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Abstract
Objective—While there has been considerable concern over possible adverse effects of
psychostimulants on brain development, no prospective study has examined this issue. We
determined whether psychostimulant drug treatment for Attention-deficit/Hyperactivity Disorder
(ADHD) was associated with differences in the development of the cerebral cortex during
adolescence.

Method—Change in cortical thickness was estimated from two neuroanatomic magnetic resonance
images on 43 subjects with DSM-IV ADHD (mean age at first scan 12.5 years (SD 2.1); second scan
16.4 (SD2.4). Nineteen subjects not treated with psychostimulants between the scans were compared
with an age matched group of 24 subjects who received psychostimulants. Further comparison was
made against a template derived from 620 scans on 294 typically developing children.

Results—Treatment defined ADHD groups differed in rate of change of cortical thickness of the
right motor strip, the left middle/inferior frontal gyrus; and the right parieto-occipital region (t(41)
=2.8, p=0.009) The group difference was due to more rapid cortical thinning in the group ‘off’
psychostimulants (mean cortical thinning of 0.16mm/year, SD 0.17) compared to the ‘on’ group
(thinning of 0.03 mm/year, SD 0.11). Comparison against a typically developing cohort showed the
cortical thinning in the ‘off’ psychostimulants group was in excess of age appropriate rates. Treatment
groups did not differ however in clinical outcome.

Conclusions—There was no evidence that psychostimulants were associated with ‘slowing’ of
overall growth of the cortical mantle.

Introduction
Psychostimulant treatment of ADHD represents the largest single class of psychotropic
medication prescribed to children in the US, with around 9% of all boys and 4% of girls
receiving this medication (1). The long-term safety of psychostimulants is thus of great
importance (2). Two recent large randomized trials showed psychostimulants suppress growth
rates during treatment, with a decrease of 1.3cm/year in height, and between 1.3 kg/year (for
pre-school age) and 2.5 kg./year (for school age children) in weight from age appropriate
growth rates (3,4). This raises the question of whether there might be similar effects on human
brain development.
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Meta-analysis of previous neuroanatomic studies finds that ADHD is characterized by a
reduction in grey and white lobar volumes, with some prefrontal cortical regions being
particularly affected (5). However, there are few studies of the structural correlates of
psychostimulant treatment. Castellanos and colleagues found that prior treatment with
psychostimulants in children with ADHD was associated at study entry with greater white
matter lobar volumes relative to stimulant naive children with ADHD, and volumes which lay
closer to the range of their typically developing counterparts suggesting a neuroprotective
effect (6). An independent study of 30 children with ADHD examining regions implicated in
the pathogenesis of the disorder similarly found that treatment with psychostimulants was
associated with a more normative volume of the caudate and anterior cingulate cortex (7).
While informative, these studies were cross sectional, limiting inferences that can be made
about the developmental effects and only examined change either within a priori regions of
interest or at the level of entire lobes.

We recently reported evidence of a delay in cortical maturation in ADHD by examining the
age at which cerebral cortical points reached their peak thickness- that is the point at which
childhood cortical thickening gave way to thinning (8). Whereas typically developing children
without ADHD reached peak cortical thickness in the frontal cortex around age 7–8, in ADHD
this developmental milestone was reached later at around age 10–11. Throughout adolescence
both children with ADHD and healthy children show cortical thinning throughout nearly the
entire cortex. We now ask if treatment with psychostimulants affects these developmental
trajectories. We selected a subset of subjects from our cohort who had repeated neuroanatomic
imaging, and were either treated (‘on’) or not treated (‘off’) with psychostimulants between
scans. Most of ADHD subjects who were ‘off’ psychostimulants were between 9 and 20 years
old and we thus confined our examination to this age range. Comparison was made against
both an age matched group of ADHD subjects who received psychostimulant treatment
between both scans and a cohort of typically developing children (9). All data thus lay within
a period of cortical development predominately characterized by thinning.

This is the first prospective study to examine whether cortical development reflects differing
treatment with psychostimulants.

