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Abstract. The conventional approach in Computational Neuroscience
in favor of the efficient encoding hypothesis goes from image statistics
to perception. It has been argued that the behavior of the early stages
of biological visual processing (e.g. spatial frequency analyzers and their
non-linearities) may be obtained from image samples and the efficient
encoding hypothesis using no psychophysical or physiological informa-
tion.
In this work we address the same issue in the opposite direction, from per-
ception to image statistics: we show that psychophysically fitted image
representation in V1 has appealing statistical properties, e.g. approxi-
mate PDF factorization and substantial mutual information reduction,
even though no statistical information is used to fit the V1 model. These
results are a complementary evidence in favor of the efficient encoding
hypothesis.

1 Introduction

Horace Barlow suggested that functional properties of biological vision sensors
should be matched to the signal statistics faced by these sensors [Barlow, 1961].
The conventional approach to confirm the plausibility of such efficient encoding
hypothesis goes from image statistics to perception.

Over the last decades a number of evidences in the above conventional direc-
tion have been reported. First, the shape of the linear receptive fields in V1 was
derived using different network architectures and learning algorithms to optimize
different statistical criteria such as energy minimization, enforcing decorrelation
of the outputs or maximizing the mutual information between input and out-
put: for instance, in [Linsker, 1986, Sanger, 1989, 1990] low-pass filtered random
noise was used as a rough model for natural images to feed the networks, while
[Foldiak, 1989] focused on information transmission. Then, more attention was
devoted to statistical independence beyond decorrelation. When higher order
moments are considered in natural images (using linear ICA), sets of localized
and oriented edge detectors are found [Olshausen and Field, 1996, Bell and Se-
jnowski, 1997, van Hateren and van der Schaaf, 1998]. Another linear feature
of perception explained from the spectrum of natural images and maximization
of signal to noise ratio is the spatial frequency sensitivity [Van Hateren, 1992,
1993]. The works of Van Hateren also explain a global non-linear dependence on
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the luminance and the strength of the stimulus in accordance with Weber’s law
[Van Hateren, 1992, 1993].

More recently, attention has shifted from the linear receptive fields to the
specific non-linearities of V1 cells, namely surround effects and contrast adap-
tation or gain control. In this case, parametric models using divisive normal-
ization [Schwartz and Simoncelli, 2001] or other specific non-linearities [Kayser
et al., 2003] have been fitted using image statistics and efficient encoding argu-
ments. Feedback and feedforward connections in hierarchical networks have been
used to reproduce surround inhibition [Rao and Ballard, 1999]. Non-parametric
approaches, such as non-linear ICA used in [Malo and Gutiérrez, 2006], exem-
plifies the image statistics to perception way of reasoning since the right non-
linearities directly emerge from the data using no perceptually inspired func-
tional form.

However, despite the above evidences, nowadays there is a productive debate
about the generality of the efficient encoding hypothesis, or the strict applica-
bility of redundancy reduction arguments [Barlow, 2001, Simoncelli, 2003].

In order to contribute to this debate, two complementary lines of research
are possible:

– The conventional direction, from image statistics to perception, as described
above. This approach derives computational models or architectures from
statistical principles, and then simulates perceptual (physiological or psy-
chophysical) measurements from the statistically derived model. The even-
tual match between simulated and experimental recordings suggests that
the efficient encoding hypothesis is correct, since the experimental behavior
emerges from image statistics (even though no perceptual information was
used in deriving such behavior).

– The reverse direction, i.e. from perception to image statistics. This approach
starts from the response of real neurons (or equivalently from the response
of a perceptually derived model) at different stages along the visual path-
way. When such a perception system is stimulated with natural images it
is possible to obtain statistical measurements about the transmitted signal
at different processing stages. The eventual good statistical behavior of the
perceptual responses at a certain stage (e.g. independence) suggests that
the efficient encoding hypothesis is correct, since the brain is reducing the
redundancy in the signal along the visual pathway (even though no statisti-
cal information was used in computing these responses -direct recordings or
perceptually transformed signals-).

In this work we take the second approach: we show that a psychophysically
fitted version of the divisive normalization contrast masking model has appeal-
ing statistical properties (e.g. approximate factorization of the PDF of natural
images) even though no statistical information is used to fit the model. There-
fore, this work can be seen as the reverse approach version of [Schwartz and
Simoncelli, 2001, Malo and Gutiérrez, 2006], which are examples of the direct
approach applied to the non-linear behavior of V1 cells.

The structure of the paper is as follows. In section 2 we review the the stan-
dard non-linear model of the V1 visual cortex and propose a new (indirect)
psychophysical procedure to set its parameters. In our case, the model param-
eters are obtained to predict perceived distortions on a large subjectively rated
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database. Appendices show that the perception model works as well as state-
of-the-art image quality metrics using natural stimuli while qualitatively repro-
ducing traditional psychophysics (frequency sensitivity and masking) that uses
more simple stimuli. Section 3 analytically shows how the proposed perception
model may factorize a plausible PDF for natural images (which captures local
image dependencies), provided perception is matched to the statistics. Section
4 empirically shows the good statistical behavior of the perceptual model when
exposed to natural images: the non-linear part of the V1 model strongly reduces
the mutual information between coefficients of the previous linear stage and ap-
proximately achieves the predicted component independence. Finally, section 5
draws the conclusions of the work.

2 The Divisive Normalization V1 model

The perceptual image representation considered here is based on the standard
psychophysical and physiological model that describes the early visual process-
ing up to the V1 cortex. The linear part of the model describes the shape of the
receptive fields as linear edge detectors tuned to different scales [Daugman, 1980,
Watson, 1983, 1987], and accounts for the threshold contrast sensitivity [Camp-
bell and Robson, 1968, Mullen, 1985, Malo, 1997]. The non-linear part of the
model accounts for the non-linearities related to contrast masking [Heeger, 1992,
Foley, 1994, Watson and Solomon, 1997, Carandini and Heeger, 1994, Carandini
et al., 1997]. In this model, the input image, x = (x1, · · · , xN ), is first analyzed
by a set of wavelet-like linear sensors, Tij , that provide a scale and orientation
decomposition of the image [Daugman, 1980, Watson, 1983, 1987]. The linear
sensors have a frequency dependent linear gain according to the Contrast Sen-
sitivity Function (CSF), Sii, [Campbell and Robson, 1968, Mullen, 1985, Malo,
1997]. The weighted response of these sensors is non-linearly transformed ac-
cording to the divisive normalization gain control, R [Heeger, 1992, Foley, 1994,
Watson and Solomon, 1997, Carandini and Heeger, 1994, Carandini et al., 1997]:

x
T
−→ w

S
−→ w′ R

−→ r (1)

