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PSYCHOMETRIC NETWORK MODELS FROM TIME-SERIES AND PANEL DATA

Sacha Epskamp

UNIVERSITY OF AMSTERDAM

Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical
models (GGMs)—an undirected network model of partial correlations—between observed variables of
cross-sectional data or single-subject time-series data. This assumes that all variables are measured without
measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between
within-subject and between-subject effects. This paper provides a general framework that extends GGM
modeling with latent variables, including relationships over time. These relationships can be estimated
from time-series data or panel data featuring at least three waves of measurement. The model takes the
form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when
estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have
been implemented in the software package psychonetrics, which is exemplified in two empirical examples,
one using time-series data and one using panel data, and evaluated in two large-scale simulation studies.
The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects
may in principle be separated from between-subject effects, the interpretation of these results rests on the
intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.

Key words: network psychometrics, Gaussian graphical model, structural equation modeling, dynamics,
time-series data, panel data.

1. Introduction

Researchers in the field of network psychometrics (Marsman et al., 2018) study the estimation

of multivariate statistical models in attempts to map out the complex interplay of interactions

between variables. This field emerged from the network perspective on psychology (Borsboom,

2017; Cramer, Waldorp, van der Maas, & Borsboom, 2010)—departing from the latent variable

model and instead conceptualizing observed variables (e.g., attitudes, symptoms, and moods) as

causal agents in a complex interplay of psychological (and other) components. In recent years,

network models have become useful additions to the psychometric toolbox. For example, network

models provide useful visualization tools to check the fit of latent variable models (Epskamp,

Cramer, Waldrop, Schmittmann, & Borsboom, 2012), are closely tied and often equivalent to

latent variable models (Marsman et al., 2018), are often uniquely identified (Epskamp, Waldorp,

Mõttus, & Borsboom, 2018), and may provide exploratory insight into the underlying factor

structure by investigating its clustering (Golino & Epskamp, 2017).

In a psychometric network model,1 variables are represented by nodes that are connected by

edges, which are weighted according to some statistic. In this paper, I focus on two particular net-

work models now routinely used in the analysis of continuous data: the Gaussian graphical model

(GGM; Epskamp, Waldorp, et al., 2018; Lauritzen, 1996) and the graphical vector-autoregression

model (GVAR; Epskamp, Waldorp, et al., 2018; Wild et al., 2010). The GGM forms an undirected

network model, in which edges represent partial correlation coefficients. The GGM is closely tied,

Correspondence should be made to Sacha Epskamp, Department of Psychology: Psychological Methods Groups,

University of Amsterdam, PO Box 15906, 1001 NKAmsterdam, The Netherlands. Email: sacha.epskamp@gmail.com

1Note: the network models discussed here include nodes that represent random variables. The term network model

is also often used to describe models that feature random edges and/or the observed variables (e.g., social networks). For
an extensive discussion on the differences between these kinds of models, see Epskamp, Fried, et al. (2018).
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but not fully equivalent, to the directed structures typically used in structural equation modeling

(SEM; Epskamp, Rhemtulla, & Borsboom, 2017) and is often estimated from cross-sectional data

(Fried et al., 2017), in which many subjects are measured only once. The (lag-1) GVAR model

takes the form of a generalization of the GGM in single-subject time series (Epskamp, Waldorp,

et al., 2018). In the GVAR, temporal dependencies are modeled via a regression on the previous

measurement occasion, which leads to a matrix of regression coefficients that can also be used

to draw a directed network model (Bringmann et al., 2013)—often termed the temporal network

because it encodes predictive effects over time. The remaining variances and covariances (i.e.,

the covariance structure after controlling for the previous measurement occasion) can be modeled

as a GGM, which is also termed the contemporaneous network. When time series of multiple

subjects are available, a third GGM can be formed on the between-subject effects (relationships

between stable means)—also termed the between-subject network.

Current practices in network psychometrics feature two pressing limitations. (1) Although

network modeling has been proposed as an alternative to latent variable modeling (i.e., covariation

is caused by one or more unobserved common causes), the complete omission of latent variables

may be one step too far (Bringmann & Eronen, 2018; Fried & Cramer, 2017; Guyon, Falissard,

& Kop, 2017). Network models for observed variables rely on the assumption that all causally

interacting variables are observed without error. However, a certain level of measurement error

(Schuurman, Houtveen, & Hamaker, 2015) should be assumed in psychological data. (2) Network

models are now often estimated from cross-sectional data. However, such results are not reflec-

tive of within-subject dynamics over time (Bos et al., 2017; Molenaar, 2004). Cross-sectional

analysis cannot distinguish between within- and between-subject variances (Hamaker, 2012) or

indeed investigate temporal effects over time. In principle, panel data, in which many subjects are

measured a few times, can be used to distinguish between within- and between-subject effects

(Hamaker, Kuiper, & Grasman, 2015), but have only been sparingly discussed in network psy-

chometrics (e.g., Rhemtulla, Van Bork, & Cramer, 2017). Prior literature has tackled these topics

separately. For example, Epskamp, Rhemtulla, and Borsboom (2017) addressed Limitation 1 by

proposing to form a psychometric framework to incorporate GGMs in latent variable models, both

at the latent level (latent network models) and at the residual level (residual network models). The

multi-level GVAR model (Epskamp, Waldorp, et al., 2018) can overcome Limitation 2 but does

not include latent variables and requires intensive repeated measures of many subjects.

The goal in this paper is to combine the above-described solutions into a general framework.

The framework emerges by combining a general factor model and a GVAR model and is referred

to as the lvgvar model.2 I will discuss estimation in two very distinct settings:

• Time-series data of a single subject. This setting will be termed ts-lvgvar.

• Panel data of many subjects measured on a few (at least three) measurement occasions.

This setting will be termed panel-lvgvar.

These settings differ crucially from one another. ts-lvgvar concerns a fixed subject (fixed subject

p), which involves variation over measurement occasions (random time T ). Meanwhile, panel-

lvgvar concerns variation over subjects (random subject P) at a few fixed time points t, t +

1, t + 2, . . .. The panel-lvgvar is a multi-level model with random effects on the mean structure.

I showcase both methods using two empirical examples and assess the performance of model

search strategies through two large-scale simulation studies. Finally, I discuss the generalizability

of results between these settings in detail. The lvgvar framework is implemented in the open-

source software package psychonetrics.3

2An alternative perspective is that the lvgvar is a combination of a dynamic factor model (Molenaar, 1985, 2017)
with a GGM on the autoregression’s residuals.

3http://psychonetrics.org.

http://psychonetrics.org
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2. Preliminary Topics

2.1. Notation

This paper uses a similar notation as Epskamp, Waldorp, et al. (2018). Roman letters indicate

observed variables, and Greek letters indicate parameters or latent variables. Bold-faced lower-

case letters indicate vectors, and bold-faced uppercase letters indicate matrices. Normal-faced

lowercase letters indicate fixed values, and normal-faced uppercase letters indicate random vari-

ables. These notations are also used in the subscript of a vector. For example, yyy p,t indicates a fixed

response pattern yyy for subject p on fixed measurement occasion t ; yyy P,t indicates the response

vector of a random subject P at fixed measurement occasion t ; and yyy p,T indicates the response

vector of a fixed subject p at a random measurement occasion T .

2.2. Estimation

Suppose n cases (people or time points in this paper) are measured on nz variables, with zzzc

denoting the response vector of case c, which is the cth row of a data matrix ZZZ . The vector zzzC

will be assumed normally distributed:

zzzC ∼ N (μμμ,���),

in which μμμ represents a mean vector and ��� represents a variance–covariance matrix.4 Let z̄zz

represent the sample means:

z̄zz =
1

n

n
∑

c=1

zzzc.

Furthermore, let S̄SS represent the sample variance–covariance matrix:

S̄SS =
1

n

n
∑

c=1

(zzzc − z̄zz)(zzzc − z̄zz)⊤.

