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Summary. Two experiments were conducted to study the number biases of subjects in 
situations not involving the usual psychophysical stimuli. In Exp. I subjects were asked to 

generate numbers (whithin boundary conditions) they thought other people would produce 
under the same conditions. In Exp. I I  only a single lower boundary (e.g., t, i0 or 100) was 
employed and subjects generated a set of numbers larger than the boundary. Results sug- 
gested that definite number biases exist. ~ultiples of 1, 10, t00 and to a lesser extent 5, 50 
and 500 dominate and are appropriate to the log cycle. That is, multiples of i occur most 
often in the cycle 1--10, multiples of t0 in the cycle 10--t00, etc. The implications of these 
results are noted for several psychophysical theories. 

Francis Galton (1880) once noted tha t  several of his intellectual acquaintances 

had images of numerals located in one-, two-, or three-dimensional visual space. 

The special arrangement of the numerals was fixed for an individual but varied 

widely among people who possessed this ability (estimated by  Galton to occur in i 

of 30 males and in I of ~5 females). The sample conceptions he reports are quite 

bizarre, but  some imply a logarithmic relation between imaged numerical spacing 

and arithmetic spacing while others reveal the importance of pivotal numbers such 

as l ,  ~0, and 100. However, no clear invariances emerge from the conceptions of 

these unique individuals. 

The impetus for our own interest in this topic comes from modem psycho- 

physics, where numbers are used extensively as response categories. The present 

paper is the first m a fourpart  series documenting people's conception and use of 

numbers in a var iety of contexts most  closely associated with the field of psycho- 

physics, although we feel the results also have implications for the general field of 

cognitive psychology. In  the course of this series, empirical data  and theoretical 

models are presented to elucidate the transformation between physical and 

perceptual scales, as well as the similarities between the processing of numbers and 

the processing of more usual physical attributes such as sound, light, and lengSh. 

The final paper iu the series outlines a new theory of scaling (Preferred State 

Theory), which applies to a var iety of physical at tr ibutes and which is based on a 

generalization of the principles assumed to underly perception of the number 

continuum. 

Recent approaches to psychophysieal scaling (e.g., magnitude estimation), in 

contradistinction to Galton's data, taci t ly assume Ss have at  their disposal a 

* We thank Charles Lewis of the University of Illinois for advice on statistical problems. 
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perceptual scale of equally spaced numbers in one-to-one correspondence with 

values along the physical number scale (Stevens, 1966). I f  one believes there is a 

direct link between the perception and use 1 of numbers, the type of attribute scale 

( ~  which numbers are matched) can be derived. It ,  therefore, is quite important 

tha t  the perception of numbers be thoroughly explored empirically in order to 

provide a solid foundation for theoretical assumptions. 

The usual at tack on this problem involves the "scaling" of numbers after the 

fashion employed for any other attribute. The underlying purpose is to determine 

whether numbers are subject to the same perceptual laws as other stimuli, and if 

they are, to then derive the psychophysieal function from knowledge of the 

number scale. However, here, as in all of psychophysics, the method has a hand in 

dictating the outcome, and different methods lead to different relationships 

between perceptual and physical numbers. This, of course, leads to theoretical 

difficulties. 

The simple view that  perceptual number is a power function of physical 

number with an exponent of 1.0 does receive support from experiments by  Rosner 

(1965) who had Ss match numbers from one region of the scale with numbers from 

another. On the other hand, Attneave (i962) originally speculated that  the power 

function for number had an exponent of about .4, and this notion gains support 

from recent work (Curtis, Attneave and, Harrington, 1968; Curtis, i970). In  these 

experiments, the size of the relevant "output"  or "number"  exponent was not 

always the same, indicating perhaps that  the exact form of the number scale is not 

independent of the second attribute under study. 

Contraly to these lines of reasoning, Ekman (1964) proposed that  perceptual 

number is a log function of physical number, and he offered data to back this 

claim (Ekman and Hosman, i965). I f  this view were correct, the power function 

would result from the combination of two log functions, one for number and one 

for ordinary physical stimuli. Rule (1969) comes to similar conclusions based on a 

Thurstonian approach. 

Unfortunately, there are subtle, but  fundamental, drawbacks with all the 

research outlined or implied in the above review. ~irst, if we are unsure about how 

people use numbers, it seems u~wise to accept uncritically some convenient 

answer (such as one-to-one correspondence) to serve as a standard (McGill, i960). 

Second, standards for stimulus attributes do not exist by which scales for the 

perception of number can be obtained. In  other words, psychophysical methods 

are inappropriate for obtaining scale values for numbers because in previous 

studies, these values were not independent of other attribute scales whose charac- 

teristics were themselves uncertain. With available techniques, we cannot scale 

one attribute without somehow involving another. 

The obvious alternative is to secure estimates of scale values by  techniques 

other than those used in psychophysics. And in fact, it has been possible to do this 

by looking at Ss' preferences for numbers. Most such studies have used the 

integers one through nine. Preferences were expressed in a variety of ways, and 

response frequencies were tabulated from large groups of Ss (Eagleston and Lip- 

ford, 1944; Heywood, 1972; Ross and Kohl, i948; Winick, 1962; and Yule, t927). 