In this scheme, the set of local-frequency analyzers (matrix T) and the slopes of
their responses (matrix S) constitute the linear part of the model. The rows of
the matrix T contain the linear receptive fields of V1 neurons. In this paper we
used an orthogonal 4-scales QMF wavelet transform1 [Simoncelli and Adelson,
1990] to model such receptive fields. S is a diagonal matrix containing the linear
gains to model the CSF. Finally, R is the divisive normalization response which
describes the non-linear behavior:

R(w′)i = ri = sign(w′
i)

|Sii · wi|
γ

βγ
i +

∑n
k=1 Hik|Skk · wk|γ

(2)

where H is a kernel matrix that controls how the responses of neighboring linear
sensors, k, affect the non-linear response of sensor i. The constants βi determine
the minimum contrast for significant response saturation.

1 http://www.cns.nyu.edu/∼lcv/software.php
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The color version of the V1 response model involves the same kind of spa-
tial transforms described above applied on the image channels in an opponent
color space [Martinez-Uriegas, 1997]. In particular, we used the standard YUV
(luminance, yellow-blue, red-green) representation [Pratt, 1991]. According to
the well known differences in frequency sensitivity in the opponent channels
[Mullen, 1985], we will allow for different matrices S in each channel. We will
assume the same behavior for the other spatial transforms since the non-linear
behavior of the chromatic channels is similar to the achromatic non-linearities
[Martinez-Uriegas, 1997].

The natural way to set the parameters of the model is empirical: by fit-
ting low-level perception data, either physiological recordings [Heeger, 1992] or
threshold psychophysics [Watson and Solomon, 1997]. This low-level approach
is not straightforward because the experimental literature is often interested
in a subset of the parameters, and a variety of experimental settings is used
(e.g. different stimuli, different contrast definitions, etc.). As a result, it is not
easy to unify the wide range of data into a common computational framework.
Alternative (theoretical) approaches involve using image statistics and the effi-
cient encoding hypothesis to derive the parameters [Olshausen and Field, 1996,
Schwartz and Simoncelli, 2001, Malo and Gutiérrez, 2006]. Obviously, this is not
an option in our case since our aim is assessing the statistical efficiency of a
non-statistically optimized model.

Instead, in this work we used an empirical but indirect approach: we set
the parameters of the model to reproduce experimental (but higher-level) visual
results such as image quality assessment as in [Watson and Malo, 2002]. In
particular, we optimized the V1 model to obtain an image distortion metric that
maximizes the correlation with the subjective ratings of a small subset of the
LIVE Quality Assessment Database2 [Sheikh et al., 2006]. Appendix A gives
further details on the parametrization and the optimization process.

Figure 1 shows the optimal values for the linear gains S, the saturation con-
stants, βγ , and the interaction kernel H . The optimal value for the excitation and
inhibition exponent was γ = 1.7. The Matlab implementation of the proposed
model is available on-line3.

Appendix B shows that the obtained model simultaneously accounts for a
wide variety of suprathreshold distortions as well as for the basic trends of thresh-
old psychophysics (e.g. frequency sensitivity and contrast masking).

3 PDF factorization through V1 Divisive Normalization

In this section we assume a plausible joint PDF model for natural images in the
wavelet domain and we show that this PDF is factorized by a divisive normaliza-
tion transform, given that some conditions apply. The analytical results shown
here predict quite characteristic marginal PDFs in the transformed domain. In
section 4 we will empirically check the predictions made here by applying the
normalization model proposed above to a set of natural images.

2 http://live.ece.utexas.edu/research/quality/
3 http://www.uv.es/vista/vistavalencia/standard V1 model/



5

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

Frequency (cycl/deg)

S
ii (

lin
e
a
r 

g
a
in

)

 

 

Achrom. horiz.−vert.
Achrom. diag.
Chrom. horiz.−vert.
Chrom. diag.

0 5 10 15 20 25
0

5

10

15

Frequency (cycl/deg)

β iγ  (
re

g
u
la

ri
z
a
ti
o
n
 c

o
n
s
ta

n
t)

 

 

horiz.−vert.
diag.

Fig. 1. Linear gains S (top left), saturation constants βγ (top right), and kernel H

(bottom left). The particular structure of the interaction kernel comes from the partic-
ular arrangement of wavelet coefficients used in the transform [Simoncelli and Adelson,
1990]. The bottom right figure shows the individual rows highlighted in different colors
in the kernel figure. Each row corresponds to the particular coefficients in white in the
bottom right figure. The different shades of color represent the interaction intensity
with the spatial and orientation neighbors. In this example we assumed 72 × 72 dis-
crete images sampled at 64 cycles per degree. According to this, the spatial extent of the
subbands is 1.125 degrees.

3.1 Image model

It is widely known that natural images display a quite characteristic behavior in
the wavelet domain: on the one hand, they show heavy-tailed marginal PDFs,
Pw′

i
(w′

i) (see Fig. 2), and, on the other hand, the variance of one particular
coefficient is related to the variance of the neighbors. These relations are easy
to see by looking at the so called bow-tie plot: the conditional probability of a
coefficient given the values of some of its neighbors, P (w′

j |w
′
i), normalized by the

maximum of the function for each value of w′
i (see Fig. 2). In this representation

tilting of the conditional density suggests that the coefficients are correlated,
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but more importantly, it can be seen that the variance of one coefficient strongly
depends on the variance of the neighbor. These observations on the marginal and
conditional PDFs have been used to propose leptokurtotic functions to model
the marginal PDFs [Simoncelli, 1997, 1999, Hyvärinen, 1999] and models of the
conditional PDFs in which the variance of one coefficient depends on the variance
of the neighbors [Buccigrossi and Simoncelli, 1999, Schwartz and Simoncelli,
2001].

