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ABSTRACT 

This paper describes a software project called PsySound3. This 

software provides an accessible platform for the analysis of 

sound recordings using procedures applied in acoustics and 

psychoacoustics. Acoustical analysis methods include a sound 

level meter module, as well as processes such as Fourier 

transform, cepstrum, Hilbert transform and auto-correlation. 

Psychoacoustical models include dynamic loudness, sharpness, 

roughness, loudness fluctuation, pitch height and pitch strength. 

Results are presented as numbers, auditory graphs and visual 

graphs. The software is modular, allowing additional analysis 

methods to be contributed. Several additional analysis modules 

are planned. The software is distributed freely via 

www.psysound.org. This paper illustrates some of the analysis 

possibilities by using auditory alarms as examples. 
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1. INTRODUCTION 

The analysis of sound recordings is an important component of 

research in virtually every discipline of acoustics and audio that 

involves measurement. Similar tools could be used in fields as 

diverse as musicology, mechanical services noise, bioacoustics, 

and auditory display. Often a researcher, teacher, student or 

enthusiast will find their analysis options limited by either the 

cost of high quality analysis devices and software, or by their 

limited time or ability to produce their own analysis software. 

Fortunately, there is a large community of researchers who have 

produced software for specialized sound analysis. However, this 

software tends not to be prepared in an easily accessible or 

standardized way. This paper describes a project that aims to 

improve this situation, by providing a freely available and easy-

to-use software platform for sophisticated analysis of sound 

recordings. The software platform, initially released just prior to 

this conference, is called PsySound3, and it has been developed 

by the authors, with substantial contributions from several other 

researchers. 

1.1. History of PsySound 

The concept of the PsySound project began several years ago 

with the need of Cabrera to analyze sound recordings using 

psychoacoustical models for his PhD. At the time there was little 

software available for this other than very expensive ‘sound 

quality’ software. Another problem was that much software that 

was accessible provided graphical output, with little by way of 

numeric output. While free software was available from some 

researchers implementing psychoacoustical models, usually it 

was not able to read sound files. Written by Cabrera, PsySound1 

emerged in 1998 as a suite of computer programs implementing 

various analysis procedures for direct analysis of sound files: 

spectrographic analysis (purely physical analysis), loudness and 

related measures, pitch and related measures, acoustic 

dissonance, binaural analysis, and post-processing routines. 

While these programs were useful and flexible, they were not 

easy to use. 

PsySound2 integrated most of the functions of PsySound1 

into a single program, providing a much simpler interface [1]. 

While output data were stored to text files for graphing in other 

programs, a crude ASCII-based graphical representation of 

various parameters was also given on screen. PsySound2 has 

been used for teaching psychoacoustics and sound quality (at 

least at the University of Sydney and Delft Technical 

University), for research into acoustical predictors of emotion in 

music [2], for industrial noise assessment [3], automated sound 

categorization [4], and modeling of timbral brightness [5]. The 

final update of PsySound2 was in July 2000 and its operating 

system (Macintosh ‘Classic’) has now been superseded. 

In the present day, the availability of inexpensive and 

sophisticated software for acoustical, auditory and audio 

research has greatly expanded. Current implementations often 

are capable of sound file input. Prominent instances of such 

software include: Praat [6], which is oriented to phonetic 

analysis; STRAIGHT [7, 8] analysis/resynthesis software 

primarily for voice analysis; Marsyas [9], which extracts various 

dimensions of music sound files without specifically intending 

to extract features to which musicians may be accustomed 

(useful for automatic genre classification); and Aurora [10], 

which is oriented to impulse response measurement, analysis and 

inverse filtering.  

1.2. Aim of PsySound3 

PsySound3 aims to meet a need for a platform implementing 

psychoacoustical models at an easily accessible level. By 

‘accessible’, we mean that the program should be usable by 

someone who does not have computer programming experience 

(for example, someone who has never used Matlab) and also 

should be inexpensive or free. The benefit of this should be to 

provide a software tool implementing otherwise inaccessible 
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models for researchers, educators, students and enthusiasts from 

a wide range of disciplines, having a wide level of engagement 

with this type of analysis (from beginning experimenter to in-

depth research). 