Methods
Subjects

Subjects with ADHD were drawn from our cohort of 223 children with ADHD, diagnosis being
based on the Parent Diagnostic Interview for Children and Adolescents (10), Conner’s Teacher
Rating Scales (11), and the Teacher Report Form (for further details of the entire cohort see
(6,8,12,13). Inclusion criteria for the current study were the availability of at least two
neuroanatomic scans (leading to exclusion of 112 subjects) and of treatment histories from
research case notes (leading to exclusion of a further 32 subjects). This left 79 eligible
participants with ADHD. Twenty seven subjects were not treated with medication between
two scans and most of the scans on this group were acquired between the ages of 9 and 20
years old and data beyond these limits was sparse. We thus confined the study to this period
of greatest data density. From the 52 subjects with ADHD who were treated between the two
scans we selected an age matched group of 24 subjects (the remaining subjects had data lying
outside the age range). Thus the groups ‘on’ and ‘off’ treatment between scans did not differ
significantly in age. All children selected for this study had combined type ADHD.

The study comprised an initial day hospital assessment phase. Children were then discharged
to their treating physicians in the community and decisions regarding psychostimulant
treatment during this period were the joint responsibility of children, their families and
physicians.
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The cortical development of the ADHD groups were compared against a template of cortical
development derived from 294 typically developing controls who contributed 620
neuroanatomic magnetic resonance scans, reported upon previously – see reference (9). These
children were matched in IQ and gender composition with the ADHD group, given the impact
of both these variables on cortical development (9,14). The institutional review board of the
National Institute of Health approved the research protocol and written informed consent and
assent to participate in the study were obtained from parents and children, respectively.

Neuroimaging
T1-weighted images with contiguous 1.5-mm slices in the axial plane and 2.0-mmslices in the
coronal plane were obtained using 3-dimensional spoiled gradient recalled echo in the steady
state on the same 1.5-T General Electric Signa scanner (Milwaukee, WI). (echo time of 5 ms,
repetition time of 24 ms, flip angle of 45°, acquisition matrix of 256 × 192, number of
excitations equals 1, and 24 cm field of view). Native MRI scans were registered into
standardized stereotaxic space using a linear transformation and corrected for non-uniformity
artifacts (15). Registered and corrected volumes were segmented into white matter, gray matter,
cerebrospinal fluid and background using an advanced neural net classifier (16). To determine
cortical thickness, a surface deformation algorithm was applied which first fits the white matter
surface, then expands outward to find the gray matter-CSF intersection defining a known
relationship between each vertex of the white matter surface and its gray matter surface
counterpart. Cortical thickness can thus be defined as the distance between these linked vertices
(a total of 40,962 such vertices are calculated) (17). White and grey matter surfaces were re-
sampled into native space by inverting the initial stereotaxic transformation. Cortical thickness
was then computed in native space. In order to improve the ability to detect population changes,
each subject’s cortical thickness map was blurred using a 30mm surface based blurring kernel
(18). A 30-mm-bandwidth blurring kernel was chosen on the basis of population simulations
indicating that this bandwidth maximized statistical power while minimizing false positives
(18). This kernel also preserves the capacity for anatomical localization as 30-mm blurring
along the surface using a diffusion smoothing operator represents considerably less cortex than
the equivalent volumetric Gaussian blurring kernel as it preserves cortical topologic features
(18).

Statistical analyses
The primary variable of interest was the rate of change in raw cortical thickness, calculated
as:-

where CT is the thickness (in mm) of each cortical point at the first (age1) or second scan
(age2). The results of the cortical thickness analyses were visualized through projection onto
a standard brain template, showing regions where treatment group differences in the rate of
change of cortical thickness differed significantly in a t test for independent samples at an
uncorrected p<0.05. Such visualization showed clustering of the cortical points with group
differences and further analyses retained those clusters with a spatial extent of more than 50
vertices, and the mean cortical thickness of each cluster was used in further analyses.

Cortical thickness values of the ADHD groups were then contrasted against a template of
typical cortical development, whose derivation has been described in detail elsewhere (9). From
this template we estimated the expected cortical thickness for a typically developing child at
the mean age of the first and second scan.
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Results
Demographic and clinical characteristics

The treatment-defined ADHD groups did not differ significantly with respect to age, gender
composition and IQ nor in clinical characteristics - see Table 1. Outcome data at the time of
the second scan was available on 35 of the 43 subjects. Neither the proportion of subjects
retaining a diagnosis of combined type ADHD at follow-up nor a measure of global functioning
differed significantly between groups.