Using these summary statistics and assuming multivariate normality, we can estimate parameters

by minimizing the following fit function:

FML = trace
(

SSS���−1
)

+ (z̄zz − μμμ)⊤���−1(z̄zz − μμμ) − ln |���−1|, (1)

which is proportional to −2/n times the log-likelihood of the data. Full information maximum

likelihood estimation (FIML) can be used when data are missing. To this end, the data can be

subdivided in subsets of data that have the same missingness patterns. The FIML fit function to

be minimized takes the following form:

FFIML =
1

n

∑

i

ni

(

trace
(

SSSi���
−1
i

)

+ (z̄zzi − μμμi )
⊤ ���−1

i (z̄zzi − μμμi ) − ln |���−1
i |

)

, (2)

4Henceforth, superscripts on μμμ and ��� will clarify the variable vector over which the means/variances are defined.
For notational simplicity, I drop superscript (zzz).
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in which ni represents the sample size of subset i ; SSSi is the sample variance–covariance matrix

of subset i (note, SSSi = OOO if ni = 1); z̄zzi conotes the sample means of subset i (note, it is the same

as the observed score if ni = 1); ���i is a subset of ��� that only contains elements of observed data

in subset i ; and μμμi is a subset of μμμ that only contains elements of observed data in subset i .

2.3. Factor Model

Let ηηηp,t indicate a length nη vector of variables of interest at time point t for subject p. If ηηη is

not observed, it may be assumed that ηηη linearly causes observed indicators in a length ny vector

yyy according to a linear factor model:

yyy p,t = τττ + ���ηηηp,t + εεε p,t , (3)

in which τττ is a general intercept vector; ��� is a matrix of factor loadings; and εεε p,t is a vector

of residuals. Assume that the residuals, denoting measurement error or nuisance variables, have

mean 000 across people but not necessarily across time:

E
(

εεεP,t

)

= 000 No general bias across people.

E
(

εεε p,T

)

= μμμ(εεε)
p Subject p may respond consistently biased.

It is possible, without loss of information, to regard any of the above variable vectors as composites

of the mean of subject p, denoted withμμμp, and deviation from that mean in measurement t , denoted

with ξξξ p,t :

yyy p,t = μμμ
(yyy)
p + ξξξ

(yyy)
p,t Observed scores are composed of a mean plus deviation.

ηηηp,t = μμμ(ηηη)
p + ξξξ

(ηηη)
p,t Latent variables are composed of a mean plus deviation.

εεε p,t = μμμ(εεε)
p + ξξξ

(εεε)
p,t Residuals are composed of general bias plus time-specific bias,

with the expected value of all ξξξ vectors concerning either random people or random measurement

occasions set to equal zero and no assumed temporal dependency between the residual deviations.

It is then possible to formulate the measurement model of Eq. (3) in a within-subject and a between-

subject part:

μμμ
(yyy)
p = τττ + ���μμμ(ηηη)

p + μμμ(εεε)
p Between-subject measurement model stable over time.

ξξξ
(yyy)
p,t = ���ξξξ

(ηηη)
p,t + ξξξ

(εεε)
p,t Within-subject measurement model varying over time. (4)

Note, the lack of subscripts on ��� and τττ indicates an assumption of measurement invariance

across subjects and time (Adolf, Schuurman, Borkenau, Borsboom, & Dolan, 2014) and across

within- and between-subject models.5 Because of the assumption of measurement invariance

across subjects in τττ , no intercept is included in the within-subject measurement model.

5In the ts-lvgvar, the model is estimated for an individual subject, so measurement invariance assumptions across
subjects and across within- and between-subject models are not needed per se there for estimation. Furthermore, mea-
surement invariance across subjects can be tested in the ts-lvgvar through multi-group models already implemented in
psychonetrics, but this was beyond the scope of the current paper.
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2.4. Network Models

2.4.1. The Gaussian Graphical Model The GGM can be formed as a model for a variance–

covariance matrix ��� using the following notation (Epskamp, Rhemtulla, & Borsboom, 2017):

��� = ���(III − 			)−1 ���. (5)

In this expression, ��� is a diagonal scaling matrix that controls the variances, and 			 is a square

symmetrical model matrix with zeroes on the diagonal and partial correlation coefficients on the

off diagonal. Note, the expression above is identical to inverting ���, standardizing the result, and

multiplying all off-diagonal elements by −1. The sparsity (zeroes) in off-diagonal elements of 			

will equal the sparsity in the precision matrix ���−1, which can equivalently be modeled to obtain

a GGM. However, the expression above has some benefits, namely in that the sign of the obtained

parameters is in line with the interpretation and that the expression allows users to constrain partial

correlations equally across groups while allowing the scale to vary freely (Kan, van der Maas, &

Levine, 2019).

2.4.2. The Graphical Vector-Autoregression Model The GVAR model utilizes two network

structures to extend the GGM when observations are temporally dependent: the temporal network

and the contemporaneous network. Assuming stationarity in all parameters over time, the model

can be written as a regression on the previous time point. The typical formation for observed

variables takes the following form (ignoring a subscript p for subject):

yyyt = μμμ + BBB (yyyt−1 − μμμ) + ζζζ t , ζζζ T ∼ N
(

000,���(ζζζ )
)

,

in which ζζζ t represents a vector of normally distributed innovations. Equivalently, the model can

be written in terms of a conditional normal distribution:

yyyT | yyyT −1 = yyyt−1 ∼ N (μμμ + BBB (yyyt−1 − μμμ) ,���(ζζζ )).

The matrix BBB encodes temporal within-subject effects, and its transpose is typically used to display

a personalized weighted directed network of temporal effects (Bringmann et al., 2013). The matrix

can also be standardized to partial directed correlations (Wild et al., 2010). The matrix ���(ζζζ )

encodes within-subject contemporaneous effects—associations between variables in the same

measurement occasion after taking temporal effects into account—and can be used to obtain a

personalized undirected network structure with a GGM (Epskamp, Van Borkulo, et al., 2018)

using Expression (5). The assumption of stationarity can further be used to obtain expressions for

the stationary variance–covariance structure as well as the lag-k variance–covariance structure, as

depicted below. Finally, the mean structure itself may vary across subjects, which could be used

to form a GGM on the between-subject level: the between-subject network.

3. Time-Series Data: The ts-lvgvar Model

The ts-lvgvar concerns a fixed subject p and takes measurement T as random. Assuming

multivariate normality for all variables, the following may be formulated:

yyy p,T ∼ N
(

μμμ
(yyy)
p ,���

(yyy)
p,0

)

Within-subject distribution of observed variables.
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ηηηp,T ∼ N
(

μμμ(ηηη)
p ,���

(ηηη)
p,0

)

Within-subject distribution of latent variables.

More generally, the within-subject lag-k covariances can be defined as:

cov
(

yyy p,T +k, yyy p,T

)

= ���
(yyy)

p,k Observed variables within-subject lag-k covariances.

cov
(

ηηηp,T +k,ηηηp,T

)

= ���
(ηηη)
p,k Latent variables within-subject lag-k covariances,

with the superscript indicating the variable of interest. As seen in Eq. (4), the expected mean vector

μμμ
(yyy)
p is a composite of the intercept, the latent means, and the systematic bias in subject p. Because

μμμ
(εεε)
p has the same length as yyy

(εεε)
p , it is not possible to estimate this bias from time-series data of a

single subject, or even from an analysis with a few subjects, even when equality constraints are

placed on the intercepts and factor-loading structure (because the latent means may vary, which

may be the topic of interest). Therefore, an identifying assumption μμμ
(εεε)
p = 000 is required in the

ts-lvgvar setting. Note, any within-subject variation is due to variations in deviations from the

mean, which is denoted here with ξξξ . As a consequence, the within-subject mean structure takes

the following form:

μμμ
(yyy)
p = τττ + ���μμμ(ηηη)

p Stationary within-subject means,

and the variance–covariance structure takes the following form:

���
(yyy)

p,k =

{

������
(ηηη)
p,k���

⊤ + ���
(εεε)
p if k = 0,

������
(ηηη)
p,k���

⊤ otherwise,

Stationary within-subject

lag-k (co)variances.
(6)

This matrix captures within-subject variation, with k indicating the lag, which may differ person

to person.