Many other concepts underlie the software platform, and are 

based on experience in applying psychoacoustical analysis to 

research problems. The ability to do calibrated analysis easily 

(for example, with a 94 dB SPL calibration tone on a 

measurement microphone) is necessary to allow the system to be 

used for analysing samples recorded with measurement 

equipment. The validation of implemented analysis modules 

(through test stimuli that match published output) is essential to 

be able to rely on the results and understand how they are 

calculated. Extensibility of the software by users (using the 

Matlab programming environment to add new analysis modules) 

means that both the application of the models and their 

improvement, alteration and comparison with other models is 

possible within a single environment. This also facilitates a large 

number of analysis options, including the possibility of multiple 

models for a single psychoacoustical parameter. The provision 

of detailed numeric output data for use in other software means 

that users are able to take the results and use them for whatever 

purpose they wish (significantly for statistical analysis). A 

logically sequenced user interface, provides the support for 

inexperienced users or students to use the program and 

experiment with psychoacoustical analysis methods without 

needing programming experience. Similarly, it helps make 

novice users aware of the basic concepts needed to utilize the 

sophisticated analysis algorithms successfully (e.g., the necessity 

for approximate calibration). The sonification and visualization 

of data (including animations) allows for better understanding of 

the large output of analysis results. Batch processing based 

around the logistics of working with audio research datasets 

assists users working with large numbers of files. Verifiable 

analysis processes allow the user to both repeat the analysis 

years after originally performing it, and to be able to step 

through the analysis process looking for problems. 

2. STRUCTURE 

The structure of the program is presented in Figure 1. The 

analysis process begins with the selection of audio files for 

analysis. These can be in many common formats, as they are 

converted to a wave file (.wav) prior to being analyzed. Whilst 

the file format is controlled, neither bit depth nor sampling rate 

are altered except where analysis algorithms have particular 

requirements. 

The calibration of the signals is the next part of this 

structure, and there are a number of methods for achieving 

control over the level of signals to be analyzed. Calibration 

allows the program to measure sound pressure level (rather than 

an un-referenced relative level), and is particularly important for 

some psychoacoustical models because the relationship between 

sound pressure level and psychoacoustical parameters is not 

simple. One method for controlling level is to record a 

microphone calibration signal before recording the signals of 

interest. As long as the calibration signal can be reliably 

reproduced before every recording session this method provides 

precise control over the level of the signals. In acoustical and 

psychoacoustical contexts this approach is common (but requires 

special hardware). One alternative, for those who do not 

necessarily use calibrated recordings, is to standardize the 

signals being presented in some way. For example, if the user is 

analyzing telephone ring tones, they may wish to select a mean 

sound pressure level that is typical for such sounds in everyday 

environments, and then scale the gain all the recordings to be at 

this selected mean level. Alternatively, a constant gain 

adjustment can be chosen for every recording analyzed.  

Following the input and calibration stages, the next phase is 

the digital analysis. For the purpose of comparisons and 

flexibility we wish digital analysis algorithms to be easily added 

to the program without the necessity for completely rewriting 

the program. To achieve this we have set up an architecture into 

which we can drop in new digital analysis algorithms that have a 

couple of ‘hooks’ defined that allow them to be used by the 

program. We have called these wrapped pieces of digital 

analysis code ‘Analyzers’ for the purposes of this program. To 

integrate into PsySound3, these ‘Analyzers’ need to achieve five 

tasks. They need to provide a user interface that gives the user 

enough descriptive information about the algorithm to be able to 

employ it successfully. The user interface also needs to provide 

the means for the user to make specific decisions about whatever 

analysis parameters can be configured for the algorithm. Once 

the user has provided the necessary information, the Analyzer 

needs to read the data from the audio file on the disc 

appropriately for the analysis it is about to perform. When the 

data are appropriately configured, the Analyzer sends the data to 

the appropriate analysis software. Finally, the output of this 

software is formatted into one or more of the standard data 

objects. These data objects are explained below in some detail, 

but it is sufficient to say that the data formats seek to save all 

relevant information about the analysis process and output in a 

single object. These objects can then be sent to graphing, export, 

conversion or other analysis procedures, so that their output can 

be used in many common ways. 

