1Tpit 

P(Yp; = 1; (Jp, 6;) = '1Tp;t(l- '1Tp;z) 

K 

P(Yp; = K; (Jp, 6;) 0 '1Tpik· 

k=l 

(9) 

Equation (9) follows from the drop-off condensation rule and the assumption of LSI 
between the Xpik 's. 

This model is well suited as a model for a psychological process that involves 
multiple requirements, as is also the conjunctive Rasch model. The difference with the 
latter model is that the nature of the processing in a particular component (e.g., the one 
resulting in X pil) may depend on the outcomes of the previous components (the X pik 's 
with k = 1, ... , (l - 1)). The most obvious conceptualization of such a process is one 
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in which the information in the item is mentally transformed in each of the K compo­
nents of the process (see Carpenter & Just, 1986; and Pellegrino & Kail, 1984, for 
examples of this type of process). Thus, every component takes as its input either the 
item as presented physically (for the first component), or a mental representation of it 
(for the remaining K - 1 components). And the output of every component is either a 
mental representation, or an observable response (last component). 

Two versions exist of such a process of mental transformations. According to the 
first version, the components always result in a mental representation, which however 
may be correct or incorrect. It is important to see that this correctness can be consid­
ered in a conditional or an absolute way. Conditional correctness corresponds to single 

Xpik 's. It involves whether or not the mental transformation is performed correctly. 
Absolute correctness corresponds to the whole set of X pik 's up to and including the one 
for the component being considered. It involves whether or not the current mental 
representation still is correct. 

In the second version of the process, except for the last component, a component 
may or may not result in a mental representation. For obvious reasons, it is assumed 
that the last component always results in an observable response. And, in order to 
make a clear distinction with the first version of the process, it is also assumed that if 
a component results in a mental representation, this mental representation is always 
correct. According to this second version of the process, one cannot assume that the 
same model holds for the X pil 's with l > k when X pik 0 as when X pik = 1. In fact, 
depending on one's hypothesis about what happens when no mental representation is 
available, for the case of Xpik = 0, one may specify a model for the Xpil 's with l > k 

that is completely different from the one for the case of X pik = 1. One may even 
assume that several of these X pi/'s do not exist. 

An obvious hypothesis for this version of the process is that, if some component 
(say, the k-th) does not result in a mental representation, none of the following com­
ponents in the sequence can result in a mental representation either. This hypothesis 
can be expressed as a (locally dependent) model in the following way: 

P(X pi(k+ o = 1IX pik 1) 7T pi(k+ o , 

and 

P(Xpi(k+1) = l!Xpik 0) 0. 

However, considering the model for the Yp;'s, if Xpik = 0 it makes no difference 
which X pil 's with l > k are assumed to exist and which model is formulated for them. 
This follows from the particular form of the drop-off condensation rule. Therefore, the 
different hypotheses about what happens when X pik = 0 are empirically indistinguish­
able. 

In the process as conceived up to now, each mental transformation corresponds to 
only one X pik. However, this is not necessary. In particular, one can consider a process 
in which X pik denotes whether or not a mental representation could be constructed, and 
Xpi(k+ 0 whether or not this representation has a certain characteristic (e.g., whether it 
is correct or not). In this alternative view, it is clear that X pi(k+ 1) can only be defined 
if there is a mental representation available (Xpik l). As an example, we will now 
consider a model for correct, incorrect, and "don't know" responses to verbal arith­
metic problems (see also Mayer, Larkin & Kadane, 1984). In Figure 2, a rough theory 
for these responses is presented. 

It is assumed that persons first have to translate the problem into a covert symbolic 
format to which the rules of arithmetic can be applied. Second, in order to solve the 
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Flow-chart of a theory of responses to verbal arithmetic items. 

problem, these rules actually have to be applied to the numbers given in the problem. 
For simplicity, we assume that no errors are made in the application of the rules of 
arithmetic. Considering the translation part of the solution process, and assuming that 
guessing does not occur, it follows that an answer (i.e., a response different from "don't 
know") will only be given if the subject can perform the translation to a covert symbolic 
format. If the subject cannot, then a "don't know" response will be given. Further, if 
an answer is given, it will be a correct one if the subject has made a correct symbolic 
translation, and an incorrect one if he/she has made an incorrect translation. 

Estimation 

We will now consider an algorithm for the computation of the ML and some MAP 
estimates of the parameters ofLRMs. We start by considering ML estimates. The PDF 
of Y = ( Y 1 , • • • , Y n) 

1
, under the assumption of LSI between the Y n 's, is the follow­

ing: 
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N 

f(Y; 9) = 0 f(Yn; 9). 
n=l 

In developing an algorithm to maximize f(Y; 9) as a function of 9, we start from the 
PDF of X = (X{, ••• , Xk) 1 , which, under the assumption of LSI between the Xn 's, 
is the following: 

N 

g(X; 8) = 0 g(Xn; 9). 
n=l 

It is possible to writef(Y; 8) as follows: 

f(Y; 9) = ( g(X; 9) dp,(X). 
J<Jtc 

(11) 

Here, and in the following, 11tc will be used as a generic symbol for the range of 
integration that is specified by the condensation rule (as applied to a single Xn, or as in 
the present case, to all N Xn 's). Now, the conditional PDF h(XIY; 9) can be written as 
follows: 

g(X; 9) 
h(XIY; 8) = f(Y; 8). (12) 

The essential point in (12) is the fact that the joint PDF of X and Y (which appears in 
the numerator of the formula of the conditional PDF) is the same as the marginal PDF 
of X. This fact allows us to use the expectation-maximization algorithm (EM) (Demp­
ster, Laird, & Rubin, 1977) to maximize lnf(Y; 9) (and therefore alsof(Y; 8)). In the 
terminology of the EM-algorithm, g(X; 8) is denoted as the complete data likelihood, 

andf(Y; 8) as the observed data likelihood. 