Inspired on these conditional models, we propose the following joint PDF (for
the N-dimensional vectors w′), in which, each element of the diagonal matrix,
Σ, depends on the neighbors:

Pw′(w′) =
1

Z

1

|Σ(w′)|1/2
e−

1

2
w′T ·Σ(w′)−1·w′

(3)

where,

Σii(w
′) = (βγ

i +
∑

j

Hij · |w
′
j |

γ)
2

γ (4)

and Z is simply a normalization constant to ensure that
∫

w′ Pw′ (w′) dw′ =1.
Appendix C shows that the normalization constant, Z, is bounded.

The diagonal matrix Σ(w′) can be thought as playing similar role as the co-
variance matrix in a regular Gaussian PDF. However, note that Σ(w′) is point
dependent (i.e. it is not a covariance matrix), and even though it is diagonal,
it introduces relations among the energies of neighbor coefficients (see eq. 4).
Therefore, this joint PDF is not Gaussian, and the coefficients of the wavelet
transform are not independent since the joint PDF, Pw′(w′), cannot be factor-
ized by its marginal PDFs, Pw′

i
(w′

i).
The proposed PDF is inspired by the models used in [Buccigrossi and Simon-

celli, 1999, Schwartz and Simoncelli, 2001] since it tries to describe the relations
among neighbor coefficients in wavelet domains using linear combinations of
them. The differences include (1) the specific exponent, a sort of norm, γ, ap-
plied to the coefficients of the wavelet transform used in the linear combination
(whether you consider amplitudes, γ = 1, as in [Buccigrossi and Simoncelli,
1999]; energy, γ = 2, as in [Schwartz and Simoncelli, 2001]; or some generic γ,
here), and (2) the fact that here we are proposing a joint PDF model while in
those cases the model was conditional.

A 2D example using the above joint PDF illustrates its suitability to capture
the reported marginal and conditional behavior of wavelet coefficients: see the
predictions shown in Fig. 2.

3.2 V1 normalized components are approximately independent

Here we compute the PDF of the natural images in the divisive normalized
representation assuming (1) the above image model, and (2) the match between
the parameters of the V1 representation and the parameters of the image model.
Specifically, the match between the denominator in the perceptual response (eq.
2) and the matrix Σ in the image model (eq. 4).

We will use the fact that given the PDF of a random variable, w′, and some
transform, r = R(w′), the PDF of the transformed variable can be computed
by [Stark and Woods, 1994],

Pr(r) = Pw′(R−1(r)) · |∇rR
−1| (5)
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Fig. 2. Top: empirical behavior of wavelet coefficients of natural images (marginal PDF
-left- and conditional PDF -right-). Darker values indicate higher probability. Bottom:
simulated behavior according to the proposed model. In this 2D experiment we considered
two coefficients of the second scale of w′ (computed for 10000 images of the database
[Olmos and Kingdom, 2004], using 3 · 106 samples). We used Sii = 0.14, βi = 0.4,
Hii = 0.7 and Hij = 0.3 and γ = 1.7, according to the psychophysically fitted model.

Considering that the divisive normalization (in vector notation) is just:

r = sign(w′)Σ(w′)−
γ
2 · |w′|γ (6)

where | · |γ is an element-by-element exponentiation, the inverse, R−1, can be
obtained from one of these (equivalent) expressions [Malo et al., 2006]:

|w′|γ = (I − D|r|H)−1 · Dβγ · |r| (7)

w′ = sign(r)Σ(w′)
1

2 · |r|
1

γ (8)
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where Dv are diagonal matrices with the vector v in the diagonal. Plugging w′,
eq. 8, into the image model we have,

Pw′(R−1(r)) =
1

Z

1

|Σ(w′)|1/2
e−

1

2
(|r|1/γ)T ·I·(|r|1/γ) (9)

Taking derivatives on the inverse, eq. 7, the determinant of the Jacobian is:

|∇rR
−1| = det






1

γ
Σ(w′)1/2 · D

|r|
1

γ
−1

·




I + Dβ−γ · H · (I − D|r|H)−1 · Dβγ · D|r|

︸ ︷︷ ︸

M(r)











|∇rR
−1| = det

(
1

γ
Σ(w′)1/2 · D

|r|
1

γ
−1

· (I + M(r))

)

|∇rR
−1| = |Σ(w′)|1/2 ·

N∏

i=1

1

γ
|ri|

1

γ −1det(I + M(r))
1

N

Since det(I + M(r))
1

N ≈ 1 in natural images4, it follows,

|∇rR
−1| ≈ |Σ(w′)|1/2 ·

N∏

i=1

1

γ
|ri|

1

γ −1 (10)

Therefore, from Eqs. 5, 9 and 10, it follows that the joint PDF of the normalized
signal is just the product of N functions that depend solely on ri:

Pr(r) ≈

N∏

i=1

1

γ Z1/N
|ri|

1

γ −1 e−
|ri|

2/γ

2 =

N∏

i=1

Pri(ri) (11)

i.e., we have factorized the joint PDF into its marginal PDFs.
Even though factorization of the PDF does not depend on the particular

γ, (provided the normalization transform uses the appropriate γ value), this
exponent determines the shape of the marginal PDFs (see Fig. 3). In particular,
if the appropriate value were γ = 1, the transform would give rise to Gaussian
marginal PDFs thus becoming similar to Radial Gaussianization transforms as
suggested in [Lyu and Simoncelli, 2009]. However, note that different values of γ
in the transform would imply a better (or worse) match between the denominator
of the normalization and the matrix Σ of the image model. This match is required
to achieve the factorization result in eq. 11.

4 Results

This section assesses the component independence performance of the psychophys-
ically fitted V1 representation (i.e. the validity of Eq. 11) by (1) analyzing the
marginal and conditional probabilities of the transformed coefficients, and (2)

4 We found that the average value and standard deviation of this determinant on 10000
images taken from McGill calibrated image dataset [Olmos and Kingdom, 2004] is:

〈det(I + M(r))
1

N 〉 = 1.013 ± 0.003.
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Fig. 3. Family of marginal PDFs of the normalized coefficients ri as a function of γ.

by mutual information measures. To do so, 10000 image patches of size 72 × 72
from the McGill database [Olmos and Kingdom, 2004] were considered and trans-
formed to the linear V1 representation (the wavelet domain), and to the non-
linear V1 representation.