The relationships between the latent variables may be modeled as a lag-1 GVAR. Assuming

stationarity, the structural model then becomes:

vec
(

���
(ηηη)
p,0

)

=
(

III ⊗ III − BBB p ⊗ BBB p

)−1
vec

(

���
(ζζζ )
p,0

)

Stationary latent variation.

���
(ηηη)
p,k = BBB p���

(ηηη)
p,k−1 Stationary lag-k covariances between latent variables.

The innovation variance–covariance matrix can further be modeled as a GGM to obtain a latent

contemporaneous network:

���(ζζζ )
p = ���(ζζζ )

p

(

III − 			(ζζζ )
p

)−1
���(ζζζ )

p .

This leads to two network structures: a temporal network modeled with BBB p, and a contempora-

neous network modeled with 			
(ζζζ )
p . Typical SEM identifying constraints are needed to make the

model discernible, such as having nonnegative degrees of freedom, placing μμμ
(ηηη)
p = 000 in a single-

subject setting, and constraining either the first factor loadings in ��� or the diagonal elements of

���
(ζζζ )
p to one.
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3.1. Estimation

With the exception of modeling contemporaneous relationships as a GGM, the ts-lvgvar takes

the form of a dynamic factor model (Molenaar, 1985, 2017), which is often estimated by using

a Toeplitz matrix (Hamaker, Dolan, & Molenaar, 2002). Let zzz⊤
t =

[

yyy⊤
p,t yyy⊤

p,t+1

]

represent a pair

of consecutive responses, and let ��� = var(zzzT ). It follows that ��� will take the form of a Toeplitz

matrix:

��� =

[

���∗ ���
(yyy)⊤
p,1

���
(yyy)
p,1 ���

(yyy)
p,0

]

.

It is evident that ���∗ = ���
(yyy)
p,0. However, modeling these blocks with the same parameters may lead

to a false number of degrees of freedom, as the data will be copied to obtain these blocks. To this

end, I keep the model for ���∗ saturated with a unique set of parameters. The same holds for the

mean structure:

μμμ =

[

μμμ∗

μμμ(yyy)

]

.

Before fitting such a model, the data need to be structured in a certain way. In general, an augmented

data matrix can be created by copying the data, shifting it by one row, and appending it to the

former data matrix. However, it may be warranted to remove certain pairs (e.g., removing effects

that occur over night). If someone is measured three times per day for three days, indicating that

Day 1 consists of measurements 1, 2, 3; Day 2 of 4, 5, 6; and Day 3 of 7, 8, 9. The data may then

be structured as follows:

ZZZ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. yyy⊤
p,1

yyy⊤
p,1 yyy⊤

p,2

yyy⊤
p,2 yyy⊤

p,3

. yyy⊤
p,4

yyy⊤
p,4 yyy⊤

p,5

yyy⊤
p,5 yyy⊤

p,6

. yyy⊤
p,7

yyy⊤
p,7 yyy⊤

p,8

yyy⊤
p,8 yyy⊤

p,9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7)

The parameters may now be estimated by optimizing the FIML fit function (2). It should be noted

that fitting such a time-series model to the Toeplitz matrix may not be the best course of action

because the resulting fit function does not represent the true likelihood of the data. A different

method would be to construct one large variance–covariance matrix for the entire vectorized

dataset and subsequently evaluate the likelihood by treating this as a single observation (Ciraki,

2007, p. 90). Ciraki, (2007) provides derivatives for these (more) general dynamic SEMs—with

the exception that the contemporaneous effects are modeled at the variance–covariance level rather

than at the GGM level. This estimation method, however, is computationally very expensive and

has therefore not been implemented in the psychonetrics package.
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3.2. Empirical Example

To exemplify the ts-lvgvar, I analyzed time-series data previously studied by Wichers, Groot,

Psychosystems, Group, and Others (2016) and made public by Kossakowski, Groot, Haslbeck,

Borsboom, and Wichers (2017). This dataset concerns a 57-year-old man with a history of major

depression, who was measured over the course of 239 days through the experience sampling

method (ESM) using a digital device with a touch screen. During the study, the participant

reduced the intake of antidepressants and relapsed into a clinical depression (Wichers et al.,

2016). Because of the assumed stationarity in the ts-lvgvar, I selected only the previously unstud-

ied post-assessment phase (days 156 to 239) during which medication levels were no longer

changed. Furthermore, I selected 28 items that were continuous and varied substantively across

the sample. These items were designed to measure mood states, pathological symptoms, self-

esteem, and physical condition. Before analyzing the data, I tested each individual item for a

linear trend by regressing the item scores on the time variable and replaced scores for each sig-

nificant (α = 0.05) regression with the residuals.

Measurement Model Formation Because the original study did not measure items according

to a predefined measurement model, I set out to find a factor structure that leads to a limited number

of indicators per factor. To this end, I first performed a parallel analysis on the data, which led me

to retain five factors. Next, I performed an exploratory factor analysis (EFA) on the dataset using

an oblimin rotation. In order to get a comparable number of indicators for each factor and to reduce

the number of indicators to a number the software could handle (given decent computation speed),

I determined the three indicators with the strongest absolute factor loadings for each of the five

factors and discarded all other indicators. This led to the retention of 14 indicators6: “irritated,”

“satisfied,” “lonely,” “anxious,” “enthusiastic,” “guilty,” “strong,” “restless,” “agitated,” “worry,”

“ashamed,” “tired,” “headache,” and “sleepy,” which were all measured using 7-point scales.

Finally, I formed the “confirmatory” model7 by making all factor loadings that had a stronger

absolute value than 0.25 in the EFA solution free parameters and by constraining all other factor

loadings to zero. Both the parallel analysis and EFA were performed using version 1.8.12 of

the psych package for R (Revelle, 2018). Figure 2a visualizes the standardized factor loadings

of the final estimated ts-lvgvar model (explained below), with the factors reordered to improve

readability. The factors can roughly be interpreted as positive affect or positive activation (F1),

self-consciousness (F2), anxiety (F3), irritability or negative activation (F3), somatization (F4),

and anxiety (F5).

Model Estimation I fitted the ts-lvgvar model using version 0.4 of the psychonetrics package

(code available in supplementary materials at https://osf.io/z5hbs/). The augmented data in the

final model, as shown in Eq. (7), contained 486 rows of observations with 21.4% missingness.

Using FIML estimation, I first estimated a model in which the latent network structures (tempo-

ral and contemporaneous) were fully connected. The residual variances were estimated using a

Cholesky decomposition,8 which ensured that all residual variances were nonnegative. Although

exact fit was rejected, χ2(234) = 447.07, p < 0.001, the model showed adequate close fit. The

root-mean-square error of approximation (RMSEA) was 0.043 (95% CI 0.037–0.049), and most

incremental fit indices were acceptable (NFI = 0.91, PNFI = 0.74, TLI = 0.95, NNFI = 0.95,

RFI = 0.89, IFI = 0.96, RNI = 0.96, CFI = 0.96). Next, I fixed to zero all edges from the con-

temporaneous and temporal network that were not significant at α = 0.01, and refit the model.

Finally, I performed stepwise model search to find a model with optimal Bayesian information

6The item “lonely” featured in the top three indicators of two factors.
7It should be noted that there is nothing “confirmatory” about this measurement model because it was obtained using

a highly exploratory method.
8Because the residual variance–covariance matrix is diagonal, its Cholesky decomposition is simply a diagonal matrix

with the square root of the residual variances on the diagonal.

https://osf.io/z5hbs/
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2. Fix all edges in Mcur that are not
significant at α to zero (removing the edge
from the model) and re-estimate the Mcur

3. Form a list E full that includes (1)
all included edges in Mcur that are
not significant at α and (2) all edges

not included in Mcur that have a
significant modification index at α

is E full

empty?
Return Mcur

4. Set Esub ← E full

5. For each edge i listed in Esub, fit
a proposal model M

prop
i in which

edge i is included or removed in Mcur

Any M
prop
i

with lower
BIC than
Mcur?