It is important to notice that the EM-algorithm is not being used here to maximize 
the loglikelihood of some marginal model, an application that was introduced to IRT by 
Bock and Aitkin (1981). In their application, the EM-algorithm was used to deal with 
the missingness of Bayesian person parameters, whereas in this case it is being used to 
deal with the missingness of latent responses. 

We now consider the conjunctive Rasch model. For this model, the complete data 
likelihood is the following: 

P I K 

g(x; 8) = n n n 7T:rto- 1Tpik>I-Xpik, 

p=l i=l k=l 

in which the 1Tpik 's are defined as in (5). Thus, in this case, 8 consists of a matrix of 
person parameters p (p [, ... , p ],) 1 , and a matrix of item parameters 8 = (8{, ... , 
8/) 1

• The k-th column of p will be denoted by pk, and the k-th column of 8 by 8k. 

Further, it is easy to show that the complete data /oglikelihood can be written as 
follows: 

In g(X; p, 8) ~ ~~ [ q(p', &') + j:, Tpk/3pk + ~ Ulk~lk]. (15) 
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in which 

p I 

q(pk, &k) = -2: 2: ln [1 + exp (/3pk- 5;d]. 
p=l i=l 

Equation (15) simply is the sum of K loglikelihoods, each of which corresponds to one 
ordinary Rasch model. The Tpk 'sand U;k 's are the sufficient statistics, and they are 
defined as follows: 

I 

Tpk = L Xp;b 
i=l 

and 

p 

U;k - L Xpik· 
p=! 

Because of its exponential family membership, the maximization of ln g(X; p, &) is 
known to have a unique solution (under certain regularity conditions) that can be found 
using an appropriate optimization method, as for example, a modified Newton-Raphson 
algorithm (see, Gill, Murray, & Wright 1981). However, this fact only holds if an 
identifiability restriction is imposed on the parameters (e.g., 5lk = 0, for all k). In the 
following, it will be tacitly assumed that such identifiability restrictions can be easily 
found and implemented. 

The same optimization method that maximizes In g(X; p, &) can also be used as a 
step in the maximization ofln/(Y; p, &), the loglikelihood of the conjunctive Rasch 
model, namely as an M-step in an EM-algorithm. In particular, in the M-step of the 
(p + 1)-th EM-cycle we maximize E[ln g(X; p, &)JY; p<Pl, &<Pl], the conditional 
expected value of the complete data loglikelihood given the observed data and the 
parameter values of the p-th EM-cycle (denoted by p<Pl and s<P>). Since In g(X; p, &) 

is linear in the sufficient statistics, this conditional expected value differs from 
In g(X; p, &) only in the fact that these sufficient statistics are replaced by their con­
ditional expected values. In particular, in the right-hand side of (15) with the Tpk 'sand 
U;k 's replaced by, respectively: 

I 

E(TpkJY, p(P), &(P)) L E(Xp;kJYp;, p~P), &jPl), (16) 
i=l 

and 

p 

-"' E(X 'klY . a.{P) &~P)) 
~ PI PI> t"p ' 1 ' 

(17) 
p=! 

The right-hand sides of (16) and (17) follow from their corresponding left-hand sides 
because of the assumption of LSI between the Yp;'s. The computation of these con­
ditional expected values is the E-step of the EM-algorithm. 

The right-hand sides of (16) through (17) are sums of conditional probabilities that 
are defined by the PDF of the Xp; 'sand the condensation rule. Using the formula of a 
conditional probability, it is easy to show the following: 
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1T pik - 1T pi • 

1 
tf Yp; = 0, (18) 

- 1Tpj 

with 1Tpik and 1Tpi being defined in (5) and (6), respectively. 
We still have to deal with the question whether the EM-algorithm does what it is 

being used for, namely maximizing lnf(Y; 9). In this respect, the EM-algorithm neither 
is better nor worse than the existing algorithms (e.g., steepest ascent, Newton-Raph­
son, Davidon-Fletcher-Powell). In particular, under certain regularity conditions (see 
Wu, 1983), which are fulfilled for all models that are considered in this paper, it can be 
proved that the EM-algorithm converges to a stationary point (i.e., a solution of the 
likelihood equations) of lnf(Y; 9). Whether or not this stationary point is also a local 
or global maximum, depends on the particular form oflnf(Y; 9) and the starting values 
( • a(O)) t.e., u • 

We will now consider the computation of MAP estimates. The reason for consid­
ering MAP estimates is that, depending on the particular set of observations, finite ML 
estimates may not exist (see, e.g., Albert & Anderson, 1984, for the general case of 
logistic regression; and Fischer, 1981, for the special case of the Rasch model). In the 
Bayesian framework, this problem does not exist. The problem of the arbitrariness of 
the prior PDF is not considered to be serious because, except for a constant, the 
likelihood function and the posterior PDF are asymptotically equivalent. 