Neuroanatomic
The medication-defined ADHD groups differed significantly in the rate of change of cortical
thickness in the left middle/inferior frontal gyrus (t(41)=2.5, p=0.02), the medial and
inferolateral aspect of the right precentral gyrus (t=2.5, p=0.02), and the right parieto-occipital
region (t=2.3, p=0.02). Averaging the cortical thickness across all these regions, the significant
difference (t=2.8, p=0.009) arose from more rapid cortical thinning in the group stopping
psychostimulants, at a mean rate of loss of −0.15 mm/year (SD 0.17), compared to cortical
thinning rate of −0.03 mm/year (SD 0.11) for the ‘on’ psychostimulants group. The impact of
these different rates of change on cortical thickness values at baseline and the endpoint are
shown in Figure 1. At baseline there were no significant group differences, however by
endpoint the group ‘off’ psychostimulants had a significantly thinner cortex than the ‘on’ group.
All results held when gender and IQ were entered as covariates. The differential rates of cortical
change in the left frontal and right medial prefrontal/motor, but not the right posterior parieto-
occipital regions held after entering covariate medication history prior to the baseline scan (as
lifetime total dose in methylphenidate equivalents) as a covariate.

We compared the effects of different classes of psychostimulants contrasting those taking
methylphenidate preparations against those taking amphetamine based medication. The two
subjects taking pemoline were excluded from this analysis. Examining the mean rates of
cortical change across the regions shown in Figure 1, subjects taking methylphenidate had a
rate of cortical thinning of 0.03 mm/year (SD 0.09), those taking amphetamine had a rate of
thinning of 0.05 mm/year (SD 0.13), compared to a rate of cortical thinning of 0.16 mm/year
(SD 0.15) for those who were ‘off’ psychostimulants (F(2,38)=3.2, p=0.05). The amphetamine
and methylphenidate groups did not differ significantly from each other in rate of cortical
change (p=0.61).

Discussion
There was no evidence that psychostimulants were associated with ‘slowing’ of overall growth
of the cortical mantle- a notable finding given the reports of possible psychostimulant related
slowing of height and weight gain in children and adolescents (3,4). Adolescents with ADHD
untreated with psychostimulants showed regional decreases in cortical thickness relative both
to their peers with the disorder who took psychostimulants and typically developing
adolescents. However, the functional significance of the finding is unclear, partly as we did
not collect cognitive data at both time points in most subjects. Additionally, it is important to
note that the increased cortical thinning in the ADHD group stopping psychostimulants was
not associated with any difference in clinical outcome. With these caveats in mind, it is still
worthwhile to consider some possible interpretations. Psychostimulants tend to normalize goal-
directed activity (19–22) and cognitive processes, including planning, cognitive flexibility,
vigilance and response inhibition (23). In healthy adults, methylphenidate induced
improvement in working memory is associated with alterations of cerebral blood flow in the
left dorsolateral prefrontal, supplementary motor and posterior parietal cortex-overlapping in
part with the regions we find to be differentially sensitive to psychostimulants (24). In children
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with ADHD, psychostimulant induced improvement in the ability to inhibit prepotent
responses is associated with increased frontal (and striatal) activity as assayed by functional
MRI (25). In adults with ADHD, correction of executive deficits by psychostimulants is
associated with altered prefrontal cortical activity- with increased activation of the premotor
and decreased activation of the middle and medial prefrontal cortex (26). Thus,
psychostimulant induced increase in age appropriate levels of cognition and action, and perhaps
underlying localized fronto-parietal neural activity, might foster cortical development within
the normative range. In this regard psychostimulant effects on the developing brain in ADHD
can be conceptualized as an example of activity-dependent neuroplasticity. Additionally, it is
possible that psychostimulants have a direct trophic effect on the cortex, particularly in view
of the growing evidence for the role of catecholaminergic neurotransmitters in cortical
development (27,28), although this explanation does not account for the highly regional effects
detected.

The current study extends our previous demonstration of more normative white matter
volumes in those with a history of psychostimulant use by demonstrating effects on gray
matter morphology (6). Our longitudinal approach enabled detection of correlates of
psychostimulant treatment on the rate of cortical development; this was not possible in our
earlier cross sectional analysis that compared cortical thickness at study entry in groups with
differing psychostimulant histories (13). Additionally, by using the metric of cortical
thickness, determined at over 40,000 cortical points, we were able to detect more localized
changes missed by lobar volumetric studies. The ‘on’ and ‘off’ medication groups were
age-matched to ensure that any differences in cortical trajectories are not confounded by
age effects.