E full =
Esub?

6. For every edge i, remove i

from Esub if the BIC of M
prop
i

is higher than the BIC of Mcur.

7. With j representing the added/removed
edge that reduced BIC the most, set

Mcur ← M
prop
j and remove j from Esub.

Is Esub

empty?

1. Estimate model Mcur with saturated
network structures (all edges included)

yes

no

no
yes

no

yes

no

yes

Figure 1.
Model search strategy used for given α level (here, α = 0.01 was used) in the ts-lvgvar and panel-lvgvar example
analyses. For the ts-lvgvar, model selection is performed on the temporal network BBB p and the contemporaneous network

			
(ζζζ )
p , and for the panel-lvgvar model selection is performed on the temporal network BBB∗, the contemporaneous network

			(ζζζ )

within
, and the between-subject network 			(ζζζ )

between
. This algorithm has been implemented in the modelsearch function

in the psychonetrics package.

criterion (BIC). The details of this algorithm are further explained in Fig. 1. This pruned model

did not fit significantly worse than the original model, �χ2(25) = 36.80, p = 0.06, featured

a lower AIC (�AIC = 13.2) and a lower BIC (�BIC = 117.85). The pruned model featured

an acceptable RMSEA of 0.042 (95% CI 0.036–0.048), with mostly acceptable incremental fit

indices (NFI = 0.91, PNFI = 0.82, TLI = 0.95, NNFI = 0.95, RFI = 0.90, IFI = 0.95,

RNI = 0.95, CFI = 0.95).

Figure 2 shows the temporal effects, standardized to partial directed correlations (Wild et al.,

2010), and the estimated contemporaneous partial correlation network. Table 1 shows the numeric

estimates of these networks and the model-implied marginal contemporaneous correlations. In

the estimated model, each of the five factors featured strong positive autoregressions, also termed

inertia. At the temporal level, deviations in the second factor (self-consciousness) predicted lower

levels of the first factor (positive activation) over time. At the contemporaneous level, the first

factor played a central role: High levels of positive activation seemed to be uniquely associated

with lower levels in all of the other four negative factors.

Bootstrap Results To assess the stability of the estimation algorithm, I performed 1000 case-

drop bootstraps (Epskamp, Borsboom, & Fried, 2017) in which I dropped 25% of the data and

reestimated the model structure using the search strategy of Fig. 1. The 25% rate was chosen in line

with previous simulation studies on the use of case-drop bootstraps in cross-sectional networks,

which suggests dropping a minimum of 25% cases may be needed to assess stability of the

network structure. To take temporal dependency into account, I dropped a block of data rather than

individual rows from the dataset in each bootstrap sample, starting from a measurement occasion

chosen at random. Figures 2e and 3e visualize the number of times that each signed edge would be

included in the estimated model, and Table 2 shows the raw number of times each parameter was

included (ignoring sign). These results indicate a high level of stability in the inertia parameters

(included in 749 to 1000 bootstrap samples) as well as the contemporaneous edges (included in

945 to 1000 bootstrap samples). At the temporal level, it is noteworthy that the temporal edge from

F2 to F1 was only included in 290 bootstrap samples, and a temporal edge in the reverse direction
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(a) (c)

(b) (d)

(e)

Figure 2.
Results of the ts-lvgvar analysis of the post-assessment data from Kossakowski et al. (2017). Blue edges indicate positive
effects, and ref edges indicate negative effects. The estimated within-subject latent network structures (b and d) were
estimated together with the measurement model in a. Panels c and e show how often each edge was included in a 25%
case-drop bootstrap (Color figure online).

(F1 to F2) was included 444 times. Even though both edges could be included in principle, none

of the bootstrap samples featured both edges simultaneously included, indicating that in 734 of

the bootstrap samples one temporal edge of any direction was included between F1 and F2. In

the original sample, models with both edges or only F1 → F2 fitted only slightly worse than the

model with only F2 → F1 in both AIC (�AIC = −1.16 and �AIC = −10.08, respectively)

and BIC (�BIC = −5.35 and �BIC = −10.08, respectively). Thus, there is some evidence that

the relationship between F1 and F2 may be reciprocal. Noteworthy at the contemporaneous level

is that some negative partial correlations were included in bootstrap samples where one would

expect positive effects: negative relationships between F2 and F3 were included 333 times and

negative relationships between F2 and F5 were included 110 times. These negative edges are

noteworthy because these would be expected when F1 is a common effect of the other factors

(Epskamp, Waldorp, et al., 2018). However, because these were only included sparingly, they

cannot be interpreted substantively.
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Table 1.
Numeric results of the ts-lvgvar analysis of the post-assessment data from Kossakowski et al. (2017).

F1 F2 F3 F4 F5

(a) Estimated partial directed correlation

F1 0.22 – – – –

F2 −0.22 0.50 – – –

F3 – – 0.35 – –

F4 – – – 0.37 –

F5 – – – – 0.29

(b) Estimated partial contemporaneous correlations (lower triangle) and

model-implied marginal contemporaneous correlations (upper triangle)

F1 – −0.60 −0.69 −0.52 −0.38

F2 −0.43 – 0.41 0.31 0.23

F3 −0.54 – – 0.36 0.26

F4 −0.35 – – – 0.20

F5 −0.24 – – – –

Table 2.
The number of times each parameter was included in the case-drop bootstrap ts-lvgvar analysis of the post-assessment
data from Kossakowski et al. (2017).

F1 F2 F3 F4 F5

(a) Number of times temporal effects were included

F1 1000 444 44 19 69

F2 290 918 44 56 23

F3 46 121 1000 157 32

F4 0 0 0 1000 0

F5 0 0 0 0 749

(b) Number of times contemporaneous effects were included

F2 998

F3 1000 333

F4 1000 0 5

F5 945 110 0 0

Each replication (100 in total) was based on a 75% subsample of the original dataset. Bold-faced values

indicate parameters that were included in the original analysis.

4. Panel Data: The panel-lvgvar Model

The panel-lvgvar concerns the variation across random people in a few fixed measurement

occasions t, t + 1, . . . (i.e., the distributions over people).

yyy P,t ∼ N
(

μμμ
(yyy)
t ,���

(yyy)
t

)

Cross-sectional distribution of observed variables.

ηηηP,t ∼ N
(

μμμ
(ηηη)
t ,���

(ηηη)
t

)

Cross-sectional distribution of latent variables,

Stationarity is assumed in time, and therefore, it is assumed that these structures do not change

over time. Hence, subscript t in the mean vectors and in the variance–covariance matrices above
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can be replaced with the symbol †:

μμμ
(...)
t = μμμ

(...)
† ,���

(...)
t = ���

(...)
† ∀t Equal means and (co)variances for all time points.

From the measurement model in Eq. (4), the expected value becomes:

μμμ
(yyy)
† = τττ + ���μμμ

(ηηη)
† Expected cross-sectional observed scores.