Although ML and MAP estimates are defined in a different statistical framework, 
their actual computation may be very similar. In particular, the choice of a particular 
prior PDF may be formally equivalent to adding a prior sample within the ML frame­
work (see, Novick & Jackson, 1974; and Jannarone, Yu, & Laughlin, 1990). 

As our prior PDF, we consider the logistic one, which is defined as follows: 

exp ['y(W- a)] 

f(W; a' y) = {1 + exp ['y(W- a)]} 2 ' 
(19) 

in which a and 'Y ( 'Y > 0) are the two parameters of this PDF. The expected value of W 

is equal to a, and its variance is proportional to 'Y· We assume that a equals 0, and that 
'Y equals 1. Further, it is easy to show that the cumulative PDF of W, which will be 
denoted by F( W; 0, 1), is the following: 

exp (W) 
F(W; 0, 1) = (W) 

1 + exp 
(20) 

Then, it follows that 

f(W; 0, 1) = F(W; 0, 1) x [1 - F(W; 0, 1)]. 

For any model in which the probability of a 1-response is expressed as the function 
exp( )/[1 + exp( )] of some other function (e.g., linear) of parameters (e.g., logistic 
regression, Rasch model, item factor analysis), takingf(W; 0, 1) as the prior PDF for 
a parameter W is equivalent to a prior sample of two observations (a 1-response and a 
0-response) on a particular hypothetical data point. The probability of a 1-response on 
this hypothetical data point is given by (20). 

Making use of the prior sample interpretation of the prior PDF, it is clear that 
computing MAP estimates is the same as computing ML estimates using an extended 
sample. This extended sample involves both Y and the prior sample, which will be 
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denoted by Z. The array Z is of order (T x 2), and contains one pair of observations, 
Z 11 and Z 12 , for every value oft (t = 1, ... , n, with T denoting the total number of 
parameters. For the conjunctive Rasch model (and ignoring the identifiability restric­
tions) T equals K x (P + I). 

These MAP estimates can be computed by means of the EM-algorithm. The com­
plete data are X and Z. The Ztj 's are considered as a special type of latent random 
variables because they are mapped in observed random variables by means of the 
identity function (which is the condensation rule in this case). For the conjunctive 
Rasch model, the function to be maximized in theM-step is the conditional expected 
value of ln g(X; (J, S), as defined for the ML estimates, plus the loglikelihood of Z. 
Denoting the PDF of Z by m(Z; (J, S), this loglikelihood can be shown to be the 
following: 

K { p 

In m(Z; (J, S) = ~ 1 -2 X p~l In [1 + exp (/3pd] 

- 2 X ~ In ( l + exp (a ik)] + p~l f3 pk + ~ a ik } 

As is the case for In g(X; (J, S), In m(Z; (J, S) is also an exponential family loglikelihood. 
Therefore, the sum of the conditional expected value of In g(X; (J, S) and In m(Z; (J, S) 
has a unique maximum that can be found using the same optimization method as the 
one that maximizes In g(X; (J, S). 

The Data 

Example: Testing a Cognitive Theory 
About Responses to Open Synonym Items 

The data that were analyzed are a subset of a larger data set that was collected by 
Janssen, Hoskens and De Boeck (1993). These data are responses to the three types of 
items that were presented in the first section, namely, the generating, evaluating, and 
open synonym items. From the larger data set, 22 stimulus words (Dutch language) 
were selected, each of which was associated with one open synonym, one generating 
and one evaluating item. These 22 stimulus words are one of six sets of stimulus words. 
They were chosen because, as a group, their fit to the Rasch model (for the generating 
and the evaluating items) was slightly better than for the other sets. Each set was 
responded to by a different group of subjects. All stimulus words were verbs (e.g., to 
understand, to change, to erase, to hug, to shine). 

The subjects were allowed to give multiple synonyms in response to the open 
synonym items, and to evaluate multiple synonym candidates as being correct syn­
onyms in response to the evaluation items. The items were formulated in this way to 
stimulate the subjects to evaluate every synonym candidate in an absolute way instead 
of comparing them with each other (De Boeck, personal communication, August 26, 
1992). In order to have an idea about the effect of this somewhat unusual formulation 
of the items, we calculated the average number of synonym candidates generated (for 
the generating items), synonym candidates evaluated as being correct synonyms (for 
the evaluating items), and synonyms given (for the open synonym items). These num­
bers were 2.914, 1.581, and 1.293, respectively. Thus, despite the fact that the differ­
ence in instructions for the generating and the open synonym items is rather small 
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(writing down all synonym candidates vs. only the correct ones) it is clear that the 
subjects responded to them differently. 

The correct synonym for each word was determined by means of a dictionary. The 
answers were scored as being correct if the correct synonym was given by the subject 
(either as a synonym candidate, a multiple choice option, or an actual synonym for, 
resp., a generating, evaluating, or open synonym item). The alternatives in the evalu­
ating items were the most frequently given answers to the corresponding generating 
items plus the correct synonym. 