Each of these investigators offered a psychological interpretation of the rank order 

1 That is, the perceptual transformation is revealed by the behavioral use of numbers. 
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of integer preferences found in their work. Unfortunately, each study uncovered a 

di#erent rank order. To discover possible consistencies across these experiments, 

we computed rank order correlations on the major rankings reported in the five 

studies. Of the 10 possible pairings (5 x 4/2), 7 correlations were negative, 3 

positive, and none significant (df=  7, p < .05). The conclusion seems justified 

that  there are no preferences among the integers one through nine which transcend 

a range of experimental tasks. The total response frequencies from all studies can 

be seen as distributed in a rectilinear fashion across these integers. 

However, this effect is limited to the integers I to i0 since data collected by 

Banks (1973) and by Banks and Hill (1974) indicate that  in order to maintain equal 

spacing along the perceptual scale, spacing between physical numbers must be 

successively increased for magnitudes greater than 10. These investigators asked 

Ss to randomly generate a series of numbers which E could then rank order. The 

theoretical rationale for this technique is straightforward. Assuming a perceptual 

scale exists and that  the spacing between values along that  scale are equal (Fech- 

net 's assumption, 1907), random sampling S should yield appropriate measures in 

terms of the corresponding physical number continuum. By then placing the data 

in an increasing order of magnitude, the relationship between perceptual (equal- 

spaced ranks) and physical (generated) values can be assessed by standard curve- 

fitting procedures (Banks, t973; Banks and Hill, 1974). As determined by this 

technique, these authors found that  either a log or power function (with an 

exponent of about .66) fit the relation between perceptual and physical magni- 

tudes. In  a further series of experiments, the applicability of this approach was 

demonstrated for several other attributes (e.g., length, sound, duration). Most 

importantly, the resulting functions bear a close resemblance to those obtained by  

other methods, such as magnitude estimation, inasmuch as the exponents obtained 

from the two approaches are a reasonably constant proportion of each other. 

On the other hand, response frequencies from actual psyehophysical experi- 

ments indicate that  the perceptual scale is linearly related to the physical scale 

within a log cycle (e.g., I to 10, t0 to 100, 100 to i000) but  logarithmic across 

cycles (Baird, Lewis, and Romer, 1970). This type of result could lead to the 

erroneous impression of a log or power function for cases where a large range of 

numbers was involved and where details of the function were ignored. This 

analysis also showed that  Ss "preferred" to use certain numbers much more 

frequently than others. Specifically, multiples of l ,  t0, and i00 were produced 

quite often, together with multiples of 5, 50, and 500. These results agree with 

those on number preferences reported earlier by Ross and Engen (1959). They had 

Ss guess numbers within a range of 1 to 120, where guesses continued until the 

correct (predesignated) number was hit upon. Favorite guesses tended to end in 0 

or 5; only a small percentage of numbers ended in the other eight digits. 

In  the present experimental series, we in effect combined the approaches of 

Ross and Engen (t959) and Banks (1973) into a single procedure, although at  the 

inception of the study, we were unaware of their work. In  one expeliment, Ss were 

told to generate numbers (within boundary conditions) which they thought other 

Ss would generate under the same circumstances. In  a second experiment, they 

It is apparently quite difficult for Ss to generate a random sequence of items (Wagenaar, 
1972), but this should not seriously affect our conclusions. 
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were pe rmi t t ed  to generate  any  n u m b e r  which was larger t h a n  a single lower 

boundary .  No s t andard  psychophysieal  s t imuli  were used. We were pr imar i ly  

in teres ted in  de te rmin ing  wha t  types  of number s  would be produced in  such tasks. 

Because such results have implicat ions for a va r ie ty  of theoretical  positions, some 

of which are developed in  the  later  papers of this  series, a var ie ty  of analyses were 

under t aken .  I n  par t icular ,  we looked a t  frequencies of numerica l  responses wi th in  

different ranges, unce r t a in ty  measures which have relevance for an  earlier psycho- 

physical  theory  (Baird, i970 a, t970 b, 1970 c), as well as general  funct ions between 

perceptual  and  physical  scale values (after Banks  and  Hill, i974). 

Experiment I 

The chief purpose of Exp. I was to obtain information about number biases without 
involving usual psychophysical stimuli. The Ss were required to generate numbers (within 
numerical boundaries) which they thought other people would give under the same circum- 

stances. This procedure was employed because pilot work indicated that some Ss approached 
the task as a challenge to their ingenuity in producing unusual numbers. By asking Ss to 

predict other people's responses, we forced them to reveal personal number biases, since we 
assume Ss had no independent evidence for assessing the bias of others in this task. Results 

were compared with those found in psychophysical studies (Baird et at., t970). 
Subjects. The participants were 60 male undergraduates enrolled in an introductory 

psychology course at Dartmouth College. 

Stimulus Materials. The stimulus ranges were typed at the top of individual sheets of paper 
which were stapled together in a different random order for each S. Ten spaces were marked on 
each sheet to indicate that S was required to write down 10 numbers for each stimulus range. 