As for any fixed time point t , cov
(

μμμ
(yyy)

P , ξξξ
(yyy)

P,t

)

= OOO by definition, the lag-k variance–covariance

structure can be derived as:

���
(yyy)

k = var
(

μμμ
(yyy)

P

)

+ cov
(

ξξξ
(yyy)

P,†+k, ξξξ
(yyy)

P,†

)

. (8)

Note that var
(

μμμ
(yyy)

P

)

relates to purely between-subject variation. The between-subject variance–

covariance structure can therefore be defined as follows:

���(ηηη)

between
= var

(

μμμ
(ηηη)
P

)

between-subject latent (co)variances,

���(εεε)

between
= var

(

μμμ
(εεε)
P

)

between-subject residual (co)variances,

���(yyy)

between
= var

(

μμμ
(yyy)

P

)

= ��� ���(ηηη)

between
���⊤ + ���(εεε)

between
between-subject (co)variances. (9)

This matrix equals the first part of Eq. (8). As for the second part, by virtue of the law of total

expectation, the fixed-effect latent structure takes the following form:

���
(yyy)

∗,k
within

= EP

(

covT

(

ξξξ
(yyy)

P,T +k , ξξξ
(yyy)

P,T | P
))

= ET

(

covP

(

ξξξ
(yyy)

P,T +k , ξξξ
(yyy)

P,T | T
))

= covP

(

ξξξ
(yyy)

P,†+k , ξξξ
(yyy)

P,†

)

,

(10)

in which subscripts T and P are added to the expectation and covariance operators to

make clear with respect to which aspect the expectation or covariance is taken. From left

to right, EP

(

covT

(

ξξξ
(yyy)

P,T +k, ξξξ
(yyy)

P,T | P
))

indicates the fixed-effect structure of the within-

subject deviations—the within-subject structure of the average subject. The next expression,

ET

(

covP

(

ξξξ
(yyy)

P,T +k, ξξξ
(yyy)

P,T | T
))

indicates the expected between-subject variation over all time

points, which due to the assumption of stationarity reduces to the final part of the expression:

covP

(

ξξξ
(yyy)

P,†+k, ξξξ
(yyy)

P,†

)

, which is also present in Eq. (8). This indicates that under the assumption of

homogeneity—every subject follows the same within-subject process—the second part of Eq. (8)

will equal the within-subject variance–covariance structure for every subject. If homogeneity

is violated, the structure can instead be interpreted as the within-subject variance–covariance

structure of the average subject.

Equations (9) and (10) may be used to write (8) as follows:

���
(yyy)

†,k = ���(yyy)

between
+ ���

(yyy)

∗,k
within

,

Lag-k (co)variances in panel data

equal between-subject + within-subject

(co)variances,

(11)
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which forms the basis for estimating the panel-lvgvar model. The within-subject part can further

be modeled as a latent variable model using the fixed-effect variance–covariance matrices for the

latent variables and residuals:

���
(yyy)

∗,k
within

=

⎧

⎪

⎨

⎪

⎩

������
(ηηη)
∗,k

within

���⊤ + ���
(εεε)
∗,k

within

if k = 0

������
(ηηη)
∗,k

within

���⊤
.

The structural model becomes:

vec

(

���
(ηηη)
∗,0

within

)

= (III ⊗ III − BBB∗ ⊗ BBB∗)
−1 vec

(

���
(ζζζ )
∗,0

within

)

,

���
(ηηη)
∗,k

within

= BBB∗���
(ηηη)
∗,k−1

within

,

in which BBB∗ represents a matrix of fixed-effect temporal effects and���
(ζζζ )
∗,k the lag-k fixed-effect con-

temporaneous variance–covariance structure. Finally, the two latent variance–covariance struc-

tures in the model could further be modeled as GGMs:

���
(ζζζ )
∗

within
= ���(ζζζ )

within

(

III − 			(ζζζ )

within

)−1

���(ζζζ )

within
Within-subject latent contemporaneous network.

���(ηηη)

between
= ���(ηηη)

between

(

III − 			(ηηη)

between

)−1

���(ηηη)

between
Between-subject latent network.

This leads to three network structures: (1) the (fixed-effect) within-subject temporal network

modeled with BBB∗, (2) the (fixed-effect) within-subject latent contemporaneous network modeled

with 			(ζζζ )

within
, and (3) the between-subject latent network modeled with 			(ηηη)

between
.

4.1. Estimation

Estimation of the panel-lvgvar in panel data with nt measurements can be done by forming

the vector:

zzz p =

⎡

⎢

⎢

⎢

⎣

yyy p,1

yyy p,2

...

yyy p,nt

⎤

⎥

⎥

⎥

⎦

,

such that the mean structure repeats the stationary mean:

μμμ =

⎡

⎢

⎢

⎢

⎣

μμμ(yyy)

μμμ(yyy)

...

μμμ(yyy)

⎤

⎥

⎥

⎥

⎦

.
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The variance–covariance structure then takes the form of a block Toeplitz matrix:

��� =

⎡

⎢

⎢

⎢

⎢

⎣

���
(yyy)
†,0 ���

(yyy)⊤
†,1 · · · ���

(yyy)⊤
†,nt −1

���
(yyy)
†,1 ���

(yyy)
†,0 · · · ���

(yyy)⊤
†,nt −2

...
...

. . .
...

���
(yyy)
†,nt −1 ���

(yyy)
†,nt −2 · · · ���

(yyy)
†,0.

⎤

⎥

⎥

⎥

⎥

⎦

.

The model can then be estimated by minimizing Eq. (1) or Eq. (2). When not all variables are

observed at all waves (or entire waves of data are missing), elements in μμμ and rows and columns

in ��� corresponding to missing variables can be cut out, or FIML estimation can be used when

data are treated as missing.

4.2. Empirical Example

To exemplify the panel-lvgvar, I investigated a subset from the Longitudinal Internet Studies

for the Social Sciences (LISS; Scherpenzeel & Das, 2010) panel administered by CentERdata

(Tilburg University, The Netherlands). The LISS panel is a representative sample of Dutch indi-

viduals who participate in a yearly survey on several factors.9 To minimize the amount of missing

data and to exemplify the usage of the method on as little as three waves of data and the usage

of the method in waves with unequal time differences between consecutive waves, I used three

of the waves from the LISS Core Study on personality: 2013, 2014, and 2017. Table 3 shows

the items I selected to measure five factors: self-esteem, pessimism, optimism, life satisfaction,

positive affect, and negative affect. Pessimism and optimism were assessed with the LOT-R scale

(Carver, Scheier, & Segerstrom, 2010), and life satisfaction was assessed with the Satisfaction

With Life scale (Diener, Emmons, Larsen, & Griffin, 1985). Because the current software does

not handle more than about 30 variables, I used shorter scales than typical to assess self-esteem,

positive affect, and negative affect. Self-esteem was assessed with a three-item scale accredited to

“Radboud University Nijmegen, Netherlands” in the codebook, rather than the longer Rosenberg

scale also present in the data (Rosenberg, 1965). Positive and negative affects were assessed with

the PANAS scale (Watson, Clark, & Tellegen, 1988), which was shortened to four indicators per

factor. To this end, I first fit panel-lvgvar models for positive and negative affects separately and

retained the four items that featured the highest absolute factor loadings for both factors. Finally,

to make the analysis fully reproducible and to exemplify the estimation of the panel-lvgvar from

summary statistics, I only retained cases with no missing data. Thus, the final sample included

2, 998 cases administered three times on 22 items per wave. The variance–covariance matrix and

mean vector of the data, as well as the code to reproduce the main analysis, are available in the

supplementary.

Model Estimation I fit the panel-lvgvar model using version 0.4 of the psychonetrics package

(code available in supplementary materials at https://osf.io/z5hbs/). First, I fit a model in which

all edges were included in the temporal, contemporaneous, and between-subject networks and

estimated all residual structures using a Cholesky decomposition. The model featured a numeric

estimate of approximately zero for the between-subject residual variance for the item SE2.10 I fixed

this parameter to zero (note, the within-subject residual was not constrained to zero, so the item

did not become a perfect indicator as a result) and reestimated the model. Although exact fit was

rejected, χ2(2118) = 5686.50, p < 0.001, the model showed excellent close fit with an RMSEA

9Detailed information and access to the data is available at www.lissdata.nl.
10Further inspection revealed that this was a result of using the Cholesky decomposition; estimating the residual

matrices using a variance–covariance matrix led to a Heywood case with a negative residual variance. These are hard to
interpret, so I continued using a Cholesky decomposition and instead fixed this residual variance to zero.

https://osf.io/z5hbs/
www.lissdata.nl
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Table 3.
Measurement model for LISS data example.