4.1 Marginal and conditional PDFs

Figure 4 shows the experimental and the predicted marginal and conditional
PDFs in the normalized domain. These results correspond to two spatial neigh-
bors of the second scale and horizontal orientation (3 · 106 2D samples). Similar
results are obtained for other subbands. For the sake of illustration, in the case
of the marginal PDFs, we show the results for different values of the exponent γ
in the transform: the psychophysically optimal value, γ = 1.7, and other values,
γ = 0.5 and γ = 0.25, due to the characteristic bimodal shape of the predicted
marginal PDFs in those cases (see Fig. 3).

Bimodal results are obtained in the marginal PDFs for the (psychophysically
non-optimal) values of γ as predicted by the theory. However, note that the
agreement with the theoretical prediction is much better for the psychophysically
optimal exponent, thus indicating the match of the psychophysical vision model
to image statistics.

The result for the conditional probability shows that the vision model sub-
stantially reduces the redundancy among neighbor coefficients with regard to
the linear wavelet representation: note that the bow-tie has practically disap-
peared (compare with the equivalent result in fig. 2), in close agreement with
the theoretical prediction.

4.2 Mutual Information measures

Mutual information (MI) between pairs of neighbor coefficients of image samples
in the spatial domain, in the linear V1 image representation (wavelet domain),
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Fig. 4. Marginal and conditional PDFs in the response domain. The first row shows
the experimental marginal PDF of the responses for illustrative values of the exponent
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and in the V1 non-linear representation were computed. The eventual reduc-
tion of MI values would point out the redundancy reduction along the visual
pathway. In order to assess the magnitude of the achieved reductions we also
include the results of two non-linear statistically-based techniques designed to
give rise to independent components in images: Radial Gaussianization using
L2 norm as in [Lyu and Simoncelli, 2009], and Lp norm as in [Eichhorn et al.,
2009]. These transforms start from a whitened linear representation of image
vectors followed by an univariate (radial) non-linear transform tuned to obtain
Gaussian distribution of the L2 or Lp lengths of the vectors. In order to make
the comparison easier, we used the same initial linear stage (wavelets) in those
non-linear transforms. It is true that orthogonal wavelets may not be the best
linear transform to achieve independence, but it is important to stress that (1)
the selected linear stage is not critical for the final independence results obtained
by using Radial Gaussianization techniques as pointed out in [Eichhorn et al.,
2009], and (2) the aim of this work is not looking for the ultimate transform
to achieve independence, but to show that the brain substantially reduces re-
dundancy through the gain control non-linearity. The second non-linear stage
in these illustrative Gaussianization techniques was performed by equalizing the
L2 and Lp lengths respectively, as done in [Lyu and Simoncelli, 2009]. In our
simulations we used p = 1.2 in the Lp norm according to the results in [Eichhorn
et al., 2009]. This is the optimal norm for ICA, while other linear representa-
tions are optimal for exponents in the range [1.2, 2]. As stated above, choosing
different linear representations with norm exponents in the cited range gives rise
to similar independence results [Eichhorn et al., 2009].

Appendix D gives the details on the used MI estimator and its errors: it
shows that the errors are small compared to the MI differences presented in this
section, thus ensuring the significance of the differences.

We performed two experiments. The first one tries to obtain a rough estimate
of the global redundancy reduction ability of the linear (wavelet) and the non-
linear (divisive normalization) stages of the V1 model. In this experiment we
computed the MI among one coefficient and all the other coefficients (both in
the spatial domain and in the local frequency domains, also including Radial
Gaussianization using both L2 and Lp).

The second experiment consists of a more accurate analysis of the different
possible relations in the local frequency representations, w, r, and Radial Gaus-
sianization using L2 and Lp: (1) intra-band, measuring the MI of one coefficient
with its 9 × 9 − 1 neighbors of the same subband, (2) inter-orientation, mea-
suring the MI of one coefficient with its corresponding 5 × 5 spatial neighbors
in a subband of the same scale but different orientation, and (3) inter-scale,
measuring the MI of one coefficient in a coarser scale with its 2 × 2 sons in the
corresponding finer scale.

Figure 5 shows representative results of the first experiment. In each MI
computation 104 2D samples from the McGill database [Olmos and Kingdom,
2004] were used. The MI values in the spatial domain monotonically decrease
with distance, as previously reported in [Lyu and Simoncelli, 2009]. The MI
values among neighbors in the local frequency domains decrease as the distance
in space, orientation and scale increases. The behavior is similar for coefficients
of other scales and orientations.
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As expected, the statistically tuned Gaussianization techniques obtain quite
good independence results on the considered data set. Interestingly, the psy-
chophysically tuned transform (that uses no statistical optimization at all) ob-
tains very similar results in redundancy reduction. These results show that about
86% of the average MI in the spatial domain is reduced by the linear wavelet
transform, while the non-linear psychophysical transform further reduces an ad-
ditional 82% of the remaining MI in the linear wavelet domain. As a consequence,
the non-linear V1 representation reduces about 98% of the average MI in the
spatial domain, which is comparable to the reductions achieved by the statisti-
cally tuned Radial Gaussianization techniques using L2 norm (99.2%) and Lp

norm (99.5%).
Figure 6 shows a representative subset of the results of the second experi-

ment: intra-band and inter-orientation MI values for the different orientations
of the second scale, and inter-scale MI values for parents of the third scale and
the corresponding sons of the second scale. Overlapping blocks of the different
subbands were used to obtain more samples for a reliable MI estimation. The
intra-scale, inter-orientation and inter-scale results were computed using 0.8·106,
1.3 · 106, and 0.7 · 106 2D samples respectively.

Again, the results show that the statistically tuned Radial Gaussianization
transforms substantially reduce the redundancy among the different neighbor
coefficients with regard to the linear wavelet representation. The psychophysi-
cally optimal divisive normalized representation (second column) achieves very
similar results. This means that the redundancy removal obtained through the
psychophysical transform is significant. This is consistent with the removal of
the bow-tie relations in the conditional probability plots (Figure 4).

Moreover, it is interesting to note the similarity between the exponents to be
used in the Lp norm in Eichhorn et al. [2009], and the psychophysical value for
γ in the V1 normalization (which normalizes each wavelet coefficient by a sort
of γ norm of its neighbors). In the first case, the value for better independence
is in the range [1.2, 2]. In the psychophysically tuned V1 transform, γ = 1.7.