File Choice

Format Algorithm Results
Process Block of Data
Prepare Data Block 
Request Specific User Data
Provide Descriptive Information

Analyser

Name
Units

Data with 2 dimensions 
for each time point. 

Time Spectrum

Name 
Units

1 dimensional time 
series data. 

Time Series Data

Calibration File 
Choice

Standardisation
Method Choice

OR

Name
Units

Data with 2 dimensions 
but no time axis

Spectrum

Time

Y

Frequency

Y

Time

Y Z

Calibration 
Adjustment

Pre-filtering

 

Figure 1. The program takes files that are calibrated in some 

way, and processes them with a set of ‘Analyzers’ yielding 

acoustical or psychoacoustical data formatted in one or more of 

the three major data formats. These can then be graphed, 

exported or used in various other ways.
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3. ANALYZER OVERVIEW 

This section outlines many of the currently implemented 

analysis functions, as well as functions that are planned for 

implementation in the near future. Where examples are given, 

the sounds are from a set of auditory alarms for air traffic control 

consoles [11]. The sound recordings used are for a simulation of 

the auditory alarm at the operator’s head position. 

3.1. Physical Signal Analysis 

In a sense, every measure produced by PsySound3 is a physical 

measure, as it is derived algorithmically from the physical 

waveform, and has no subjective component. However the term 

‘physical measure’ is used more narrowly here to refer to those 

measures that make little or no attempt to emulate subjective 

response. Such measures are generally simply defined, and their 

derivation is easy to comprehend. Physical signal analysis is an 

important part of psychoacoustical analysis because: (i) it allows 

signals to be calibrated; (ii) it allows signals to be described in 

well-understood standard ways (so that the signals can be 

reconstructed by others); (iii) processing the physical signal can 

be more efficient than psychoacoustic models (which may 

require significant additional computation, sometimes for 

marginally improved output); and (iv) physical signal 

measurements can be compared with the output of 

psychoacoustical models (for example, comparing loudness to 

A-weighed sound pressure level, sharpness to spectral centroid, 

or pitch to frequency). 

3.1.1. Sound Level Meter and 1/3-Octave Band Analysis 

These two analyzers provide a software implementation of the 

functions normally built into a precision sound level meter. They 

implement A, B, and C-weighting filters, and 1/3-octave band 

filters in the time domain, and perform ‘fast’ (125 ms) or ‘slow’ 

(1000 ms) temporal integration of the filtered and rectified 

signals, using leaky integrators. Octave band output is taken 

from the sum of the three constituent 1/3-octave bands. While 

this approach is a little more involved than fast Fourier 

transform based analysis, the analyzers’ frequency and time 

response should match those of a standard sound level meter.  

Values that can be obtained using this analyzer include the 

filtered signals (prior to rectification and integration), time series 

sound pressure levels (Fig 2), equivalent sound pressure level, 

and percentile distributions. This analyzer is also used internally 

by the program to calculate the level of the calibration files that 

are used to calibrate the files to be analyzed. 

 

3.1.2. Other Physical Signal Analyses 

PsySound3 implements analyses that are often associated with 

the field of digital signal processing, namely Fourier transform, 

cepstrum, Hilbert transform and auto-correlation.  

Values that can be output from the Fourier transform include 

the time varying spectrum, long-term average power spectrum, 

and spectral moments (both time-varying and overall). Similar 

output is available from cepstral analysis, which can be useful in 

identifying fundamental frequencies of harmonic series present 

in the input signal. The Hilbert transform may be used to output 

the Hilbert amplitude envelope (Fig 2) and instantaneous 

frequency, both as time series. The auto-correlation function 

provides a time domain approach to periodicity analysis. 

3.2. Loudness and Related Analysis 

3.2.1.  Loudness Models 

There are many models for predicting the subjective sensation of 

loudness. In recent decades loudness models used in 

psychoacoustics can be divided between ones using Bark 

auditory filters (or critical bands) and Erb auditory filters, and 

also between steady state and dynamic models. The Bark and 

Erb scales are similar in concept, except that Erb auditory filters 

have narrower bandwidths than Bark filters, and the filter 

distribution differs particularly in the frequency range below 500 

Hz. Steady state models account for spectral effects on loudness 

(for example, that greater bandwidth can yield substantially 

greater loudness for signals of identical sound pressure level). 