In a recent study we demonstrated delay in cortical maturation in most of the frontal (excluding
the sensorimotor region) and temporal cortex (8) using the age of attaining peak cortical
thickness as a developmental marker. An assessment of whether psychostimulant treatment
contributes to this phenomenon is limited as in the current study we focused on the adolescent
phase of cortical thinning and did not examine the childhood phase of increase in cortical
thickness. However some considerations argue against psychostimulants being a major factor
in the altered timing of maturation. The regions that were sensitive to medication were highly
focal, (unlike the disturbance in timing of maturation which involved most of the cortex) and
encompassed areas with both late -the dorsolateral prefrontal regions-and early maturation -
the motor regions.

At the time of the first scan (~12years) the ADHD medication groups did not differ significantly
from each other in cortical thickness in the regions shown in Figure 1, perhaps reflecting their
similar history of medication exposure prior to the first scan. In prefrontal regions, the typically
developing group attains peak cortical thickness earlier and thus enters the phase of cortical
thinning earlier than those with ADHD (see (8). However, the typically developing group also
reaches a higher peak (i.e. a thicker cortex) and thus starts thinning from a higher baseline. By
age 12, the ADHD and typically developing cohorts reported upon in (8) do not differ
significantly in estimated cortical thickness in the prefrontal regions shown in Fig 1A.

In this observational study, it is important to consider the possibility that the group differences
in cortical trajectories are attributable to other dimensions on which the groups differ. The
groups did not differ in initial clinical characteristics or clinical outcome, removing the
possibility that differences in the severity of the disorder or clinical course underpinned the
findings. The groups also did not differ significantly on other variables known to affect cortical
trajectories such as gender and intelligence. Of course the ideal design is a randomized trial
comparing cortical growth in children on psychostimulants against an un-medicated
comparison group- but this is both logistically and ethically challenging. Other limitations of
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the current study include the lack of external validation of treatment histories which were based
purely on patient and parent report. It is impossible to exclude neuroanatomic effects of the
non-psychostimulant medication received by the ADHD groups, although the prevalence of
such non-psychostimulant medication was low and did not differ between groups at the time
of final assessment.

Within the inherent limitations of an observational study, we find highly regional differential
associations between cortical development and psychostimulant treatment in ADHD which
may reflect activity dependent cortical plasticity.
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Figure 1.
Brain templates (leftmost) show the regions where the ADHD groups had a significantly
different rate of cortical growth. The rate of change in raw cortical thickness in these regions
is shown (middle column). The final column shows the baseline and endpoint raw cortical
thickness for each ADHD group and the age expected values for a typically developing
adolescent. The group ‘on’ psychostimulants is shown in blue, the group ‘off’ psychostimulants
in red. The expected cortical thickness at time 1 (age~ 12.5 yrs) and time 2 (~age 16.4) for a
typically developing group is given in green.
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Table 1

At baseline, 40 of the 43 subjects were taking psychostimulants (23/24 (95.8%) in the group that remained ‘on’ psychostimulants during the
study and 17/19 (89.5%) of those who then went ‘off’ psychostimulants- Fisher exact test p=0.58). At follow-up, eleven of the 24 subjects ‘on’
psychostimulants were taking methylphenidate preparations, eleven were on amphetamine preparations and two were on pemoline. The mean daily dose
in methylphenidate equivalents was 35mg (SD 22; range 5mg to 85mg). Four subjects in the ‘on’ group were treated with second-line agents for ADHD
(three with clonidine and one with guanfacine) and one subject in the ‘off’ psychostimulant group was treated for several months with guanfacine.
Further, in the group ‘on’ psychostimulants, four were treated for depression (with desipramine, venlafaxine, sertraline and nefazodone), one for
generalized anxiety disorder (with fluvoamine) and two for mood disorders NOS (both with sodium valproate). In the ‘off’ psychostimulant group, two
subjects were treated for depression (with imipramine and buproprion) and one for a mood disorder NOS (with sodium valproate). The rates of
comorbidity did not differ significantly between groups- Table 1.
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