The subjects were fifth and sixth graders (mostly 17-18 years of age) from six 
schools of general secondary education in the Dutch speaking part of Belgium. A total 
of 258 subjects responded to 66 items (three sets of 22) in total. Two subjects were 
removed from the present sample: one subject did not follow the instructions properly, 
and another subject responded correctly to all evaluating items. 

All subjects responded to the generating items first. After a delay of approximately 
six weeks the open synonym items were administered. About half of the subjects were 
given the evaluating items about six weeks after the open synonym items. Due to 
practical circumstances, the other half of the subjects were given the evaluating items 
right after the open synonym items in the same session. 

Method of Analysis 

Estimation. The responses to the open synonym items were analyzed by means 
of the two-component conjunctive Rasch model. The parameter estimates were com­
puted by means of the EM-algorithm described previously. With respect to this anal­
ysis, four points have to be mentioned. 

First, in the analysis the subjects were grouped, and it was assumed that every 
subject within a group has the same pair of person parameters. The grouping was 
performed assuming that only the abilities involved in the generating and the evaluating 
subtasks may be involved in the open synonym items. As such, the approach is a 
confirmatory one. Given this assumption, grouping of the subjects according to their 
sum scores on the generating and evaluating items, which are the minimal sufficient 
statistics for the person parameters, is asymptotically equivalent (for increasing number 
of items) to the case of no grouping. Since the grouping has to be performed according 
to two sum scores jointly, every subject was assigned to a group according to his or her 
sum score pair. There were 14 different sum scores in both the generating and the 
evaluating data set, and there were 98 different sum score pairs (out of a possible 
number of 14 x 14 = 196). Because of this grouping, only 14 generating and 14 eval­
uating person parameters were estimated; the responses by the persons in each of the 
98 groups were assumed to be governed by person parameter pairs of which the first 
element was one of the 14 generating person parameters and the second was one of the 
14 evaluating person parameters. There are two reasons for this grouping. First, it 
reduces the number of data points, and the number of parameters per component, both 
of which are too large to be handled by the computer program in which the EM­
algorithm was implemented. Second, it results in more reliable parameter estimates, 
since the amount of information per parameter is larger. 

Second, no finite ML estimates of the conjunctive Rasch model parameters could 
be found. Therefore, we will only consider MAP estimates. 

The third point concerns the uniqueness of the solution of the likelihood equations 
(better denoted as posterior PDF equations in the case of MAP estimates). As yet, no 
conclusive evidence exists for the uniqueness of this solution. Therefore, in order to get 
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some reassurence on this point, the MAP estimates were computes 50 times1, each time 
using different random starting values. The algorithm always converged to the same 
solution point. 

The fourth and last point concerns the goodness-of-recovery of the true parameter 
values. Goodness-of-recovery is related to consistency in that consistency involves that 
asymptotically goodness-of-recovery is perfect. Because we are dealing with a fixed­
effects (unconditional, nonmarginal) conjunctive Rasch model, we cannot rely on the 
standard consistency property of ML estimates (and MAP estimates, as their approx­
imations). Moreover, even if consistency could be proved, we still would not know how 
large the standard errors and the biases are. Therefore, a small simulation study was 
performed, the results of which are presented in the following. 

Besides the parameters of the conjunctive Rasch model, the parameters of the 
ordinary Rasch model also had to be estimated (i.e., for the generating and the evalu­
ating subtasks). For these parameters, also MAP estimates were computed, using the 
same prior as for the parameters of the conjunctive Rasch model. 

A goodness-of-recovery study. In order to get results that are relevant for the 
present data, we generated data sets of the same structure as the original data set (with 
respect to the number of subjects in each group and the number of items), and used the 
MAP estimates from the original data set as the true parameter values to generate them. 
A total of 100 data sets was generated. 

For every true parameter value, the mean and the standard deviation (further 
denoted as standard error) of its 100 estimates was computed. As an estimate of each 
parameter's bias, we computed the absolute value of the difference between the true 
parameter value and the mean of its estimates. In order to evaluate the sizes of the 
estimated biases and standard errors, for each replication, we computed the standard 
deviation of the parameter estimates, separately for each of the four types of parame­
ters (i.e., generating-person, generating-item, evaluating-person, evaluating-item). Fur­
ther, for each replication, we computed the product-moment correlation between the 
true and the estimated parameter values, again separately for each of the four types. 
This statistic was computed because in the following we will consider correlations 
between different sets of parameter estimates (i.e., using subtask and open synonym 
data). Now, in order to make an overall evaluation of the results, the following averages 
were computed: the average bias and standard error, separately for each of the four 
parameter types (over the parameters of each type), and the average standard devia­
tions and correlations (over the replications). These statistics are shown in Table 1. 

For the generating component, parameter recovery is good. The only weak point 
is the bias in the item parameter estimates. For the evaluating component, the results 
are less good, although not unacceptable. Again, person parameter recovery is better 
than item parameter recovery. With respect to the latter, both bias and standard error 
are substantial. As will be shown in the following, the inferior results for the evaluating 
component are due to the relative easiness of this component, resulting in less statis­
tical information. 