Fifteen ranges were used: 1 to 10, 1 to 100, 1 to 1000, 10 to 100, t0 to 1000, 100 to 1000, t1 to 

99, 5 to 95, t2 to 989, 13 to 85, 14 to 782, 17 to 100, 1.3 to 9, 1.9 to 942, and 15 to 985. Hence- 
forth, the first six ranges will be referred to as unit-digit, and the remaining nine ranges will be 

called multiTle-digit. These particular cases were chosen to secure a representation of ranges 
covering more than one log cycle, and to gain variety in the boundary numerals. 

Procedure. The experiment took place in a small auditorium which accommodated all Ss 
simultaneously. Instructions noted that a large group of people had already participated in the 

study and that S's task was the same as theirs: to write down 10 numbers in the available 
spaces for each stimulus range. Subjects were instructed to produce responses that reflect a 

prediction of the numbers most likely generated by the other people. In  order to simulate the 

instructions given in an experiment employing magnitude estimation, Ss were told they could 
use fractions as well as whole numbers and that the boundary numbers were permissible 
responses. In  addition, they were allowed to repeat any of their responses for different ranges. 
The Ss recorded responses at their own pace. 

Results and Discussion 

The group mean  and  s t anda rd  devia t ion  of all  responses (across all  Ss) were 

calculated for each s t imulus  range a. The relat ionship between these two elemen- 

t a r y  statistics can tel l  us a great  deal abou t  Ss '  j u d g m e n t  strategies. For  example, 

one could suppose t h a t  Ss conceive of the  n u m b e r  scale with the  same perceptual  

spacing be tween each pair  of number s  a t  all locations. This is the impl ic i t  assump- 

t ion  made  b y  mos t  invest igators  using the  me thod  of magn i tude  es t imat ion  

(Stevens, 1966). Unde r  this  cons tan t - in te rva l  model,  increasing the  s t imulus  range 

(e.g., l - - i 0  to i 0 - - i 0 0 )  should add  a cons tan t  to the m e a n  bu t  should leave the 

3 We also analyzed several transformations of the data. For example, the frequencies of 
numbers were weighted by taking logarithms or inverses of their rank order. The use of these 
transformed values did not alter the results substantially. 
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Fig. I. Relative error (standard deviation divided by the mean) as a function of mean 
response magnitude. The coordinates are logarithmic. Points are based on the group data 

obtained in Exp. I for unit-digit (open circles) and multiple-digit (closed circles) ranges 

standard deviation unaffected. Therefore, the ratio of the standard deviation to the 

mean (relative error) would decrease linearly as stimulus range increased. Alter- 

natively, it can be proposed tha t  Ss maintain a constant ratio among numbers 

generated between stimulus ranges. When moving from one range to another, it is 

as though Ss multiply each number (e.g., t,  2 . . . .  9) in the first range by  a constant 

in order to generate numbers in the second range. I f  this s trategy were followed, 

both the mean and the standard deviation would change by  the same multiplier. 

Hence, the relative error would be constant for all ranges. These two models 

(constant interval and constant ratio) are the most likely, but of course, Ss may  

also use some combination rule. 

The relevant data  for each of the stimulus ranges are presented in Fig. I where 

relative error (SD/M) is plotted as a function of the mean in logarithmic co- 

ordinates. The open circles represent unit-digit ranges; the filled circles represent 

multiple-digit ranges. 

On the log-log plot, the constant-interval model would be upheld by  a linear 

function with a slope of - - ~  but with an arbi trary y-intercept. The constant-ratio 

model would be represented as a horizontal line with a slope of 0 and an arbi trary 

y-intercept. The data  are in closest agreement with the constant-ratio model, 

although the points do not fall on a perfectly horizontal line (not drawn on the 

graph). Rather,  the function appears to rise somewhat with an increasing mean. 

This upward trend is less conspicuous for unit-digit ranges. In  this regard, it is 

interesting to note tha t  the position of the mean in respect to the entire log cycle 

(l to ~0, t0 to 100, t00 to 1000) decreases slightly as the boundaries increase (read 

along the x-axis). Although not clear from Fig. I, the standard deviations also 

increase slightly faster than would be predicted if only a constant multiplier had 

been applied. The combination of these two facts creates the slight rise in the 

function. For one-cycle, unit-digit ranges (i to t0, t0 to 100, ~00 to ~000), the 
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the  x-axis. Inclusion in a response category means the  response was not  a multiple of a higher  

category lisfed on the  x-axis. Data  are given for single-cycle log ranges (top), two-cycle log 

ranges (middle), and  the  three-cycle range (bottom) 
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function appears relatively flat. These three points are shown in Fig. i as the 

lowest open circles within each of the three major clusters of points. This picture is 

not found for multiple-digit ranges. In  general, however, results suggest tha t  Ss 

have a basic conception of the number scale within a standard log cycle and that  

they act as though changes in the magnitude of the cycle are accomodated by  

applying the appropriate multiplier to each number in the standard. 

