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Psychrophilic microorganisms: challenges for life
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The ability of psychrophiles to survive and proliferate at low tem-
peratures implies that they have overcome key barriers inherent to
permanently cold environments. These challenges include: reduced
enzyme activity; decreased membrane fluidity; altered transport of
nutrients and waste products; decreased rates of transcription,
translation and cell division; protein cold-denaturation; inappropri-
ate protein folding; and intracellular ice formation. Cold-adapted
organisms have successfully evolved features, genotypic and/or
phenotypic, to surmount the negative effects of low temperatures
and to enable growth in these extreme environments. In this
review, we discuss the current knowledge of these adaptations as
gained from extensive biochemical and biophysical studies and also
from genomics and proteomics.
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Introduction
Psychrophilic microorganisms have successfully colonized all per-
manently cold environments from the deep sea to mountain and
polar regions. Some of these organisms, depending on their optimal
growth temperature, are also known by the terms psychrotolerant or
psychrotroph (Morita, 1975). Nevertheless, we believe that there is a
continuum in temperature adaptation for life with wide or narrow
growth temperature ranges depending on the microorganism, and
we will use the general term psychrophiles in this review to desig-
nate all microorganisms growing well at temperatures around the
freezing point of water. This unique property implies that psychro-
philes have successfully overcome two main challenges: first, low
temperature, because any decrease in temperature exponentially
affects the rate of biochemical reactions; and second, the viscosity of
aqueous environments, which increases by a factor higher than two
between 37 °C and 0 °C. Remarkable adaptations have been
observed with some organisms such as Moritella profunda, which is
a psychropiezophilic organism—a microorganism adapted to cold
and living in the deep sea—that shows maximal growth rates at 2 °C
and a maximum growth temperature of only 12 °C (Xu et al, 2003).
This indicates that at temperatures as low as 2 °C, some enzymes or

supramolecular structures already show an altered conformation
that negatively affects the metabolic flux.

The aim of this review is to summarize what we know about the
cold adaptation of psychrophilic microorganisms. Obvious targets
of the deleterious effects of low temperatures are cytoplasmic mem-
branes and enzymes that tend to rigidify when the temperature
drops. This affects membrane permeability, and hence the transport
of nutrients and waste products, and catalysis, because enzymes
require a certain flexibility to function (Goodchild et al, 2004b;
Ratkowsky et al, 2005). Impaired protein folding and protein 
cold-denaturation can also cause problems at low temperatures, in
particular for bacterial strains that sustain biological activities at
temperatures as low as –20 °C and resist freezing. Cold-shock pro-
teins have also been described. What are their roles in this adapta-
tion? Key biological activities that involve nucleic acids—such as
DNA replication, transcription and translation—can also suffer
from exposure to low temperatures through the formation of sec-
ondary structures or super-coiled structures; how do psychrophiles
cope with these phenomena? Finally, several genome sequences of
psychrophilic microorganisms have been determined, and partial
annotation of these has revealed unpredicted cold adaptations, the
number of which will obviously expand after completion of the
analysis and genome sequencing of other psychrophiles.

Biodiversity
The lowest temperature limit for life seems to be around –20 °C,
which is the value reported for bacteria living in permafrost soil and
in sea ice. Microbial activity at such temperatures is restricted to
small amounts of unfrozen water inside the permafrost soil or the
ice, and to brine channels. These contain high concentrations of
salts, exopolymeric substances and/or particulate matter, and fluid
flow is maintained by concentration and temperature gradients.
Aerobic and anaerobic bacteria are found at these temperatures.
Other factors such as osmotic and hydrostatic pressure, solar, earth
and cosmic radiation, oxidative stress and nutrient availability also
strongly affect living conditions. Consequently, adaptation to cold
is often combined with other adaptations. Despite all of these chal-
lenges, life thrives in these environments with a remarkable micro-
bial biodiversity of mainly bacteria, fungi (in particular yeasts) and
microalgae. Among the bacteria that have been detected, the most
commonly reported microorganisms are the Gram-negative α-, β-
and γ-proteobacteria (Pseudomonas spp. and Vibrio spp.) and the
Cytophaga–Flavobacterium–Bacteriodes phylum. Coryneforms,
Arthrobacter sp. and Micrococcus sp. are the most frequently found
Gram-positive bacteria. Bacteria generally dominate in number
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and diversity over Archaea, although in some areas such as deep-
sea waters, these are found in equivalent numbers, with
Methanogenium and Methanococcus being the most cited genera.
Among identified cyanobacteria, Oscillatoria, Phormidium and
Nostoc commune are dominant in most of the Antarctic 
habitats (Pandey et al, 2004). Psychrophilic yeasts, particularly
Cryptococcus spp., have been isolated repeatedly from soil sam-
ples and some researchers have described them as the most impor-
tant life form in Antarctic desert soils (Vishniac & Klinger, 1986).
Refer to Deming (2002) for a detailed description of the types of
community associated with specific cold environments.