Label Item Factor Scale length

SE1 I am satisfied with the way I look Self-esteem 7

SE2 I feel good about myself Self-esteem 7

SE3 I have confidence in my capabilities Self-esteem 7

Pes1 If something can go wrong for me, it will Pessimism 5

Pes2 I hardly ever expect things to go my way Pessimism 5

Pes3 I rarely count on good things happening to me Pessimism 5

Opt1 In uncertain times, I usually expect the best Optimism 5

Opt2 I’m always optimistic about my future Optimism 5

Opt3 I’m always optimistic about my future Optimism 5

LS1 In most ways my life is close to my ideal Life satisfaction 7

LS2 The conditions of my life are excellent Life satisfaction 7

LS3 I am satisfied with my life Life satisfaction 7

LS4 So far I have gotten the important things I

want in life

Life satisfaction 7

LS5 If I could live my life over, I would change

almost nothing

Life satisfaction 7

PA1 Indicate to what extent you feel, right now,

that is, at the present moment... determined

Positive affect

PA2 ... inspired Positive affect 7

PA3 ... active Positive affect 7

PA4 ... attentive Positive affect 7

NA1 ... nervous Negative affect 7

NA2 ... jittery Negative affect 7

NA3 ... irritable Negative affect 7

NA4 ... afraid Negative affect 7

of 0.024 (95% CI 0.023–0.024) and good incremental fit (NFI = 0.95, PNFI = 0.91, TLI = 0.97,

NNFI = 0.97, RFI = 0.95, IFI = 0.97, RNI = 0.97, CFI = 0.97). Next, I performed the same

model search strategy used above in the ts-lvgvar example and further detailed in Fig. 1. While

the pruned model fitted significantly worse than the original model, �χ2(36) = 64.15, p < 0.01,

it was better in terms of AIC (�AI C = 7.8) and BIC (�B I C = 224.05). The pruned model also

showed excellent fit, with an RMSEA of 0.024 (95% CI 0.023–0.024) and good incremental fit

(NFI = 0.95, PNFI = 0.93, TLI = 0.97, NNFI = 0.97, RFI = 0.95, IFI = 0.97, RNI = 0.97,

CFI = 0.97).

Figure 3 portrays the estimated factor loadings and network structures in the pruned model,

and Table 4 shows the numeric estimates of the standardized network parameters. The temporal

network mainly features pathways from life satisfaction to self-esteem and optimism, and subse-

quently to pessimism and negative affect. At the contemporaneous and between-subject levels,

optimism seems to play a central role in the networks—being connected to all other variables

in both networks with consistently strong edges. Most noteworthy in both the contemporaneous

and between-subject networks are the rather strong positive edges between positive affect and

negative affect. Table 4 shows that the model-implied correlations in these two levels are rather

weak and also positive at the contemporaneous level (r = 0.05 at the contemporaneous level

and r = −0.11 at the between-subject level). These weak marginal correlations are in line with

previous literature (e.g., Tuccitto, Giacobbi Jr, & Leite, 2010), suggesting that the correlation
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(a)

(b) (c) (d)

(f) (g)(e)

Figure 3.
Results of the panel-lvgvar analysis of the LISS Core Study on personality. Blue edges indicate positive effects, and ref
edges indicate negative effects. The estimated fixed-effect within-subject latent networks are shown in b and c and the
estimated between-subject network in d. These are estimated jointly with the measurement model parameters represented
in a. Panels e, f and g show the inclusion proportion of each edge in a 25% case-drop bootstrap (Color figure online).

between positive and negative affects might not be as strongly negative as expected and that the

factors may be (near) orthogonal instead. At the partial correlation levels, these weak marginal

correlations lead to stronger partial correlations of an unexpected sign because the correlation is

weaker than can be expected due to the links between positive/negative affect and third variables,

such as self-esteem and optimism. It may even be that these variables act as a common effect

between positive and negative affects (De Ron, Fried, & Epskamp, 2019; Epskamp, Waldorp, et

al., 2018), in which case a strong partial correlation of an unexpected sign may also be expected.

To check whether the results were influenced by the subset of indicators chosen to assess positive
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Table 4.
Numeric results of the panel-lvgvar analysis of the LISS Core Study on personality.

SE Pes Opt LS PA NA

(a) Estimated partial directed correlation

SE – 0.16 – – – –

Pes – – – – – 0.13

Opt – −0.20 – – – –

LS 0.11 – 0.28 0.09 – –

PA – – – – – –

NA – – – – – –

(b) Estimated partial contemporaneous correlations (lower triangle) and

model-implied marginal contemporaneous correlations (upper triangle)

SE – −0.18 0.37 0.32 0.18 −0.21

Pes – – −0.46 −0.22 −0.10 0.26

Opt 0.20 −0.36 – 0.45 0.26 −0.28

LS 0.17 – 0.32 – 0.12 −0.23

PA 0.11 – 0.21 – – 0.05

NA −0.11 0.15 −0.13 −0.10 0.14 –

(c) Estimated partial between-subject correlations (lower triangle) and

model-implied marginal between-subject correlations (upper triangle)

SE – −0.47 0.72 0.61 0.52 −0.50

Pes – – −0.64 −0.53 −0.18 0.47

Opt 0.33 −0.39 – 0.69 0.47 −0.52

LS 0.19 −0.13 0.33 – 0.33 −0.47

PA 0.34 0.14 0.25 – – −0.11

NA −0.25 0.17 −0.14 −0.11 0.22 –

affect and negative affect, I also estimated a panel-lvgvar model for only positive and negative

affects using all indicators. These showed similarly weak marginal correlations (r = 0.003 at the

contemporaneous level and r = −0.056 at the between-subject level).

Bootstrap Results To assess the stability of the estimation algorithm, I again analyzed a 1000

case-drop bootstrap samples on the final panel-lvgvar model. In each of these samples, 25%

of the participants were dropped at random from the original sample, and panel-lvgvar models

were estimated using the algorithm described in Fig. 1. The number of times each edge was

included is visually shown in Fig. 3 and numerically shown in Table 5. Across all three networks,

edges that were included in the original analyses were also likely to be included in the case-drop

bootstrapped analyses, and mostly edges that were not included in the original analysis were also

less likely to be included in the case-drop bootstrapped analyses. This indicated a high level of

stability in the estimated network structures, in particular in the between-subject network. In the

contemporaneous network, the edge between negative affect and optimism was estimated only

543 times and an extra edge between positive affect and life satisfaction was included 99 times.

The temporal network featured lower levels of stability: several edges that were included in the

original sample were included less than 400 times in the bootstrap samples, and some additional

edges (most noteworthy self-esteem to negative affect, negative affect to pessimism, self-esteem

to pessimism, and self-loops on pessimism and optimism) were included over 200 times. As such,

there is some evidence that the temporal network is less sparse than portrayed in the original

analysis.
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Table 5.
The number of times each parameter was included in the case-drop bootstrap panel-lvgvar analysis of the LISS Core
Study on personality.

SE Pes Opt LS PA NA

(a) Number of times temporal effects were included

SE 27 324 19 103 109 399

Pes 8 249 29 2 1 578

Opt 11 317 300 61 4 22

LS 491 5 763 357 1 2

PA 0 0 83 56 0 79

NA 0 264 4 0 0 48

(b) Number of times contemporaneous effects were included

SE

Pes 10

Opt 1000 1000

LS 936 2 1000

PA 935 48 1000 99

NA 947 990 543 930 1000

(c) Number of times between-subject effects were included

SE

Pes 5

Opt 998 998

LS 992 933 996

PA 999 993 996 0

NA 999 949 971 862 1000

Each replication (1000 in total) was based on a 75% subsample of the original dataset. Bold-faced values

indicate parameters that were included in the original analysis.