The fact that relatively more redundancy is reduced in the intra-band and
inter-orientation cases may be due to the quantization of the masking kernel
which was necessary for practical computational reasons (see comment in Ap-
pendix A). The quantization of the kernel in divisive normalization removes
inter-scale interactions so the normalization is not as effective in that situation.
Note that the optimal kernel in figure 1 does not reflect inter-scale interactions.

Summarizing, the agreement between the experimental and the predicted
marginal and conditional PDFs of r, and the substantial MI reduction with
regard to the linear wavelet domain confirm the theoretical result in eq. 11:
the psychophysically optimal divisive normalization is well matched to image
statistics and approximately factorizes the PDF of natural images.

5 Conclusions

Here we showed that the non-linear stage of the standard V1 cortex model op-
timized to reproduce image quality psychophysics substantially increases the
independence of the image coefficients obtained in the linear stage. Theoreti-
cal results (confirmed by experiments) show that the psychophysically tuned
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MIx: 0.38, [0.21, 1.70] bits

MIw: 0.052, [10−3, 0.27] bits MIr: 0.009, [10−4, 0.15] bits

MIRG L2
: 0.003, [6 · 10−5, 0.06] bits MIRG Lp : 0.002, [10−5, 0.05] bits

Fig. 5. MI results between one coefficient (the one in white) and its neighbors in the
spatial domain (top) the linear V1 response, wavelet domain (middle left); the non-
linear V1 response domain (middle right); the Radial Gaussianization using L2 norm
(bottom left); and the Radial Gaussianization using Lp norm (bottom right). The num-
bers in each case represent the average and the range of MI values found in bits. The
top figure is scaled so that the black and white correspond to the maximum MI value in
the spatial domain, 1.70 bits, and 0 bits respectively. All the other figures are scaled with
regard to the maximum MI value in the wavelet domain: white and black correspond to
the limits of the range [0, 0.27] bits.

V1 model approximately factorizes a plausible joint PDF for natural images in
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w r RGL2 RGLp w r RGL2 RGLp

H HV
0.122 0.020 0.013 0.011 0.085 0.004 0.005 0.003

V HD
0.140 0.021 0.014 0.011 0.116 0.009 0.010 0.007

D DV
0.126 0.013 0.006 0.004 0.129 0.009 0.010 0.007

w r RGL2 RGLp

H
0.193 0.048 0.054 0.054

V
0.219 0.047 0.054 0.054

D
0.183 0.031 0.030 0.027

Fig. 6. MI (in bits) between pairs of coefficients in the linear V1 representation
(wavelet, w) and in the non-linear V1 representation (normalized response, r). The
last two columns in each panel show the results of Radial Gaussianization techniques
using L2 norm and Lp norm respectively. The top left panel shows intra-band relations
within 2nd scale subbands of different orientation. The top right panel shows inter-
orientation relations for the 2nd scale coefficients. The bottom panel shows inter-scale
relations of coefficients of the 3rd scale with their sons in the 2nd scale for different
orientations. All images are scaled so that back and white correspond to the maximum
MI value and 0 bits respectively. The numbers represent the average MI value (in bits)
in each image.

the wavelet domain: bow-tie dependencies are almost removed and redundancy
among coefficients is substantially reduced.

Therefore, the results presented here confirm the efficient encoding hypothesis
in a novel direction: from perception to image statistics. These results comple-
ment the standard approach to validate the hypothesis (e.g. from image statis-
tics to perception) taken in [Olshausen and Field, 1996, Schwartz and Simoncelli,
2001, Kayser et al., 2003, Malo and Gutiérrez, 2006].
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It is true that redundancy reduction is not the only goal in early visual pro-
cessing [Barlow, 2001], but the results presented here suggest that this initial set
of perceptual transforms performs a sort of non-linear independent components
extraction.

Further work should address the issue of redundancy on the sign (or phase)
of the wavelet coefficients. This information is not taken into account in the
image model since the PDF is symmetric around the origin, and signs (and
their eventual relations) are not modeled in any way. The proposed divisive
normalization model does not take this issue into account either since it acts on
the amplitude of the wavelet coefficients. A separate or complementary model for
the signs of image coefficients is needed. Extensions of the perception model could
be fitted by using the specific distortions in subjectively rated image databases
consisting of phase alteration (e.g. fast fading or JPEG2000 transmission errors).

A Setting the V1 model parameters

Here we give the complete parametrization of the model and describe the opti-
mization process.

The diagonal in S, that accounts for contrast sensitivity, is described by a
function that depends on the scale, e = 1, 2, 3, 4, (e ranges from fine to coarse),
may depend on the orientation, o = 1, 2, 3, (the o values stand for horizontal,
diagonal and vertical), but it is constant for every spatial position, p:

Sii = S(e,o,p) = Ao · exp

(

−
(4 − e)θ

sθ

)

(12)

where Ao is the maximum gain for the considered orientation, s controls the
bandwidth of the frequency response, and θ determines the sharpness of the
decay with spatial frequency. This parametrization describes the shape of the
CSF in the wavelet domain [Malo, 1997]. As stated above, we will allow for
different linear gains in the different chromatic channels YUV. In particular, we
will allow for different gains (AoY , AoU = AoV ) and different bandwidths (sY ,
sU = sV ).

We use the Gaussian interaction kernel proposed in [Watson and Solomon,
1997], which has been successfully used in image processing applications in the
block-DCT domain [Malo et al., 2006, Gutiérrez et al., 2006, Camps et al., 2008].
In the wavelet domain this reduces to:

Hik = H(e,o,p),(e′,o′,p′) =

= K · exp

(

−

(
(e − e′)2

σ2
e

+
(o − o′)2

σ2
o

+
(p − p′)2

σ2
p

))
(13)

where (e, o,p) and (e′, o′,p′) refer to the scale, orientation and spatial position
meaning of the wavelet coefficients i and k respectively, σe is the kernel width
in the scale dimension, σo is the kernel width in the orientation dimension,
and σp is the kernel width in the spatial dimension, and K is a normalization
factor to ensure

∑

k Hik = 1. In order to reduce the storage requirements of the
kernels, we quantized them to obtain sparse matrices. This implies neglecting
small interactions among coefficients.
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In our implementation of the model we set an initial guess of the profile of the
saturation constants βi according to the standard deviation of each subband of
the wavelet coefficients of natural images in the selected wavelet representation.
This is consistent with the interpretation of the values βi as priors of the ampli-
tude of the coefficients [Schwartz and Simoncelli, 2001]. This profile βi (computed
from 100 images of a calibrated image data base [Olmos and Kingdom, 2004])
was scaled by a constant b to be set in the psychophysical optimization process.