Membrane fluidity
Decreasing temperatures have an adverse effect on the physical
properties and functions of membranes, typically leading to a reduc-
tion in membrane fluidity, the onset of a gel-phase transition and,
ultimately, a loss of function. The lipid composition governs the
physical properties of membranes and hence it is not surprising that
this varies with the thermal habitat of the microorganism. In general,
lower growth temperatures produce a higher content of unsaturated,
polyunsaturated and methyl-branched fatty acids, and/or a shorter
acyl-chain length, with studies reporting a high proportion of 
cis-unsaturated double-bonds and antesio-branched fatty acids
(Chintalapati et al, 2004; Russell, 1997). This altered composition is
thought to have a key role in increasing membrane fluidity by intro-
ducing steric constraints that change the packing order or reduce the
number of interactions in the membrane. Further adaptations that
have been suggested to increase membrane fluidity include an
increased content of large lipid head groups, proteins and non-polar
carotenoid pigments (Chintalapati et al, 2004). However, these
adaptive strategies do not seem to be widespread, and studies show
more compact lipid head groups (Arthur & Watson, 1976) and
decreased non-polar carotenoid pigment synthesis (Fong et al, 2001)
in some psychrophiles.

Transcription and translation
Some of the main barriers to protein synthesis at low temperatures
include: reduced activity of transcriptional and translational
enzymes; reduced protein folding, owing primarily to a reduced
rate of prolyl isomerization; and a stabilization of DNA and RNA
secondary structures. In psychrophiles, enzymes involved in these
processes have adapted to be optimally active at low temperatures.
For example, a ribosomal extract, RNA polymerase, elongation
factor and peptidyl–prolyl cis–trans isomerase have all been
shown to retain activity near 0 °C in several psychrophilic microor-
ganisms. Indeed, this latter enzyme catalyses cis–trans prolyl 
isomerizations, and its high activity and overexpression at low
temperatures might be important for maintaining protein-folding
rates at low temperatures. Furthermore, nucleic-acid-binding pro-
teins—for example, Escherichia coli CspA-related proteins—and
RNA helicases that might be important for the destabilization of
DNA and RNA secondary structures are also overexpressed at low
temperatures in psychrophiles (Berger et al, 1996; Lim et al, 2000).

Cold-shock and heat-shock responses
The exposure of mesophilic organisms to sudden temperature
changes, both upshifts and downshifts, induces the transient over-
expression of several proteins—known respectively as heat-shock
proteins (Hsps) or cold-shock proteins (Csps)—that are involved in

various cellular processes such as transcription, translation, pro-
tein folding and the regulation of membrane fluidity (Phadtare,
2004). Although studies of these responses in psychrophilic
microorganisms are still in their infancy, similarities with the Csps
and Hsps that are induced in mesophiles have been observed. In
particular, increased levels of nucleic-acid-binding proteins (for
example, CspA-related proteins; Inouye & Phadtare, 2004) and
chaperones, such as GroEL (Tosco et al, 2003) and DnaK
(Yoshimune et al, 2005), have been frequently reported. However,
distinctions do exist between the mesophilic and psychrophilic
cold-shock response, including the lack of repression of house-
keeping protein synthesis and the presence of cold-acclimation
proteins (Caps) in psychrophiles. Many of the Csps observed in
mesophiles act as Caps in psychrophiles, being constitutively
rather than transiently expressed at low temperatures.
Furthermore, this differential regulation of expression indicates
that a temperature sensory system exists in psychrophiles, and
thermosensors at the cell membrane level—that sense changes in
fluidity—have been reported (Ray et al, 1994).