More detailed evidence for this conclusion is obtained from the specific response 

categories generated with ranges of different magnitude and location. I t  was evi- 

dent that  Ss used a preponderance of numbers which were multiples of i ,  I0, 100, 

and, to a lesser extent, multiples of 5, 50, 500. This was especially true for unit- 

digit ranges. This effect is clear from Fig. 2. There we have plotted the percent of 

total responses (from the group) which are multiples of the integers shown on the 

x-axis. In  order to qualify for inclusion in a category, a number had to be a 

multiple of that  category but not a multiple of any higher category given along the 

x-axis. For example, the number 25 is a multiple of both t and 5. I t  would be 

included in the 5 category but not in the I category. The pattern is similar, though 

depressed, for the remaining ranges since more significant digits occur in the 

responses. 

Fig. 2 (top) shows the results of this analysis for the three single-cycle ranges. 

The pat tern is pronounced and similar for each. A very high percentage of re- 

sponses are multiples of the lower stimulus boundary, whereas multiples of 5, 50, or 

500 are much less frequent and occur about as often as multiples of the upper 

boundary (the only number possible for this category). Overall, approximately 

95% of the total responses is represented in Fig. 2 (top) for the range I t o  10, 

approximately 70% for the range 10 to 100, and approximately 65% for the range 

i00 to 1000. The large percentage obtained for the t to 10 range is due to the fact 

that  Ss do not give fractions, whereas more significant digits are used in the higher 

ranges. 

The results in Fig. 2 (middle) are for the ranges containing two log cycles, two 

cases (l to 100 and i0 to ~000). The pattern is identical for both. The lines connect- 

ing the data have been interrupted to separate log cycles and thereby allow easier 

comparison with the results for single cycles (Fig. 2, top). As was true for one-cycle 

ranges, the higher range (i0 to 1000) has a lower percent of the total responses 

attributable to the multiples given in Fig. 2, but  in both instances, the picture is 

represented well by a few key response categories. 

The results for the range I to i000 are given in Fig. 2 (bottom). The situation 

resembles tha t  for shorter ranges, except that  multiples of l0 are diminished. This 

probably is not a random effect since the same depression occurs for the range 1.9 

to 942. Whether the effect is reliable or not, we cannot explain it. In  any event, 

something on the order of 90 % of all responses is represented in Fig. 2 (bottom). 

In  summary, these results lend weight to the hypothesis tha t  Ss use a constant- 

interval model of the number scale with in  a log cycle and a constant-ratio model 

across cycles. This hypothesis is further supported by the results of previous 

studies of number preference discussed earlier, and by psyehophysical data (Baird 

et al., 1970). The latter agreement suggests tha t  our experimental procedure taps 

the same perceptual scale used by Ss in judging the intensities of psychophysical 

stimuli. One must add, finally, that  these conclusions must be tempered when 
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Table I. Kolmogorov-Smirnov tests (Exp. I). Table entries indicate nonsignifieance. Asterisks 
are used for the log cycles from unit-digit ranges; crosses are for multiple-digit ranges 

Range and Cycle 
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Range Code Range 

1-I000 8 5 - 95 Cycle A = 1 to i0 

I- 10 9 12 -989 Cycle B = l0 to I00 

i- 100 10 13 - 85 Cycle C = 100 to 1000 

I0- 100 ii 14 -782 

10-1000 12 17 -100 * not significant 

100-1000 13 1.3- 9 + not significant 

ii- 99 14 1.9-942 p > .05, two-tailed test 

15 15 -985 

applied to stimulus ranges with boundary stimuli containing more than significant 

digit. 
I~iolmogorov-Smirnov Tests. A more detailed analysis of  the similarities among 

the response distributions was obtained by testing for differences among log cycles 

both within and between stimulus ranges. A Kolmogorov-Smirnov two-sample test 

was used for this purpose. The entire response distribution for each range was 

separated into one, two, or three log10 cycles (as appropriate), and each cycle was 

labeled according to its magnitude (A = i to 10, B = i0  to i00, C = ~00 to  1000). 

This coding leads to 25 cycles which, when compared pairwise, create 300 applica- 

tions of  the test. Several further decisions had to be made in order to apply this 

test. First, the number range within each cycle was split into 100 equal intervals. 

Second, the multiple-digit ranges were treated further by ignoring the boundary 

numbers in all comparisons. This was done %o eliminate the effect of  the standards 

and was carried out for unit-digit ranges whenever these eases were compared with 

cycles from multiple-digit ranges. In short, comparisons between two distributions 

always involved exactly the same section of the scale. For example, in comparing 

the cycle L3 to  9 with the cycle i to i0, the relevant distribution in both cases 

would be 2 to 8. We felt this procedure would permit a fairer test for differences 

between distributions. 

The results are presented in Table ~. Each of  the i5  ranges has been labeled 

together with the appropriate cycle under consideration. The entries indicate that 
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no significant difference was found between the pair of distributions (p > 0.05, 

two-tailed test). The asterisk represents comparisons among cycles containing one 

significant digit (unit-digit) in each boundary number. The cross is used for all 

other comparisons. 