Results and Discussion 

Goodness-of-fit. Goodness-of-fit was examined by means of generalized likeli­
hood ratio (GLR) and Pearson chi-square statistics (Mood, Graybill, & Boes, 1974, 

1 Actually, an algorithm that is numerically more efficient than the algorithm described in the previous 
paragraph, was used for this purpose. However, this is of no importance for the problem being examined. 
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TABLE 1 

Goodness-of-Recovery Statistics for the Four Types of 

Conjunctive Rasch Parameter Estimates (see text for explanation) 

Generating Component Evaluating Component 

Person 
Parameters 

0.00774 

0.13916 

0.42468 

0.94092 

Item 
Parameters 

0.13809 

0.31279 

1.84625 

0.98386 

Person 
Parameters 

0.11795 

0.37819 

0.83246 

0.88185 

Item 
Parameters 

0.46315 

0.61567 

0.81231 

0.62708 

p. 419, p. 440-448). With respect to the Pearson chi-square statistic, we had to consider 
the fact that most of the sum score pair and some single sum score groups only contain 
a small number of subjects (e.g., 1, 2, 4), because for this reason the chi-square distri­
bution cannot be expected to be approximated well. Therefore, sum score pair (for the 
open synonym items) and single sum score (for the subtasks) groups were joined. Each 
of the three data sets was arranged in one vector. For the generating and evaluating 
items, the data were arranged according to, respectively, generating and evaluating sum 
score (in descending order). For the open synonym items, the data were first arranged 
according to generating sum score, and within every generating sum score according to 
evaluating sum score. Then, separately for the responses to each of the items, joining 
occurred across adjacent sum score (pair) groups. This can be expressed as follows: 

I G; ( )2 ( )2] 
Q = 2: 2: Oig+ - eig+ + Oig- - e;g- . 

i=t g=t e;g+ eig-

(21) 

In (21), Q denotes the Pearson chi-square statistic. The groups are indexed by g, and 
their total number is denoted by G; (indicating that the grouping may be different for 
different items). Further, o;g+ and o;g- denote, respectively, the observed number of 
correct and incorrect responses to item i by the persons in group g. Their expected 
values, computed at the MAP estimates, are denoted by e;g+ and e;g-, respectively. 
Finally, the criterion of the grouping was that, for all i and g, both e ig+ and e ig- had 
to be larger than 5. 

The Pearson chi-square statistic will be evaluated by locating its value in the 
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chi-square distribution with degrees of freedom equal to the number of free cells (i.e., 
the sum of the G;'s over i) minus the number of estimated parameters. 

We will first consider the results on the goodness-of-fit of the Rasch model for the 
generating and the evaluating items. For the generating items, the Q-statistic equals 
195.608 (df = 184), which corresponds to a p-value of 0.265. And for the evaluating 
items, the Q-statistic equals 222.59 (df = 203), which corresponds to ap-value of0.165. 
Thus, for both the generating and the evaluating items, the Rasch model cannot be 
rejected. The same conclusion was reached when these data were analyzed by means 
of the computer program RIDA (Glas, 1990), which computes some Pearson chi-square 
statistics using conditional maximum likelihood estimates (see Glas, 1988). 

We will now consider the main hypothesis of this study, namely the hypothesis that 
the conjunctive Rasch model involving the two ordinary Rasch models for the gener­
ating and the evaluating items as models for its latent random variables, holds for the 
open synonym items. The GLR-statistic can be used here, because it is possible to 
formulate this hypothesis as a comparison between two hierarchically related models 
for the joint set of responses to the three types of items. The non-restricted model 
involves two ordinary Rasch models for the generating and the evaluating items, and a 
non-restricted conjunctive Rasch model for the open synonym items. The restricted 
model differs from this latter model in that the person and item parameters of the two 
components of the conjunctive Rasch model are restricted to be identical to the cor­
responding parameters of the two ordinary Rasch models for the subtasks. Computing 
the ML or MAP estimates of the parameters of this restricted model involves formula's 
that are somewhat different from the ones presented in the previous section, but not in 
an essential way. Now, the GLR-statistic equals 100.2 (df = 70), which corresponds to 
a p-value of 0.0104. 

We can test the same hypothesis by means of the chi-square statistic defined in 
(21). In this case the number of items(/) equals 66. Now, for the unrestricted model the 
Q-statistic was 631.725 (df 557), which corresponds to a p-value of 0.013 (using 
asymptotic normality). And for the restricted model the Q-statistic was 986.918 (df = 
611), which corresponds to a highly significant p-value of almost 0.0 (using asymptotic 
normality). Thus, whereas the GLR-statistic resulted in a p-value on the boundary of 
significance, the Pearson chi-square statistic clearly rejects the null hypothesis. 

A Comparison of parameter estimates. It is possible to examine to main hypoth­
esis of this study in more detail than by means of the goodness-of-fit statistics described 
above, namely by comparing the parameter estimates from the ordinary Rasch analyses 
of the subtask data with the parameter estimates from the conjunctive Rasch analysis 
of the open synonym data. In the following, we will consider comparisons between five 
sets of Rasch model parameter estimates: two from the ordinary Rasch analyses of the 
subtask data, two from the two-component conjunctive Rasch analysis of the open 
synonym data, and one from the ordinary Rasch analysis of these latter data (see 
further for the reason why this latter analysis was performed). Then, since each com­
parison can be made both with respect to the person and the item parameters, a total 
of 2 x ( ~) = 20 comparisons can be made. 