Given an input image, x, and its distorted version, x′ = x + ∆x, the above
model provides two response vectors, r, and r′ = r + ∆r. The perceived distor-
tion can be obtained through the appropriate pooling of the one dimensional
deviations in the vector ∆r [Laparra et al., 2010]. Non-quadratic pooling norms
have been reported [Ahumada, 1993, Watson and Solomon, 1997, Watson and
Malo, 2002]. Moreover, different summation exponents, for the pooling across
spatial position, qp, and frequency, qf , may be used [Laparra et al., 2010]. The
parameters of the model (including the pooling exponents) can be optimized
to maximize the correlation among the predicted distortion and the perceived
distortion on a subjectively rated database. The model was tuned to reproduce
the subjective quality data of three images of the LIVE database [Sheikh et al.,
2006], which includes 5 kinds of distortion (i.e. it was optimized for a total of 83
distorted images).

Assuming the same behavior in the horizontal and vertical directions (o =
1, 3), and assuming that the oblique effect in the frequency sensitivity [Watson
and Ramirez, 2000] is described by a single attenuation of the gain in the diagonal
direction (i.e. A2 = d · A1 in every chromatic channel), the model described so
far has 13 free parameters:

Ω ≡ {A1Y , d, A1UV , sY , sUV , θ, γ, b, σe, σo, σp, qp, qf}. (14)

In order to simplify the optimization process, we didn’t explore all the di-
mensions of the parameter space at the same time, but optimized the parameters
using a three stages procedure obtaining local optima in restricted subspaces.
We first obtained the basic parameters of the model by neglecting the chro-
matic channels, the oblique effect and the non-quadratic summation, i.e. using
A1UV = 0, d = 1, and qs = qf = 2, thus reducing the dimensions of the pa-
rameter space to 8, Ω1 ≡ {AY , sY , θ, γ, b, σe, σo, σp}. Afterwards, we checked
the eventual improvements obtained from the previous (local) optimal configu-
ration by considering the chromatic channels and allowing different values for
the sensitivity in the diagonal direction, Ω2 ≡ {AUV , sUV , d}. Finally, different
summation exponents for the spatial and frequency pooling (in both possible
orders) were considered Ω3 ≡ { qp, qf}.

The explored ranges for the parameters and the optimal values found are
shown in Table 1. The optimal summation strategy consist of pooling first over
the frequency dimensions and then over the spatial dimensions.

The parameters found are consistent with previously reported results in psy-
chophysical and physiological literature. First, the acrhomatic linear gain has
bigger peak sensitivity than the chromatic linear gain (AY > AUV ), and its
bandwidth is also bigger (sY > sUV ), which is consistent with the experimen-
tal results on achromatic and chromatic CSFs [Mullen, 1985]. The reduction in
sensitivity in oblique directions (d < 1) is also consistent with models based on
low-level psychophysics [Watson and Ramirez, 2000, Wuerger et al., 2002]. As a
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result, the basic trends of the CSF can be reproduced with the model (see CSF
reproduction compared to the one of the Standard Spatial Observer in appendix
B). The value of the excitatory and inhibitory exponent, γ = 1.7, is close to
the values reported in the literature: in [Watson and Solomon, 1997], they use
values in the range [2, 2.3] to fit contrast incremental threshold data. In [Caran-
dini et al., 1997] values in the range [1,3] are considered for V1 cells, and they
finally chose a quadratic exponent in the simulations. Note that in [Watson and
Solomon, 1997, Carandini et al., 1997] the models are slightly different since
they allow for different exponents in the numerator (excitation) and the denom-
inator (inhibition) of the normalization. The width of the pooling kernel is also
consistent with previously reported results: in [Watson and Solomon, 1997] they
found σp ≈ 0.5 degrees, while in [Watson and Malo, 2002] a smaller pooling area
was found, σp ≈ 0.1 degrees (twice the spatial width of the CSF filter). In our
case, when fitting image distortion results, we found σp = 0.25 degrees. Pool-
ing in scale was not considered, σe = 0, in [Watson and Solomon, 1997], which
is consistent with the small value we found in our experiments. In fact, in our
case, the effect is so small that these inter scale interactions are neglected when
simplifying the kernel by quantization (see figure 1). On the contrary, pooling in
orientation is wide: we found σo = 3, that is there is a strong interaction between
subbands that are 90 degrees apart (see figure 1), which is consistent with the
results in [Watson and Solomon, 1997] that found σo ≈ 85 degrees. Finally the
summation exponents for the distance computation (qp = 2.2 and qf = 4.5, table
1) are consistent with the values found in [Watson and Malo, 2002], qp = 2.9, and
with the summation exponent found in [Watson and Solomon, 1997], about 5.1.
However, note that the redundancy reduction properties of the representation
do not depend on these summation exponents.

Parameter Meaning Range Optimal Correlation

AY Amplitude of achrom. CSF 30, . . . , 60 40

sY Bandwidth of achrom. CSF 0.25, . . . , 3 1.5

θ Sharpness of CSFs 2, . . . , 8 6

γ Excit.& inhibit. exp. 0.5, . . . , 3 1.7

b Scaling of regularizat. 0.5, . . . , 8 2

σe Scale width of masking 0.15, . . . , 3 0.25

σo Orientat. width of masking 0.15, . . . , 3 3

σp Spat. width of masking 0.03, . . . , 0.4 0.25 (in deg) ρp = 0.916
AUV Amplitude of chrom. CSF 30, . . . , 40 35

sUV Bandwidth of chrom. CSF 0.25, . . . , 1.5 0.5

d Oblique factor 0.6, . . . , 1.4 0.8 ρp = 0.922
qp Spatial pooling exp. 0.5, . . . , 6 2.2

qf Freq. pooling exp. 0.5, . . . , 6 4.5 ρp = 0.931

Table 1. Parameter space, optimal values found, and improvement of the Pearson
correlation in the progressive stages of the optimization.
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B Reproducing low-level and high-level psychophysics

In this section we show that the model optimized to account for (high-level)
image quality opinion also accounts for the fundamental trends of (low-level)
threshold psychophysics.