An entry either of an asterisk or a cross in Table t indicates that  no significant 

difference exists between the two relevant distributions which, in turn, can be used 

in favor of the hypothesis tha t  Ss have a basic conception of the number scale 

within a log cycle and that  they behave as if a multiplier is used in moving from 

one cycle to another. In  this regard, the results are particularly illuminating in 

showing a distinction between unit-digit ranges and multiple-digit ranges. The 

former results support the hypothesis; the latter do not. Specifically, it is helpful to 

separate Table i into three sections and discuss each in turn. The three sections 

are (t) cases whree both ranges have unit-digit boundaries (coded i through 6), 

(2) cases where both ranges have multiple-digit boundaries (coded 7 through 15), 

and (3) mixed cases; that  is, where one range is a unit digit (1 to 6) and the other is 

a multiple digit (7 to 15). 

Referring to Table l, there are t0 separate log cycles (tA through 6C) for the 

pure unit-digit case. Hence, there are (10 x 9) /2= 45 possible comparisons, 

shown in the left-most part  of the Table. The asterisks indicate that  18 of these are 

not significant. A rather surprising pattern can be extracted from these findings. 

Namely, most asterisks (t3) occur for comparisons involving the highest cycles in 

the two ranges under consideration, and three more nonsignificant instances occur 

for comparisons involving the second highest cycles. In  all, t6 out of t8 asterisks 

follow this pattern, including all but two of the available possibilities. Apparently, 

the matching of cycles occurs between the highest cycles in the two ranges. This 

means that  the specific cycle (A, B, or C) is not t reated identically by S across 

ranges. The important  thing for a match (nonsignificant difference) is the relative 

position of a cycle within a range. This may imply we do not have sufficient data to 

uncover a complete pattern in the lower cycles. Something on the order of 70 % of 

the responses fell in the highest log cycle of a range. 

The results are not the same for comparisons involving multiple-digit ranges. 

There are t5 separate log cycles (TB through 15C) for the pure multiple-digit case. 

Hence, there are (i5 x t4)/2 = t05 possible comparisons among pairs of ranges, as 

indicated in the lower right part of Table i. There are i t  nonsignificant compari- 

sons out of a possible 105 or about 10%. These t1 cases do not~reflect the finding 

that  matching occurs between the highest cycles in the range. Rather, all 1t eases 

are where members of the pair have identical cycles (A, B, or C), but these still only 

represent about 15% of all the pairs possessing the same cycle label. 

No such pat tern occurs for the mixed cases which comprise 10 × t5 = 150 pairs 

(upper right section of Table t), of which 24 or about 16% are nonsignificant. We 

see no simple pattern in these results, although they may represent a transition 

between the unit-digit and multiple-digit results. More complete data are needed 

before such speculation can be adequately tested. 

Response Uncertainty. Yet another way to consider the results is suggested by 

information theory as applied previously (Baird, 1970a, 1970b, 1970c). In  the 

two-stage version of this psychophysical theory, it is assumed there are two types 

of information relevant to judgments, perceptual and cognitive. Perceptual 
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information is determined by  the a t t r ibute  being judged and by the memory  

constraints imposed by  the psychophysical method. Cognitive information is 

determined by  response or output  variables and is assumed to depend upon the 

ability to recall and use response categories (Baird, i970 c). Hence, it might  prove 

fruitful to t reat  the cognitive factor in this theory as equivalent to response 

uncertainty. Such a distribution-free measure can be obtained by  assuming S has a 

fixed number  of response categories, each with their individual probabilities and 

tha t  the group data from the present experiment validly represent these individual 

conceptions of the number  scale. Then, because response uncertainty can be 

computed for each range, it is possible to determine whether the cognitive factor is 

constant or variable for different range sizes and locations. 

The analysis was based on group data. First, the frequency of each response 

category used by Ss was tabulated and divided by ~he total  number of responses in 

order to obtain esgmates  of individual response probabilities. Second, Eq. (l) was 

applied to determine the average response uncertainty for each range: 

M 

U(R)  = - -  E p(xi)  log~p(x~), (i) 
i = 1  

where p(x~) is the probabil i ty of the i th category, and M is the number  of catego- 

ries involved. 

The results are presented in Fig. 3, where U(_R) in bits is plotted as a function 

of the upper stimulus boundary in the range (on a log scale). The open circles 

represent unit-digit ranges (l through 6 in Table i ) ;  the filled circles, multiple- 

digit ranges (7 through 15). In  the latter, the data points have been shifted 

slightly to correspond with the x-ordinate locations of the nearest unit-digit ranges. 
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Once again  (as in  Table  1), we found  t h a t  t he  lower s t imulus  b o u n d a r y  was consid- 

e rab ly  less i m p o r t a n t  t h a n  the  uppe r  bounda ry .  Moreover,  response u n c e r t a i n t y  

is no t  cons tan t  for all  ranges.  The  values  for t he  mul t ip le -d ig i t  ranges  are  h igher  

t h a n  for the  un i t -d ig i t  ranges,  and  in  bo th  instances,  U(R) increases wi th  in- 

creases in  t he  m a g n i t u d e  of  the  upper  bounda ry .  The  sepa ra t e  funct ions  for un i t  

and  mul t ip l e  d igi ts  m a y  converge a t  some higher  uppe r  b o u n d a r y  as t he  lower 

b o u n d a r y  becomes less i m p o r t a n t  in bo th  cases. Fig .  3 shows t h a t  t he  n u m b e r  

and /o r  p r o b a b i l i t y  of  response categories  is no t  f ixed b u t  var ies  sy s t ema t i ca l l y  

wi th  s t imulus  and  response range.  Consequent ly ,  ff U(R) is t a k e n  as a measure  of  

t he  cogni t ive  factor ,  i t  is n o t  a cons tant .  One can wr i te  an  equa t ion  to  descr ibe the  

re la t ionship  be tween  U(R) and  the  uppe r  s t imulus  b o u n d a r y  (Nmax). A s t r a igh t  

l ine was fit  b y  eye to the  d a t a  in Fig.  3 and  the  p a r a m e t e r  values  of  t he  funct ion  

de te rmined .  