Antifreeze proteins and cryoprotectants
Antifreeze proteins (AFPs) have the ability to bind to ice crystals
through a large complementary surface and thereby create thermal
hysteresis and lower the temperature at which an organism can grow
(Jia & Davies, 2002). AFPs have been recently demonstrated in
Antarctic lake bacteria (Gilbert et al, 2004), one of which, from
Marinomonas primoryensis, is Ca2+-dependent and hyperactive
(Gilbert et al, 2005). The AFP from the Arctic plant growth-promoting
rhizobacterium Pseudomonas putida GR12-2 shows both antifreeze
and ice-nucleating activities (Muryoi et al, 2004).

Trehalose and exopolysaccharides (EPSs) might also have an
important role in cryoprotection in psychrophiles. Trehalose is
thought to have a colligative effect, but probably also helps in pre-
venting protein denaturation and aggregation (Phadtare, 2004).
Conversely, high concentrations of EPSs have been found in
Antarctic marine bacteria (Nichols et al, 2005) and in Arctic winter
sea ice (Krembs et al, 2002) These modify the physico-chemical
environment of bacterial cells, participate in cell adhesion to sur-
faces and retention of water, favour the sequestration and concen-
tration of nutrients, retain and protect extracellular enzymes against
cold denaturation and also act as cyoprotectants (Mancuso Nichols
et al, 2005).

Cold-adapted enzymes
The most important selective pressure of low temperatures is exer-
ted towards chemical reaction rates, most of which exponentially
drop with decreasing temperature according to:

in which kcat is the reaction rate, κ is the transmission coefficient, kB

is the Boltzmann constant, T is the absolute temperature in Kelvin,
h is the Planck constant, R is the gas constant and ∆G# is the activa-
tion energy. κ is generally considered to be equal or close to one;
however, this transmission coefficient significantly varies with vis-
cosity, resulting in a further decrease of kcat (Siddiqui et al, 2004).
Despite this, psychrophiles produce cold-adapted enzymes that
have high specific activities at low temperatures (Fig 1), often up to
an order of magnitude higher than those observed for their

kcat = κ
kBT
h

exp(∆G# RT )
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mesophilic counterparts (Feller & Gerday, 2003; Georlette et al,
2004; Russell, 2000). The commonly accepted hypothesis for this
cold adaptation is the activity–stability–flexibility relationship,
which suggests that psychrophilic enzymes increase the flexibility
of their structure to compensate for the ‘freezing effect’ of cold
habitats ( Johns & Somero, 2004). This increased flexibility might
concern the entire protein or might be restricted to parts of the
structure, especially those implicated in catalysis, and is probably
also responsible for the generally observed low stability of cold-
adapted proteins (Collins et al, 2003; D’Amico et al, 2003).
Conversely, it has been shown that activity and stability are appar-
ently not always inversely linked (Wintrode et al, 2001). However,
in this study, multisubstrate enzymes and small-size synthetic sub-
strates were mainly used, which might produce different results to
those obtained with natural, large substrates; that is, the specificity
of the enzyme might simply be shifted towards the substrate used.

Crystallographic structures of psychrophilic proteins indicate
that these do not have unusual conformations but instead share a
high similarity with their meso- and thermophilic homologues. To
enhance flexibility, many structural modifications that lead to
attenuation in strength and/or number of stabilizing factors—
enthalpic or entropic—have been observed. Common trends
include: the reduction of the number of ion pairs, hydrogen bonds
and hydrophobic interactions; decreased intersubunit interactions;
increased interaction with the solvent; a reduced apolar fraction in
the core; higher accessibility to the active site; increased exposure
of apolar residues to the solvent; decreased cofactor binding; clus-
tering of glycine residues; and a lower proline and arginine content
(see Violot et al, 2005).

Comparison of the thermodynamic parameters of activation of
psychrophilic enzymes with those of their mesophilic homologues
(Lonhienne et al, 2000), indicates that the high kcat of these at low
temperatures is due to a decrease of the activation enthalpy ∆H#—a
decrease in the number of enthalpy-driven interactions that have to
be broken during catalysis. This decrease is partially compensated
by a less favourable activation entropy ∆S#. As a result, and as sup-
ported by the negative values of ∆(∆S#)psychro–meso, the ground-state
enzyme–substrate complex shows a broader distribution of confor-
mational states. Consequently, a further effect of the enhanced flex-
ibility should be a looser binding of the substrate, which is observed
through high KM values for many psychrophilic enzymes that inter-
act with large substrates (Collins et al, 2002). These catalysts there-
fore increase kcat at the expense of KM, whereas in some intracellular
enzymes this adaptive drift of KM is counteracted by the retention of
rigid structural domains (Bentahir et al, 2000).