The most obvious statistic for describing the relation between two sets of param­
eter estimates is the product-moment correlation coefficient. However, the hypothesis 
of identical parameter values for the observed and the latent responses also implies that 
the means and the standard deviations (SDs) of the two sets of parameter estimates 
have to be the same. Comparing to the means of the item parameter estimates only 
makes sense if the same identifiability restriction is imposed on the two sets of person 
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Items 

PSYCHOMETRIKA 

TABLE 2 

Correlations Between the Item Parameter Estimates 

Computed on the Responses to the Generating and the Evaluating 

(row entries) and the Open Synonym Items (column entries) 

Open Synonym Items 

Type of Conjunctive 
Analysis Rasch 

Parameter 
Set Generating Evaluating 

Ordinary 
Rasch 0.931 0.377 

Ordinary 
Rasch 0.428 0.257 

Ordinary 
Rasch 

0.956 

0.448 

parameter estimates. In all five sets of parameter estimates, the mean of the person 
parameter estimates was restricted to zero. 

In Tables 2 to 5 we present correlations between the different sets of item and 
person parameter estimates. And in Table 6 we present their means and SDs. 

Distinguishability. In order for the conjunctive to be well-distinguishable from 
the ordinary Rasch model, it is necessary that the two latent ordinary Rasch models are 
well-distinguishable, which means that the item and the person parameter estimates of 
the two models have to be different. This appears to be the case. In particular, the 
generating and evaluating person parameters of the latent ordinary Rasch models cor­
relate 0.175 (see Table 5), and the corresponding item parameters 0.169 (see Table 3). 
The corresponding correlations obtained using the subtask data are also low; 0.262 for 
the person, and 0.451 for the item parameters (not in the tables). 

Item parameters-Ordinary Rasch estimates of subtask data versus conjunctive 

Rasch estimates of open synonym data. The crucial comparisons in this study are the 
ones between the parameter estimates from the ordinary Rasch analyses of the subtask 
data and the· parameter estimates from the conjunctive Rasch analysis of the open 
synonym data. In the building up of an overall interpretation, it is useful to consider first 
the results on the item parameters. For the generating component the crucial correla­
tion is 0.931, and for the evaluating component it is 0.257 (see Table 2). The means of 
the ordinary Rasch and conjunctive Rasch generating item parameter estimates are 
0.947 and 0.587, respectively (see Table 6), which involves a difference that is signifi­
cantly (with respect to the asymptotic sampling distribution) different from zero (p = 
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TABLE 3 

Correlations Between the Item Parameter Estimates 

Computed on the Responses to the Open Synonym Items 

Type of 
Analysis 

Conjunctive 
Rasch 

Ordinary 
Rasch 

Parameter 
Set 

Generating 

Evaluating 

Open Synonym Items 

Conjunctive 
Rasch 

Generating Evaluating 

1.0 0.169 

0.169 1.0 

0.984 0.311 

541 

Ordinary 
Rasch 

0.984 

0.311 

1.0 

0.001, two-sided). Further, the SDs of these estimates are 1.676 and 1.893 for the 
ordinary Rasch and conjunctive Rasch parameters, respectively (see Table 6). 

For the evaluating item parameters, the differences are much larger. In particular, 
the means of the item parameter estimates are -1.244 and -2.382, for the ordinary 
Rasch and conjunctive Rasch parameters, respectively (see Table 6), which is signifi­
cantly different from zero (p = 0.0, two-sided). Further, the SDs of the item parameter 
estimates are 1.231 and 0.779, respectively (see Table 6). 

From the results on the item parameters, and ignoring the small difference between 
the mean generating item parameter estimates, it appears that the psychological process 
underlying the responses to the open synonym items involves a generating process that 
is the same as the one that is made observable in the generating items. And the eval­
uating process to be made observable in the evaluating items, appears to be not in­
volved at all in the responses to the open synonym items. In this, we take into account 
the fact that the evaluating item parameter recovery was probably less than generating 
item parameter recovery (i.e., we can expect a correlation of about 0.627, see Table 1). 

An ordinary Rasch model for the open synonym data? From the results discussed 
above, it would be obvious to formulate the hypothesis that open synonym items are no 
more than generating items which have to be responded to only by giving the correct 
synonyms (if available). This way of processing the items is possible if the correctness 
of a synonym candidate is immediately obvious to the subject Then, it would follow that 
the ordinary Rasch model for the generating items should also hold for the open syn­
onym items. 
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TABLE 4 

Correlations Between the Person Parameter Estimates 

Computed on the Responses to the Generating and the Evaluating 

(row entries) and the Open Synonym Items (column entries) 

Open Synonym Items 

Type of Conjunctive 
Analysis Rasch 

Parameter 
Set Generating Evaluating 

Ordinary 
Rasch 0.946 0.171 

Ordinary 
Rasch 0.246 0.696 

Ordinary 
Rasch 

0.573 

0.299 

Considering the fit of the ordinary Rasch model for the open synonym items, one 
has to keep in mind that the ordinary Rasch model is a special case of the conjunctive 
Rasch model. In particular, it holds that an ordinary Rasch model is the limiting case of 
a two-component conjunctive Rasch model in which the person parameters of the other 
latent ordinary Rasch model increase relative to the item parameters. In this case, the 
(latent) response probabilities of this latter ordinary Rasch model converge to 1.0. 
Now, for our data, the mean estimated probabilities for the latent generating and 
evaluating components are 0.431 and 0.875, respectively. Thus, one can say that the 
conjunctive Rasch model for the open synonym items is almost an ordinary Rasch 
model. 