U(R) = .22 log S (Nmax) ÷ 3.75 (2) 

Eq.  (2) can be used  to  ob t a in  an  a p p r o x i m a t e  va lue  of  the  cogni t ive  fac tor  i f  one 

assumes t h a t  Nmax is t he  m a x i m u m  response given wi th  the  m e t h o d  of  magn i tude  

es t imat ion .  I n  con junc t ion  wi th  previous  t heo ry  (Baird,  t970b) ,  th is  indica tes  t h a t  

the  exponen t  of  a power  funct ion  (obta ined  b y  magn i tude  es t imat ion)  would  

decrease wi th  increasing response range  since t he  two-s tage  vers ion of  th is  t h e o r y  

s ta tes  t h a t  n =  p/c, where  n is the  exponent ,  l0 is the  pe rcep tua l  in fo rmat ion  

assoc ia ted  wi th  t he  judged  a t t r i bu t e ,  and  c is the  cogni t ive in fo rmat ion  associa ted  

wi th  t he  response a t t r i bu t e .  W i t h  a cons tan t  p, t he  exponen t  n would  be inverse ly  

r e l a t ed  to  c, which increases wi th  response range  according to  Eq.  (2). Such a 

p red ic t ion  is in accord  wi th  empir ica l  resul ts  (Baird,  1970 d;  Teghtsoonian ,  t971). 

Experiment II 

One major difference between the procedure of Exp. I and the method of magnitude 
estimation concerns the use of standards. In  the stimulus range of Exp. I there were two 
boundaries delimiting the realm of possible responses. In  magnitude estimation, one standard 
is usually employed, and Ss have the option of producing smaller or larger responses. I f  the 
results on number generation are to be generalized to situations involving magnitude estima- 
tion of more usual physical stimuli, it is important to show that the response biases obtained 
in Exp. I with two boundaries occur as well when there is only one boundary. Therefore, Exp. I I  
was designed to gather more open-ended numerical responses with a single standard located at 
the lower boundary. In addition, we were not as concerned here with the particular responses as 
with the spacing between them for different boundaries. We wanted further evidence on the 
possibility that  the spacing between responses is a constant proportion of the standard. 
Because of this orientation, Ss were allowed to generate any numbers (larger than the standard) 
they wished and were not told to predict responses of previous Ss. We fully expected this 
procedure to invite bizarre responses, and as it turned out, such expectations were confirmed. 
However, a sufficient amount of usable data was obtained to allow the conclusion that the 
spacing of responses for a single-boundary, open-ended task is essentially the same as for two- 
boundary ranges. In addition, because we forced Ss to order their responses according to 
relative magnitude, functions could be obtained between response order and magnitude (after 
Banks and Hill, 1974). 

Method 

Subjects. The participants were 73 male undergraduates enrolled in an introductory 
psychology course at Dartmouth College. None had served as Ss in Exp. I. 

Stimulus Materials. As in Exp. I, the appropriate lower stimulus boundary was typed at  
the top of individual sheets of paper which were stapled together in a booklet for each S. No 



292 J.C. Baird and E. Noma 

upper boundary was given. The order of the sheets was randomized separately in each case. 
Sixteen spaces were marked on a sheet with a lower boundary number occupying the top space. 
Fifteen responses were then required for each of seven lower boundaries: 1, 5, 10, 12, 100, 211, 
and t000. At this point in the experimental series, we were content to study boundaries 
containing one significant digit, and consequently, less emphasis was placed on having a full 
complement of multiple-digit boundaries. 

Procedure. The experiment took place in the auditorium used in Exp. I. All Ss participated 
at the same session. They were told to write down 15 numbers greater than the boundary 
number at the top of each sheet. The only other constraint on the 15 numbers was that they be 
arranged down the sheet in a sequential order of magnitude. 

Results and Discussion 

Here we are interested in analyzing the results from a somewhat broader view- 

point than the one adopted in Exp. I. As in the latter, however, the relative error 

(standard deviation divided by the mean) is a good index of a pattern discernible 

in the findings. Because Ss were allowed to use numbers of any magnitude (no 

upper boundary), the arithmetic mean and standard deviation are inappropriate 

for describing the group data but appropriate for individual Ss since each produced 

t5 numbers for each boundary. In  other words, the absence of an upper response 

boundary permitted more opportunity for individual differences to be manifested 

here, as contrasted with the situation in Exp. I. Consequently, the analysis was 

carried out at  the individual level. 