Figures 7-9 show the results of three experiments: (1) reproduction of subjec-
tively rated distortion, (2) reproduction of frequency-dependent threshold con-
trast sensitivity, and (3) reproduction of contrast masking non-linearities.

In the first experiment, the generalization ability and robustness of the model
to account for a wide variety of suprathreshold distortions is assessed by check-
ing its performance on a more general image quality database (with more images
and distortions of different nature). Here we applied the model (optimized for
83 images) to predict distortions on the whole LIVE database (779 distorted im-
ages), plus on the whole TID database [Ponomarenko et al., 2008]. The extension
to the TID database is challenging since it not only contains different images,
but more importantly, it includes 12 kinds of distortion not included in the LIVE
database. The model was finally applied to 2479 distorted images. The perfor-
mance of the proposed model (figure 7.a) can be compared to the performance of
the state-of-the-art Visual Information Fidelity index (VIF) [Sheikh and Bovik,
2006] of the same authors as the LIVE database (figure 7.b). Note that the VIF
metric fails to account for some of the distortions in the TID database (repre-
sented by different symbols/colors in the plots) while the proposed V1 image
representation model obtains significantly better correlation when considering a
wide range of distortions (see the Pearson and Spearman correlation coefficients
at the plots). More details on the performance of the proposed model as image
quality metric are given in [Laparra et al., 2010]. The Matlab implementation of
the metric is available on-line5.

The second experiment shows how the model accounts for the threshold fre-
quency sensitivity. Here, the response of the model to a given incremental pattern
(target), ∆x, seen on top of a background, x, is computed as the perceptual dis-
tance d(x,x+∆x). The CSF can be simulated by computing the above distances
between sinusoids with fixed contrast, but different frequencies and orientations,
and a uniform gray background. Figures 8.a and 8.b compare the result of this
simulation for achromatic sinusoids in a wide range of spatial frequencies with
the corresponding achromatic CSF of the Standard Spatial Observer [Watson
and Ramirez, 2000]. Note that the model approximately reproduces the band
pass behavior, the overall bandwidth, and the oblique effect.

The third experiment simulates contrast masking results. In order to do so,
the contrast of a Gabor patch is increased on top of different backgrounds (sinu-
soids with different contrasts and orientations). As widely known [Watson and
Solomon, 1997, Foley, 1994], the visibility of the target increases quickly for low
contrast targets, while remains more stable for higher contrast targets, thus re-
vealing a non-linear response. Moreover, the visibility of the target is reduced
as the contrast of the background is increased. This effect is bigger when the
the background has the same orientation as the target. Figures 9.a and 9.b show
the response curves of the model to vertical targets for the different background
sets: vertical (left) and horizontal (right). The model response to the target is
a saturating non-linearity when the target is shown on top of no background

5 http://www.uv.es/vista/vistavalencia/div_norm_metric/
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◦ Gauss. in color channels × Spatially correl. noise ⋄ Masked noise
2 High Freq. ⋆ Impulse noise ⊳ Color Quantization
× Denois. artifacts ⋆ JPG transm. errors ⊳ J2K transm. errors (LIVE)
◦ Non-ecc patttern 2 Local block-wise ⋄ Mean shift
× Contrast scale 2 J2K compression (LIVE) ⋄ JPG compression (LIVE)
⊳ Additive Gaussian (LIVE) ◦ Gaussian blur (LIVE) ⊳ Fast fading
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Fig. 7. Reproduction of high-level perception results. The figures show the correlation
among the predicted distortion, d, and the observers opinion, DMOS, for the distance in
the proposed V1 image representation (a), and the state-of-the-art VIF metric (b). The
different symbols in the plot and legend represent images with distortions of different
nature. For details on the different distortions see [Sheikh et al., 2006, Ponomarenko
et al., 2008].
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Fig. 8. Reproduction of (low-level) frequency-dependent sensitivity. In the plots, the
achromatic CSF as predicted by the proposed V1 model (a) is compared to the Standard
Spatial Observer CSF (b).

(auto-masking). The model predicts the reduction of the response when the tar-
get is shown on top of a background (cross-masking). The reduction increases
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with the contrast of the mask. Moreover, note that the reduction in visibility
is bigger for backgrounds of the same nature (vertical target and vertical back-
ground). Therefore, the behavior of the model with the proposed parameters is
compatible with the low-level behavior of human observers reported elsewhere
[Watson and Solomon, 1997].

Figures 9.c and 9.d show contrast incremental thresholds ∆C for non-zero
mask contrast as a function of the test contrast. These plots have been obtained
from the previous response curves (with Cmask = 0.1) looking for the amount of
contrast deviation needed to obtain a constant increment in the response (or dis-
tance). The left plot corresponds to target and background of the same frequency
and orientation while the right plot corresponds to the orthogonal orientation
situation. In both cases the thresholds increase with contrast (as expected from
saturating responses). However, when target and background have the same ori-
entation the sensitivity is reduced (thresholds increase faster). Figures 9.e and 9.f
show equivalent experimental results by Foley [Foley, 1994] explicitly reproduced
from [Watson and Solomon, 1997], which display the same behavior.

To summarize, the results in this section show that the divisive normaliza-
tion model optimized to reproduce high level distortions (such as those in the
LIVE database) can simultaneously reproduce the basic features of low-level
psychophysics (e.g. frequency sensitivity and contrast masking), while being ro-
bust enough to account for a wider range of suprathreshold distortion data (TID
database).

C Normalization constant of the proposed PDF

The normalization constant, Z, in eq. 3 is:

Z =

∫

w′

1

|Σ(w′)|1/2
e−

1

2
w′T ·Σ(w′)−1·w′

dw′ (15)

The proposed PDF integrates to 1 if Z is bounded. Intuitively, this is the case
in practical situations, since the linearly weighted wavelet domain (the range of
possible values of w′) is limited for images of finite energy and extent, and the
diagonal matrix, Σ(w′), is not singular for realistic (strictly positive) values of
the parameters (see eq. 4), so the integrand is bounded (and strongly decays
with |w′|).