The most obvious way to test the hypothesis that the open synonym items are 
merely generating items in disguise, is by performing an ordinary Rasch analysis of the 
open synonym data, and by comparing the resulting estimates to the ones obtained 
using the subtask data. Now, the correlation between the ordinary Rasch open syn­
onym item parameter estimates and the ordinary Rasch generating item parameter 
estimates is 0.956 (see Table 2). The average item parameter estimates are 0.947 and 
0.935 (see Table 6), for the generating and the open synonym items, respectively (no 
significant difference; p = 0.902). Further, the SDs of these two sets of estimates are 
1.676 and l. 797, respectively (see Table 6). The correlation with the Rasch evaluating 
item parameter estimates is 0.448 (see Table 2), and as can be seen from the values 
given above, the means and the SDs are substantially different. Thus, these results are 
completely in line with the hypothesis that open synonym items are no more than 
generating items which have to be responded to by only giving the correct synonyms (if 
available). 
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TABLE 5 

Correlations Between the Person Parameter Estimates 

Computed on the Responses to the Open Synonym Items 

Type of 
Analysis 

Conjunctive 
Rasch 

Ordinary 
Rasch 

Parameter 
Set 

Generating 

Evaluating 

Open Synonym Items 

Conjunctive 
Rasch 

Generating Evaluating 

1.0 0.175 

0.175 1.0 

0.598 0.313 

543 

Ordinary 
Rasch 

0.598 

0.313 

1.0 

Person parameters-Ordinary Rasch estimates of subtask data versus conjunctive 

Rasch estimates of open synonym data. The discussion of the results here is com­
pletely parallel to the one for the item parameters. In particular, the important corre­
lations are the ones between the ordinary Rasch and conjunctive Rasch person param­
eter estimates, which are 0.946 and 0.696 for the generating and the evaluating 
parameters, respectively (see Table 4). The SDs of the ordinary Rasch and conjunctive 
Rasch generating person parameter estimates are 0. 763 and 0.4, respectively (see Table 
6). It is not clear how this difference should be interpreted, and in the following we will 
ignore it. Further, for the evaluating person parameter estimates, the corresponding 
SDs are 0.835 and 0.881 (see Table 6). No comparisons between mean person param­
eter estimates could be made, because of the particular identifiability restriction that 
was imposed. 

From these results it follows that the process underlying the responses to the open 
synonym items involves a generating process that not only involves the same item 
parameters, but also the same latent ability as the one that is made observable in the 
generating items, and an evaluating process that involves different item parameters, but 
approximately the same latent ability as the one that is made observable in the evalu­
ating items. As follows from the mean conjunctive Rasch generating and evaluating 
item parameter estimates (0.587 and -2.382, respectively) and from the mean estimated 
generating and evaluating probabilities (0.431 and 0.875, respectively), this evaluating 
process is much easier than the generating process. 

Actually, it should not be too surprising that the ordinary Rasch and conjunctive 
Rasch evaluating item parameters are different. In fact, the synonym candidates pre­
sented in the evaluating items are probably very different from the lists of synonym 
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TABLE 6 

Means and Standard Deviations of the Item and Person Parameter Estimates 

Computed on the Responses to the Generating. Evaluating. and Open Synonym Items 

Item Type Type of Parameter Item Parameters Person 
Analysis Set Parameters 

Mean SD SD 

Generating Ordinary 
Items Rasch 0.947 1.676 0.763 

Evaluating Ordinary 
!items Rasch -1.244 1.231 0.835 

Generating 0.587 1.893 0.4 
Conjunctive 
Rasch 

Open 
Synonym Evaluating -2.382 0.779 0.881 
Items 

Ordinary 
Rasch 0.935 1.797 0.666 

candidates generated and evaluated covertly by most subjects. The small variation in 
the conjunctive Rasch evaluating item parameter estimates suggests that the evaluating 
difficulties of the covertly generated lists of synonym candidates are unrelated to the 
stimulus words. This obviously has to result in the fact that the variance of the con­
junctive Rasch evaluating item parameter estimates is nothing but error variance. 

Ordinary Rasch estimates of open synonym data from the perspective of the choice 

for the wrong model. Given the evidence for an evaluating process underlying the 
responses to the open synonym items, it is good to reconsider the fact that the latent 
generating process is a little bit easier than the observable one, whereas the mean 
ordinary Rasch open synonym item parameter estimate is almost equal to the mean 
ordinary Rasch generating item parameter estimate. This near-equality probably is an 
artifact resulting from the fact the easier (than in the subtask) generating process in­
volved in the open synonym items compensates for the (relatively rare) incorrect re­
sponses on the second component. This compensation mechanism does not have a 
strong effect on the correlation between the ordinary Rasch generating and open syn­
onym item parameter estimates, because the SD of the conjunctive Rasch evaluating 
item parameter estimates is small in comparison with the SD of the conjunctive Rasch 
generating item parameter estimates (SDs of 0.779 versus 1.893). 