Fig. 4 shows relative error as a function of the mean for the unit-digit bound- 

aries. Each data point in Fig. 4 is from one S on one boundary. Some of the 

responses were extremely large, so several restrictions were placed on the data 

finally treated. (l) All responses for a single boundary were excluded if at least one 

overtaxed the calculating ability of Dartmouth 's  Honeywell G635 computer. This 

meant that  not all ranges were included for all Ss. (2) Once criterion I was passed, 

mean responses larger than t05 were also excluded. There were only 15 points 

between t05 and l0 s , and they continue the trend (although flatter) laid down in 

Fig. 4. 

The general trend in Fig. 4 is similar to that  found in Exp. I (Fig. t). Since the 

overall level of the data points is essentially parallel to the x-axis, the results 

support the constant-ratio model and contradict the constant-interval model. The 

four open circles to which the arrows point represent special cases, namely, 

instances where S responded with multiples of the boundary, that  is, t, 2, 3 . . . .  ] 6; 

~0, 20, 30 . . . .  160, etc., thereby supporting perfectly the constant-ratio model. 

For example, the mean of the numbers 2 through 16 is 9.0 with a relative error 

(standard deviation divided by the mean) of 0.48. There are 62 measurements of 

this type. I-Iowever, within a single boundary, the relative error rises faster than is 

suggested by the overall trend. The dispersion of these points for a particular 

boundary is an indication of individual differences. The comparable data for the 

5 boundary is very similar to the results in Fig. 4, whereas there is considerably 

more dispersion in She data for the t2 and 2t~ boundaries. 

There arc substantial individual differences within a boundary condition, but 

this does not mean that  similar variability exists for an S's responses for different 

boundaries. The constant-ratio model would be bolstered by evidence indicating 

that  the relative positions of data points for different Ss in the group were the 

same for each boundary. To test this hypothesis, correlations were determined 
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Table 2. Correlation coefficients (r) from Exp. II .  Results are based on the relative errors of  

individual Ss 

Lower Boundary 

1 5 1O 12 tO0 211 10OO 

Lower 

Boundary 

l 1.0 .03 .25" .26" .32" .20 .08 

5 1.0 .2t .03 .28* .35* .48* 

l0  l.O .37" .42" .36* .26* 

12 1.0 .39" .17 .25" 

100 1.0 .36* .38* 

211 t.O A6 

t0O0 t .0 

* p < .05, df  = 54, one-tailed test. 

a m o n g  t h e  s e v e n  b o u n d a r y  condi t ions ,  whe re  t h e  d a t a  pa i rs  were  t h e  t w o  r e l a t i v e  

e r ro rs  o b t a i n e d  f r o m  t h e  s a m e  S for  t w o  bounda r i e s .  N o t  al l  Ss  h a d  usab l e  d a t a  for  

a l l  t h e  bounda r i e s ,  a n d  t 7  were  e x c l u d e d  on  th i s  basis~ l e a v i n g  56 Ss  t o  be  ana lyzed .  

T h e  co r r e l a t i on  m a t r i x  is g i v e n  in  T a b l e  2. W e  no te ,  first ,  t h a t  a l l  co r r e l a t i ons  a re  

pos i t ive ,  a n d  66 % o f  t h e  en t r i e s  a re  s ign i f ican t  (p < .05, d f  = 54, o n e - t a i l e d  tes t ) .  



294 J.C. Baird and E. l~oma 

Table 2 presents strong evidence that  Ss gave responses in a characteristic fashion 

for each boundary. Such results have implications for recent discussions of 

individual differences in ratio estimation. In  particular, they suggest tha t  stable 

individual differences can be found in psychophysical judgments, in agreement 

with statements by Ekman et al. (1968) and in disagreement with the conclusions 

implied by  Teghtsoonian and Teghtsoonian (i97i), who did not find significant 

correlations among individual exponents obtained successively over time periods 

stretching from several days to one year a. 

The Order Statistic. Another perspective on the data is secured by looking at the 

relation between rank order of response and response magnitude. The Ss listed 

their responses in a sequential rank order beginning with a number larger than the  

standard. The nature of this relation is helpful in deciding upon the merits of 

different psychophysical functions (e.g., log, power). More specifically, we assume 

that  equal spacing between ranks represents equal spacing between perceptual 

scale values (Fechner's (1907) assumption) and that  the psychophysical function is 

between these ranks and the numbers generated for each. This approach to 

number scaling was first used by Banks (i973). 

In  order to bring all the data within manageable and comparable limits, the  

numbers in each range for each S were first multiplied so that  their geometric mean 

was equal to 100 times the standard. Subsequently, the geometric means were 

determined for the group at each position (rank value) within each range 5. The 

results are presented in Fig. 5. There we have plotted the relation between rank 

order on a linear scale and geometric mean on a logarithmic scale. All of the 

functions are linear throughout most of their course, although some have a slight 

hook at the lower and upper ends, leading to the visual impression of an S-shape. 

This general characteristic was found also by  Banks (i973) and by Banks and Hill 

(1974). I f  one eliminates the smallest and largest points from each function, the  

remainder form a clear linear relation ~. 