5. Simulation Studies

To assess the performance of model search strategies in ts-lvgvar and panel-lvgvar, I per-

formed a two simulation studies by simulating new datasets using the parameters from the models

shown in Figs. 2 and 3, respectively. I varied the number of cases (time points) between 50, 100,

250, 500, and 1000 for the ts-lvgvar simulation study and (subjects) between 500, 1000, 2500,

5000, and 10,000 for the panel-lvgvar simulations. After simulating data, I estimated the model

structure using the algorithm presented in Fig. 1 and two variants: a variant in which no model

search is performed after the initial pruning step 2, and a variant in which the model search

from step 3 onwards was replaced with a stepwise up model search strategy in which the edge

with the strongest modification index was added to the model until BIC was no longer improved

(implemented in the stepup function in psychonetrics). In addition, I tested four variants of

step 2 Fig. 1: in addition to initially removing edges at an α level, I also removed edges in step 2

using Bonferroni (Bland & Altman, 1995), Holm (Holm, 1979), and false discovery rate (FDR;

Benjamini & Hochberg, 1995) adjustments. Finally, I varied α between 0.01 and 0.05 in the entire

algorithm. This led to 24 different estimation algorithms. Each condition was replicated 100 times,

leading to 12,000 simulated datasets in both the ts-lvgvar and panel-lvgvar simulation studies.

In these simulations, I investigated the success rate of estimation. (Some estimations failed due

to numerical optimization issues such as non-positive definite matrices.) In the successfully esti-

mated models, I investigated the sensitivity, specificity, and the correlation between original (true

in the simulation) and estimated parameters (Epskamp & Fried, 2018).
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Figure 4.
Simulation results for ts-lvgvar and panel-lvgvar model estimation algorithms implemented in psychonetrics. Data were
generated under parameters from Fig. 2 for the ts-lvgvar simulations and under parameters from Fig. 3 for the panel-lvgvar

simulations, and each condition was replicated 100 times. The lines display the average values over these replications.
“Sensitivity” denotes the proportion of true edges that were also included in the estimated model, “specificity” denotes
the proportion of true missing edges that were also not included in the estimated model, “correlation” denotes the Pearson
correlation between true and estimated edge weights, and “success” denotes the proportion of models estimations that ran
without errors. The thick highlighted line represents the algorithm used in the empirical examples in this paper.

Figure 4 shows the results of the simulation studies. All estimation algorithms were conserva-

tive at every sample size (high specificity), and increased in sensitivity and correlation as sample

size increased. Generally, results using α = 0.05 were a bit less conservative and a bit more

sensitive than results using α = 0.01. While very conservative, estimators that only used adjusted

significance level in a pruning step without subsequent stepwise model search performed poor

in terms of sensitivity, while not performing much better than estimators followed by stepwise

model search strategies in terms of specificity. The estimator used in empirical examples above

(sig_0.01 -> modelsearch) is highlighted in Fig. 4 and performed well on all measures. It should

be noted, however, that the estimators using only significance pruning were much faster than

the “stepup” estimator and even more faster than the “modelsearch” estimators: in the ts-lvgvar:

estimating a model with extensive model search on average took 10.19 minutes in ts-lvgvar sim-

ulations and 35.15 minutes in panel-lvgvar simulations. Finally, the relatively large number of

failed estimations is noteworthy, especially at lower sample sizes. Often, estimation failed due to

numerical reasons leading to non-positive definite information matrices (e.g., due to non-positive

definite variance–covariance structures). Future improvements to the psychonetrics package and

other software methods implementing the ts-lvgvar and panel-lvgvar frameworks could improve
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computation speed of the model (e.g., by relying more on compiled programming languages)

as well as the rate of successful model computations (e.g., by using more sophisticated starting

values and/or more constrains on the parameter space).

6. Ergodicity and Generalizability

The derivations in this paper can be used to show some important relationships between

within- and between-subject effects as well as the correspondences between models in which

time is random (time-series data) and models in which the subject is random (cross-sectional

and panel designs). In particular, the expression in Eq. (11) has several important implications.

First, it shows that the variance–covariance matrix of a cross-sectional set equates to a blend of

within- and between-subject variances (Hamaker, 2012). As such, from a single cross-sectional

study, it is impossible to determine whether two variables covary due to trait-level covariation

between the means (between-subject) or due to state-level covariation between deviations from

the mean (within-subject). Second, when investigating covariation over time between consecutive

measurement occasions, nonzero covariances are not indicative per se of within-subject Granger

causality (prediction over time) because nonzero covariances over time may also result due to

between-subject effects. This is the core argument of Hamaker et al. (2015), who warn against

a within-subject interpretation of the cross-lagged panel model unless a random intercept (here

modeled with μμμ
(ηηη)
p and μμμ

(εεε)
p ) is included in the model.

Assuming full homogeneity in mean and variance–covariance structure—every subject has

the same mean, and deviations in every subject from that mean have the same variance–covariance

structure—Eq. (9) demonstrates that the between-subject covariance structure would become a

matrix of zeroes (there are no differences in means), whereas Eq. (10) demonstrates that the within-

subject fixed-effect structure would equal the within-subject variance–covariance structure for

every subject. Now, when adding to this the assumption of stationarity, such that Eq. (11) is valid

for any fixed measurement occasion t , the cross-sectional variance–covariance structure may equal

the within-subject variance–covariance structure for every subject. When all variables are assumed

normally distributed, such that no higher-order moments are present, these conditions then satisfy

the assumption of ergodicity (Molenaar, 2004), which is frequently cited to be a requirement

for generalizing cross-sectional studies to the within-subject level (e.g., Fisher, Medaglia, &

Jeronimus, 2018).

Although the terms within-subject and between-subject—or alternatively within-person and

between-persons—are commonly used in the literature and in this paper, they may lead to a faulty

conclusion that between-subject effects necessarily do not occur within a person. The separation

of within- and between-subject effects in Eq. (11) hinges on the assumption of stationarity, which

is necessarily false in humans with a fixed life span. As such, the assumption may be better

phrased as local stationarity, indicating that stationarity is assumed in the period of measurement

only. Consider the effect between urbanicity and cannabis use (Isvoranu, Borsboom, van Os, &

Guloksuz, 2016). If these two variables are measured on three consecutive days, then urbanicity

is not likely to vary within subject, leading to a between-subject interpretation of the correlation

between the two variables. However, if these two variables are instead measured once a year for

three consecutive years, within-subject covariation may be found (e.g., when a person moves to

a city in which cannabis is more readily available, that person may use more cannabis compared

to his or her average). As such, there is some gray area among within- and between-subject

effects: When measurements are too close together, ���(ηηη)

between
may itself be interpreted as a mixture

between slow within-subject effects and true between-subject effects. Likewise, if a particular

questionnaire contained trait-level questions (e.g., “in the last year, did you smoke Cannabis”),
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���
(ηηη)
∗,k

within

may not accurately reflect valid daily fluctuations in the variables of interest and may be

better interpreted as autocorrelated measurement error.

Note that in this paper the factor-loading structure does not differ between the within-subject

and the between-subject levels. Typical multi-level software will allow for the specification of

different factor-loading structures on both levels. However, when the factor-loading structure is

not equal between the two levels, it is highly questionable whether the same factor is measured.

For example, a goal of a study might be to obtain factor scores for a set of subjects at a given time

point. If the within- and between-subject factor-loading structure is not the same, then these cannot

be combined into factor scores, and only estimates of the means per subject can be obtained. The

within-subject factor structure then reduces to correlated residuals over time. To be clear, it is not

required that factors vary on both within- and between-subject levels: A factor-loading structure

can easily be constrained equally over both levels, whereas a factor itself does not vary within

one of the levels (e.g., genetic information). In principle, measurement invariance tests can be

performed across people to test whether the factor structure is the same (Adolf et al., 2014).

7. Discussion

I presented a general framework in which undirected network models can be used to model

relationships between latent variables in both time-series data of a single subject (ts-lvgvar) and

in panel data of many subjects measured on at least three occasions (panel-lvgvar). This presents

a unification of network psychometrics, such that (dynamic) SEMs that include relationships over

time at a latent level are combined with undirected network models. Two empirical examples,

one using time-series data and one using panel data, as well as two large-scale simulation studies

showed that network structures can reliably be estimated from data. These methods have been

implemented in the software package psychonetrics, which is exemplified in the analysis code

provided in the supplementary materials. I conclude the paper with a discussion on ergodicity

and generalizability, discussing that although within-subject effects may in principle be separated

from between-subject effects, the interpretation of these results rests on the intensity and intervals

between measurements as well as the plausibility of the assumption of stationarity.