In addition to the above physical constraints, in this appendix we give an
approximated bound for Z (reasoning in the linear domain, w′), and we derive
an explicit value for Z (reasoning in the non-linear domain, r).

Note that Z is just a scalar that does not depend on w′ so the factorization
result in section 3.2 does not depend on the particular value of this constant.

The bound for Z is based on the Laplace method to approximate integrals of
exponential functions [MacKay, 2002]. The idea is approximating the exponent
by its expansion up to 2nd order around the maximum, w′

0. In our case, the peak

of the exponent, −1/2 w′T · Σ(w′)−1 ·w′ = −f(w′), is at the origin, w′
0 = 0:

∫

w′

e−f(w′) dw′ =

∫

w′

e−(f(0)+ 1

2
w′T ·∇2f(0)·w′+··· ) dw′

≈

∫

w′

e−
1

2
w′T ·∇2f(0)·w′

dw′ = (2π)N/2 |∇2f(0)|−1/2 (16)
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Fig. 9. Reproduction of (low-level) masking non-linearities and contrast incremental
thresholds. Top row non-linear response: (a) response to Gabor targets of increasing
contrast seen on top of sinusoids of the same frequency and orientation, and (b) equiv-
alent responses on top of orthogonal sinusoids. Middle row: contrast incremental thresh-
olds ∆C as a function of the test contrast when mask and test have the same orientation
(c) and orthogonal orientations (d). Bottom row: equivalent ∆C psychophysical data
by Foley [Foley, 1994], as reported in [Watson and Solomon, 1997]. In the middle and
bottom rows contrast is expressed in dB: CdB = 20 log

10
C.

Computing the matrix of second derivatives of f(w′), it can be seen that
∇2f(0) = Σ(0)−1. Therefore:

∫

w′

1

|Σ(0)|1/2
e−

1

2
w′T ·Σ(w′)−1·w′

dw′ ≈ (2π)N/2 (17)
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Taking into account eqs. 15 and 17, and the fact that |Σ(w′)| > |Σ(0)| for
w′ 6= 0, it follows:

Z <

∫

w′

1

|Σ(0)|1/2
e−

1

2
w′T ·Σ(w′)−1·w′

dw′ ≈ (2π)N/2 (18)

More accurate estimations of the bound can be obtained by considering higher
order terms in the expansion using the generalized Laplace method [Fog, 2008].

An explicit value for Z can be easily obtained in the non-linearly transformed
domain r. Under the assumptions detailed in section 3.2, the joint PDF after
the divisive normalization of eq. 6 is given by the product of the marginals,

Pri(ri) =
1

γ Z1/N
|ri|

1

γ −1 e−
|ri|

2/γ

2 (19)

therefore, an alternative equation for the normalization constant is,

Z =

(
2

γ

∫ ∞

0

r
1

γ −1

i e−
r
2/γ
i
2 dri

)N

(20)

Using the change of variable, u = r
1

γ

i , and du = 1
γ r

1

γ −1

i dri, it follows,

Z =

(

2

∫ ∞

0

e−
u2

2 du

)N

= (2π)N/2 (21)

D Measuring mutual information

Mutual information (MI) between two random variables, MI(v1, v2), is defined
as the difference between the sum of marginal entropies and the joint entropy
[Cover and Tomas, 1991]:

MI(v1, v2) = h(v1) + h(v2) − h(v1, v2) (22)

Since MI is invariant under point-wise transforms [Cover and Tomas, 1991],
our MI estimator first equalizes the marginal PDF of each coefficient to obtain
uniform densities in the range [0, 1]. Then, the joint entropy is computed by
using the 2D histogram and the Miller-Madow correction [Miller, 1955]. In our
implementation, the total number of bins in the 2D histogram was set to be
the square root of the number of available samples. In our case, the marginal
entropies are zero due to the uniformization step. Therefore the MI is equal to
minus the joint entropy.

In order to assess the accuracy of the above estimator we tested it for two
particular densities of known MI: (1) Gaussian densities, whose MI can be com-
puted in closed-form [Cover and Tomas, 1991], and (2) the image model in the
wavelet domain, Eq. 3, whose MI can be obtained by numerical integration of
the joint PDF.

In Table 2 we show the mean and the standard deviation of the percentage
of error for 2D PDFs of different MI as a function of the number of samples used
in the estimation. The explored range of MI values is [0.01, 0.32] bits, and the
number of samples is in the range [104, 106]. These error percentages have been
obtained with 100 different realizations for each sample size.

These results ensure that the estimation error is always below the MI differ-
ences shown in section 4.
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Gaussian PDFs

Number of samples (×104)
MI 1 2.5 6.3 15.8 39.8 100
0.01 14 ± 18 9 ± 10 5 ± 6 3 ± 3 2 ± 2 1.3 ± 1.5
0.04 7 ± 7 4 ± 4 4 ± 3 2 ± 2 2.1 ± 1.3 1.6 ± 0.7
0.09 8 ± 5 5 ± 3 4 ± 2 2.8 ± 1.3 2.4 ± 0.8 1.7 ± 0.5
0.14 8 ± 4 5 ± 2 4 ± 1.5 3.3 ± 1.0 2.5 ± 0.6 1.9 ± 0.4
0.19 8 ± 3 6 ± 2 5 ± 1.5 3.5 ± 0.9 2.6 ± 0.6 1.9 ± 0.3
0.24 8 ± 3 6 ± 2 5 ± 1.2 3.3 ± 0.7 2.7 ± 0.5 2.0 ± 0.3
0.28 8 ± 2 6 ± 1.8 5 ± 0.9 3.7 ± 0.7 2.6 ± 0.4 2.0 ± 0.3
0.31 8 ± 2 6 ± 1.6 5 ± 1.1 3.7 ± 0.6 2.8 ± 0.4 2.0 ± 0.2
0.32 9 ± 2 6 ± 1.6 5 ± 1.0 3.7 ± 0.6 2.8 ± 0.4 2.1 ± 0.2

Image PDF model in the wavelet domain (Section 3.1)
Number of samples (×104)

MI 1 2.5 6.3 15.8 39.8 100
0.21 8 ± 3 5 ± 2 2.9 ± 1.4 1.5 ± 0.6 1.5 ± 0.6 1.0 ± 0.3

Table 2. Relative error (in %) of the mutual information estimator on Gaussian den-
sities and on the proposed image model in the wavelet domain.
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