Another effect of low temperatures on proteins is cold denatura-
tion, a phenomenon that is thought to occur from destabilizing
hydration (Makhatadze & Privalov, 1995).

Genomics and proteomics
Three complete genomes have been sequenced so far: those from
Desulfotalea psychrophila (Rabus et al, 2004), Colwellia psychr-
erythraea 34H (Methe et al, 2005) and Pseudoalteromonas halo-
planktis TAC125 (Medigue et al, 2005). Draft genome sequences
have been produced from two cold-adapted Archaea:
Methanogenium frigidum and Methanococcoides burtonii
(Saunders et al, 2003). As expected, several Csps and proteins
involved in unsaturated fatty-acid synthesis have been identified
in these genomes. In addition to the classical lipid desaturases,

two gene clusters possibly involved in membrane rigidity/fluidity
through the degradation of steroids or hopanoids have been
found in the P. haloplanktis genome. Furthermore, β-keto-acyl
carrier proteins, β-keto-acyl-CoA synthetases and a fatty-acid
cis–trans isomerase have been identified in C. psychrerythraea
and could enhance membrane fluidity depending on either their
cold-adapted activity or their upregulated expression.

At low temperatures, the solubility of gasses and the production
of toxic reactive oxygen species (ROS) increase significantly. To
counteract this, C. psychrerythraea and D. psychrophila have an
enhanced antioxidant capacity owing to the presence of several
genes that encode catalases and superoxide dismutases. By con-
trast, P. haloplanktis has evolved by suppressing a series of activities
that give rise to ROS—for example, the entire molybdopterin
metabolism pathway is absent.

The amino-acid composition of the proteome has also been dis-
cussed in terms of temperature adaptation. Saunders and co-workers
(2003) showed that working from psychrophilic to thermophilic
Archaea, there is a trend in increasing leucine content and decreas-
ing glutamine and threonine content. However, this observation was
not corroborated by work on D. psychrophila, and an N-driven bias
(increase in asparagine content) in the proteins from P. haloplanktis
has been shown. Therefore, attempts to find specific adaptations to
cold by comparing the proteins from various psychrophilic,
mesophilic and thermophilic organisms have produced ambiguous
results. However, a study published by Khachane and colleagues
(2005) found a significant inverse correlation between the uracil
content of 16S rRNA and the optimum growth temperature Topt of
cultured organisms. They also proposed an algorithm to predict the
Topt values of uncultured prokaryotes that might be useful to identify
the appropriate cultivation conditions.

The proteomic approach has been used to acquire a global view
of cold adaptation at the protein level. Both Csps and Caps are
expressed by the psychrophile Arthrobacter globiformis (Berger et al,
1996) and the psychrotroph Aeromonas hydrophila (Imbert &
Gancel, 2004), whereas Seo and colleagues (2004) identified more
than 30 overexpressed proteins in Bacillus psychrosaccharolyticus
under psychrophilic growth conditions. Furthermore, proteins
involved in energy metabolism, transcription and translation
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Fig 1 | Thermodependence of activity for the cold-adapted cellulase from
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processes and in protein quality control were identified at 4 °C in
Methanococcoides burtonii (Goodchild et al, 2004a) and a prolyl
cis–trans isomerase was identified in Shewanella sp. strain SIB1
(Suzuki et al, 2004).

Conclusion
Psychrophilic microorganisms have successfully confronted the
two main physical challenges to which they are exposed: low ther-
mal energy and high viscosity, both of which slow metabolic flux.
Proteins are the main targets of these adaptations as they control
the equilibrium between substrates and products, influx of nutri-
ents, outflow of waste products, macromolecular assemblies,
nucleic-acid dynamics and appropriate folding. Their adaptation
seems to rely on a higher flexibility of key parts of the molecular
structure or of the whole edifice through a decreased stability that
partly compensates the freezing effect of low temperatures on the
three-dimensional structure. As shown by genomics and pro-
teomics, cold-shock proteins are also highly expressed and can
have crucial roles in protein folding, control of nucleic-acid sec-
ondary structure, and transcription and translation. Approaches
such as genome sequencing will undoubtedly shed new light on
other characteristics of these fascinating organisms.
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