In a similar way as for the item parameter estimates, the results ofthe comparisons 
involving the ordinary Rasch open synonym person parameter estimates can be ex-
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plained as resulting from the choice of the wrong model for the open synonym data. In 
particular, the correlation between the ordinary Rasch open synonym and generating 
person parameter estimates is only 0.573 (see Table 3). This low correlation is in 
accordance with the relatively large SD of the conjunctive Rasch evaluating person 
parameter estimates (0.88 versus 0.4 for the conjunctive Rasch generating person pa­
rameter estimates). Thus, whereas the small SD of the conjunctive Rasch evaluating 
item parameter estimates could not keep down the correlation between the ordinary 
Rasch open synonym and generating item parameter estimates, the same thing was 

possible for the corresponding person parameter estimates. 
Finally, the low correlation between the ordinary Rasch open synonym and eval­

uating person parameter estimates (i.e., 0.299; see Table 3) can be explained in a similar 
way. In particular, given that there is so little variation in the correctness of the latent 
evaluating responses in comparison with the variation in the correctness of the latent 
generating responses, one cannot expect the evaluating ability to show up in an ordi­
nary Rasch analysis of the open synonym data. This small variation in the correctness 
of the latent evaluating responses can exist despite the large variation in the evaluating 
person parameters, because the latent evaluating process is so easy. 

Conclusion. Concluding, we can put forward a psychological theory about the 
process involved in solving open synonym items, which accounts for almost all of the 
available evidence. Solving an open synonym item involves a process of generating 
synonym candidates. This process involves the same latent ability as the one involved 
in responding to generating items. However, the item difficulties of these two generat­
ing processes (one involved in solving open synonym item, and the other in responding 
to generating items) differ by a small constant quantity (for all items); the latent gen­
erating process is a little bit easier than the observable one. 

The second process involved in solving open synonym items is evaluating the 
correctness of the synonym candidates. This process involves approximately the same 
latent ability as the one involved in the evaluating items. However, the item difficulties 
of these two evaluating processes are completely different. This is most likely due to the 
fact that the synonym candidates presented in the evaluating items are different from 
the lists of synonym candidates generated covertly by most subjects. 

Comments on the Method of Analysis 

One has to keep in mind that the subjects were grouped according to their sum 
scores on the generating and evaluating items. Because of this fact, the approach is a 
confirmatory one, whereas an exploratory approach is to be preferred (preferred with 
respect to the analysis of the open synonym data; comparing the resulting parameter 
estimates with those from the analyses of the subtask data, which is also a confirmatory 
approach, is not considered to be less preferrable than a study without such a compar­
ison). This exploratory approach would involve an application of the conjunctive Rasch 
model to the open synonym data without making use of external information on the 
underlying dimensions. Because of technical (too many parameters and data points) 
and statistical (incidental parameters, consistency) problems, using the fixed-effects 
(unconditional) conjunctive Rasch model in this exploratory way is not advisable. 
Clearly, what is needed here is a marginal version of the conjunctive Rasch model, 
which solves both of the above problems but confronts us with the technical problems 
involved in multivariate numerical integration. 

Using the conjunctive Rasch model in this exploratory way does not preclude 
making use of subtask data in order to test hypotheses about the relations between the 
underlying dimensions, but this second part is simply not needed. Without making use 
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of subtask data, this exploratory approach is, in essence, conjunctive item factor anal­

ysis, and as such an alternative for compensatory item factor analysis (Bock & Aitkin, 
1981; Muthen, 1978). An example of this approach is given by Embretson (in press) who 
also presents a method for examining the nature of the underlying dimensions that does 
not make use of subtask data. 

With respect to an analysis by means of the conjunctive Rasch model, either in its 
fixed-effects or its marginal version, there are two more points that still require some 
study. First, there is the question of the uniqueness of the solution of the likelihood 
equations (or posterior PDF equations). Although multiple analyses using random start­
ing values (as in this example) can give some reassurence on this point, it is clear that 
only analytical evidence is fully satisfactory. An interesting question in this respect is 
whether the conjunctive Rasch model suffers from a similar weakness as the so-called 
rotational invariance of the item factor analysis model, which is for a great deal re­
sponsible for the fact that the psychological interpretation of the underlying dimensions 
is largely a subjective matter. 

Second, there is the question of the goodness-of-recovery of the true parameter 
values (involving consistency, bias and sampling variance). Working with some mar­
ginal version of the conjunctive Rasch model gives us consistent ML estimates under 
some weak regularity conditions (see Kiefer & Wolfowitz, 1956). But even in this case, 
we still need information on the estimates' biases and sampling variances for sample 
sizes encountered in practice. A large-scale simulation study would give this informa­
tion. An important factor in the design of such a simulation study is the component's 
difficulty, which determines the amount of statistical information with respect to its 
parameters. In particular, if this component is either very easy or very difficult, this 
amount of statistical information will be small (because large changes in the parameter 
values result in small changes in the loglikelihood). This leads to estimates having large 
asymptotic sampling variances. This was the case in the simulation study on which is 
reported in this paper: the mean conjunctive Rasch generating and evaluating item 
parameter estimates (which served as the true parameter values in the simulation study) 
were, respectively, 0.587 and -2.382 (see Table 6), which correspond to mean esti­
mated latent response probabilities for the generating and evaluating components of, 
respectively, 0.431 and 0.875. Therefore, it is no surprise that the goodness-of-recovery 
for the parameters of the evaluating component was worse than for the generating 
component (see Table 1). 
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