Limitations Several limitations that are often raised for discrete time-series models (e.g.,

Epskamp, Waldorp, et al., 2018) may also be raised for the current work: (1) both the ts-lvgvar

and the panel-lvgvar crucially rely on the assumptions of (local) stationarity and normality, which

are unlikely to hold in practice. In principle, the assumption of stationarity is checked by assessing

the model fit of the panel-lvgvar data (because it imposes unique constraints across all waves of

measurement) but not by assessing the model fit of the ts-lvgvar when the data are fit to a lag-1

Toeplitz matrix as discussed in this paper. (2) Although methods exist to check for (multivariate)

normality, it is not yet clear how to proceed when normality is violated because normality can be

violated in many ways, and violations of normality have not yet been investigated in detail in the

estimation of GGMs. To this end, it is vital to supplement any analyses with data-driven bootstrap

methods, as done here, for example to check for the stability of the results by taking subsamples of

the data. (3) The choice of lag interval and the duration of the study is not trivial. This choice will

crucially impact the interpretation of the results. For example, although the provided empirical

examples from both the ts-lvgvar and panel-lvgvar featured temporal networks, the interpretation

of these networks is vastly different because the ts-lvgvar example concerned a lag interval of a

few hours, whereas the panel-lvgvar example concerned the lag interval of one year. A further

limitation is that only lag-1 relationships were used in the modeling framework, which is the

minimum lag required to handle temporal dependency in the data.
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In addition, the introduction of latent variables in these network models raises questions

of measurement. In the empirical examples of the current paper, the measurement models used

are far from confirmatory. The aim of this paper is to present methods for confirmatory fit and

exploratory estimation of network structures at a latent level, while the measurement model is

assumed known. To exemplify the method, however, I used a highly exploratory routine to obtain

a measurement mode in the ts-lvgvar example. Other exploratory tools to assess the measurement

structure could have been used, such as exploratory graph analysis (Golino & Epskamp, 2017),

which is based on clustering in estimated GGMs, or P-factor technique (Zevon & Tellegen, 1982).

Such methods may well lead to alternative factor structures and as a result different latent network

structures. Furthermore, certain choices made in the panel-lvgvar model, such as the number of

indicators for positive and negative affects, may have impacted the results. Ideally, these methods

would be used on data that feature clear and previously studied measurement models (Flake &

Fried, 2019).

Important to note is that while this paper extensively discussed issues pertaining to ergodicity

and the ability to draw within-person conclusions from designs based on models in which the

subject is random (cross-sectional and panel designs), the presented methods do not solve these

issues. While I show that the temporal and contemporaneous structures from the panel-lvgvar

directly relate to fixed-effect temporal and contemporaneous structures that may be obtained

from time-series analysis, it may be stressed that such fixed effects can only say something about

average effects in a population. Only when there is full homogeneity in within-person variance–

covariance structures (an unlikely assumption) do these fixed-effect structures truly relate exactly

to the within-person structures of every individual subject.

Related Work The presented modeling framework is closely related to several other frame-

works: (1) The ts-lvgvar reduces to a general GVAR model (Epskamp, Waldorp, et al., 2018) when

all variables in the network are observed—the factor-loading matrix then reduces to an identity

matrix and the residual variances are set to zero. In this case, the model reduces further to a general

vector-autoregression model if the contemporaneous level is modeled as a variance–covariance

matrix rather than a GGM. (2) When latent variables are used in the ts-lvgvar, but the contempo-

raneous level is not modeled using a GGM, the model reduces to a type of dynamic factor model

(Molenaar, 1985). (3) The panel-lvgvar can be considered a multi-level GVAR model (Epskamp,

Waldorp, et al., 2018) if all variables in the networks are observed without measurement error—

with the exception that all network parameters are fixed (only intercepts are random). Extending

the panel-lvgvar framework to include random effects on the network parameters will likely not

be trivial, but may form an important direction of future research. (4) When the contemporaneous

and between-subject effects of the panel-lvgvar are modeled as variance–covariance matrices and

all variables in the networks are observed, the model reduces to a random intercept cross-lagged

panel model (Hamaker et al., 2015), with the exception that stationarity is used to avoid estimat-

ing the variance–covariance structure of the first measurement. (5) When only cross-sectional

data are used, the panel-lvgvar reduces to a latent network model (Epskamp, Rhemtulla, &

Borsboom, 2017), after identifying all within-subject variance–covariance structures to be zero.

Subsequently, when in cross-sectional data all variables in the network are assumed observed

without measurement error, the model reduces to a standard GGM (Epskamp & Fried, 2018). (6)

When the contemporaneous and between-subject levels of the panel-lvgvar are modeled using

variance–covariance matrices, the model can be seen as a special case of general dynamic SEM

models (Ciraki, 2007). When the data contain many persons and time series, it is in principle

possible to obtain both fixed-effect and person-wise estimates (random effects), but this is beyond

the scope of the current paper (e.g., Asparouhov, Hamaker, & Muthén, 2018; Epskamp, Waldorp,

et al., 2018).

Future Directions The current paper may motivate several lines of research: (1) The current

formulations of the ts-lvgvar and panel-lvgvar only model contemporaneous relationships through
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undirected networks. It may instead be of interest to model these through directed relationships,

as is typical in SEM and in structural vector-autoregression (Epskamp, Waldorp, et al., 2018;

Gates & Molenaar, 2012; Gates, Molenaar, Hillary, Ram, & Rovine, 2010). Furthermore, both

frameworks may be combined into a unified framework that allows for the estimation of mixed

directional and undirectional models. (2) Multi-group models for both the ts-lvgvar (in which case

a “group” would be a single subject) and panel-lvgvar may be investigated. The psychonetrics

package allows for such multi-group analyses as well as testing for measurement invariance and

homogeneity in network structures and mean structures. Future researchers could investigate

the performance of such tests and provide detailed guidelines on how to assess measurement

invariance and homogeneity in these models. (3) The psychonetrics package also allows for the

modeling of residual structures as a GGM, which may be used to model residual network models

as further discussed by Epskamp, Rhemtulla, and Borsboom (2017); however, this was also beyond

the scope of this paper. (4) More detailed investigation on departures from normality in the ts-

lvgvar and panel-lvgvar (or network models in general) may be investigated. For example, through

the use of robust maximum likelihood estimation (Satorra & Bentler, 1994), threshold models

(Muthén, 1984) or network models for binary data (Marsman et al., 2018), or mixed categorical and

continuous data (Haslbeck & Waldorp, 2015). (5) While reported simulation studies investigated

several different model search strategies, many more model search strategies could be envisioned

which may perform better than the strategies used in this paper. Future research could therefore

investigate alternative estimation procedures. Of note, regularization techniques are often used

now in the estimation of psychological network models for both time-series and cross-sectional

data (Epskamp, Waldorp, et al., 2018; Epskamp & Fried, 2018). These techniques have, however,

also been criticized for poorer performance than unregularized estimation, especially in large

samples (Williams & Rast, 2018), and in recent literature unregularized GGM estimation grew

more common (e.g., Isvoranu et al., 2019). Promising lines of research on regularization involving

latent variables (e.g., Chandrasekaran, Parrilo, & Willsky, 2012; Yuan, 2012; Jacobucci, Grimm,

& McArdle, 2016) exist and may lead to regularized network estimation methods for the ts-lvgvar

and panel-lvgvar.

Conclusion The ts-lvgvar and panel-lvgvar frameworks extend the current toolbox of net-

work psychometrics by (1) including latent variable models, (2) separating within- and between-

subject variances, and (3) allowing for the estimation of within-subject temporal network models.

Note that although this paper only contains examples with latent variables, the models can readily

be used to estimate network models between observed variables by setting factor loadings to an

identity matrix and setting all residual variances to zero. As such, the panel-lvgvar in particular

offers a powerful new method for estimating fixed-effect temporal and contemporaneous networks

from large sample panel data rather than intensive time-series data.
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