The slopes of the functions are not the same for all standards. The lowest slope 

occurs for the l standard, the highest for the 211 standard. One consistent finding 

here is tha t  slopes for the unit-digit ranges (excluding the 5 standard) are lower 

than those of multiple-digit ranges (including the 5 standard). This implies that  

the intervals between response categories are smaller for the multiple-digit 

standards, a conclusion suggested also by the uncertainty analysis (Fig. 3). 

We also at tempted to fit power functions to the data. In  a log-log plot, the  

relation between rank order and response magnitude was curvilinear throughout, 

even with the lowest and highest points eliminated. The shape of these functions 

was concave downward in a log-log plot as they should be if good linear functions 

obtain on semilog paper (Fig. 5). 

In  summary, the order statistic implies tha t  Ekman's  formulation (1964) is 

quite acceptable in that  the relation between physical and perceptual numbers is 

4 In an unpublished study on line length we obtained a significant correlation of .7 among 
exponents for 24 ~qs retested after one year. This continuum was also used by the Teghtsoo- 
nians. However, they only had l0 ~qs in a group, an inadequate number (in our opinion) for a 
correlational analysis of this type. 

5 The results were essentially unchanged when we eliminated all responses greater than l 0 e. 
We were able to obtain good linear fits by the method of least squares. 
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Fig. 5. Rank order of response as a function of the logarithm of the geometric mean based on 
group data from Exp. II. For more details, see the text 

logarithmic throughout most of the range. Moreover, since the slopes in Fig. 5 

depend on the standard, exponents would also depend on the type of standard or 

on the range of responses induced by a standard. I f  all the functions in Fig. 5 had 

the same slope, it would mean that  response magnitude was perfectly related to the 

size of the standard, and hence, response bias would not be introduced by using a 

variety of standards. However, such a bias is an empirical fact (Engen and Ross, 

1966). More specifically, multiple-digit standards and single-digit standards other 

than l,  10, 100, etc., should produce lower exponents in magnitude estimation 

tasks since, in the exponent n = p/c, the value of the cognitive factor (c) would be 

larger for "odd" standards (Baird, 1970b). Another way to look at it is that  one 

would not advance as far along the response scale for "odd" standards because 

there are more steps (scale values) per unit change in intensity along the matched 

attribute scale. This prediction is implied as well by the results of Wong (1963). 

General Overview 

We are now in a position to appreciate, along with Francis Galton (t880), the 

remarkably complex views people have of the mathematical number scale. 

Despite this complexity, several invariant patterns emerge from this study. I t  is 

convenient to separate these patterns into those found at a molar, molecular, and 

supermolecular level of analysis. Invariances discovered at one level need not be 

found at another, although this fact does not diminish the importance of either in 

our effort to understand the processes by which people generate numbers. 

Molar Pattern. The most general overview can be obtained by looking at the 

results on relative error (Exps. I and II) and the order statistic (Exp. II). The 

relative error is reasonably constant across changes in the mean response magni- 

tude for both unit- and multiple-digit ranges in Exp. I (Fig. l) and for unit-digit 

lower boundaries in Exp. I I  (Fig. 4). This suggests that  the spacing between 

response categories measured in the corresponding physical units is a positive, 
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linear function of the mean of the responses. I f  this were indeed true throughout 

the number  scale, we would expect to find a logarithmic relation between response 

order (rank) and magnitude for the conditions of Exp.  I I  in accord with Ekman ' s  

(1964) formulation. The results in Fig. 5 confirm this expectation for much of the 

relevant range (excluding the smallest and largest means in the series). 

Molecular Pattern. Although the order statistic suggests tha t  a logarithmic 

function holds over most  of the range, a more detailed analysis reveals tha t  this 

effect is due largely to differences between log cycles and tha t  within a cycle, a 

fairly constant interval obtains between major  response categories. Fig. 2 (top) 

highlights the dominance of single-significant-digit responses. The lat ter  finding 

implies tha t  the spacing between categories increases linearly with increases in the 

magnitude of the cycle. Considering Fig. 3, we conclude tha t  a constant ratio is 

generally maintained between responses from two log cycles but  tha t  within a 

cycle, interresponse interval is approximately  constant. 

One further effect apparent  at  this level analysis is the reliability of individual 

differences. The significant correlation coefficients in Table 2 (Exp. I I )  indicate 

tha t  Ss are consistent in their response pat terns  across stimulus ranges. 

Supermolecular Pattern. A more careful examination uncovers two further 

facts which were not  emphasized. (l) There are more significant digits used 

(resulting in more categories) for the higher log cycles. (2) There are more signif- 

icant digits used for the multiple-digit ranges. This effect, though not pronounced, 

is implied by  the rising relative error in Figs. I and 4 and by  the uncertainty 

analysis (Fig. 3). Although not evident from Fig. 3, the response uncertainty 

[U(R)] is greater in higher log cycles. The lower boundary  is relatively unimpor- 

t an t  since approximately  70 % of the responses fall within the highest log cycle 

induced by  the stimulus conditions. 

The next  paper  in this series focuses on theoretical models developed to 

clarify the judgment  processes underlying the major  results of this study. 
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