However, dynamic models also account for the effect of auditory 

temporal integration on loudness, and so are better suited for 

time-varying signals, especially when fine temporal detail is of 

interest. Dynamic models are more complex and 

computationally intensive. 

PsySound2 used a steady state loudness model [12] to 

analyze successive 93 ms Hanning-weighted blocks. PsySound3 

is much more flexible by providing both dynamic and steady 

state models using either Erb or Bark auditory filters. It 

implements the dynamic loudness models of Glasberg and 

Moore [13] (using Erbs) and Chalupper and Fastl [14] (using 

Barks). In the latter case, code was provided by Chalupper, and 

modified slightly to conform to the requirements of PsySound3. 

Steady state models are included in PsySound3 for the purpose 

of comparison. Zwicker’s model (which is standardized in 

ISO532B) is included, along with Moore, Glasberg and Baer’s 

model [12] (which was used in PsySound2, and on which ANSI 

S3.4-2005 is based [15]). Examples of loudness measurements 

are given in Figures 2, 3 and 5 and Table 1. 

3.2.2. The Specific Loudness Pattern 

Specific loudness is the loudness attributable to an auditory 

filter. The specific loudness pattern might be likened to a 

magnitude spectrum based on loudness. A psychoacoustical 

‘frequency’ scale (either in Erbs or Barks) accounts for the 

distribution of sound in the cochlea (based on the characteristic 

frequencies of auditory filters), and the unit of specific loudness 

is sones per Erb or sones per Bark (Figs 3 & 5). When read 

directly, the specific loudness pattern can indicate the parts of 

the frequency spectrum that make the strongest contribution to 

loudness, and can also indicate the extent of masking. The 

specific loudness pattern also contributes to several higher level 

measures – most notably, loudness is its integral and sharpness is 

based on its centroid. 

Sharpness is a subjective measure of sound on a scale 

extending from dull to sharp - sometimes it is thought of as a 

pitch-like (low-high) aspect of timbre.  ‘Brightness’ and 

‘density’ are two other terms that have been used to denote 
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equivalent or closely related attributes by, for example, Boring 

and Stevens [16] and Lichte [17]. PsySound implements the 

sharpness models of both Aures [18]  and Zwicker and Fastl [19] 

(Fig 4, Table 1). Zwicker and Fastl’s model is simply a weighted 

centroid of specific loudness, while Aures’ model is more 

sensitive to the positive influence of loudness on sharpness. 

 
Figure 2. Time series representation of a high priority auditory 

alarm used in air traffic control consoles. The top chart shows 

the waveform (or at least its apparent envelope, because details 

of the waveform are not visible on this scale). The middle chart 

shows the A-weighted sound pressure level using slow (1 s) and 

fast (125 ms)  integration times, as well as the un-weighted 

Hilbert envelope (which responds almost instantly to the input 

waveform). The bottom chart shows dynamic loudness (using the 

model of Chalupper and Fastl), and the first pulse is modeled as 

slightly quieter than the subsequent ones because it is preceded 

by silence.

3.2.3. Loudness Fluctuation 

‘Fluctuation strength’ refers to the subjective sensation of the 

strength of fluctuations in sound. Limited models of fluctuation 

strength are presented by Zwicker and Fastl [19]. Modulation 

frequencies around 4 Hz make the strongest contribution to 

fluctuation strength, with very little contribution for frequencies 

less than 0.5 Hz. Fluctuation strength increases with modulation 

depth, reaching saturation at 30 dB. The code for loudness 

fluctuation (a general model of fluctuation strength accounting 

for amplitude modulation, but not frequency modulation) was 

supplied by Chalupper [20]. This model was specifically 

designed and evaluated for fluctuating broadband and real life 

sounds. Example results are in Table 1. 

Overall values for loudness and sharpness are better derived 

from percentile analysis than by averaging over time. The short 

term loudness value exceeded 5% of the time (i.e., the 95th 

percentile) is often used for overall loudness [14, 19]. 

PsySound3 allows percentiles to be calculated for individual 

time series (such as loudness) and also for each component of 

the specific loudness pattern. 

 
Figure 3. Examples of the spectral data type derived from the 

high priority air traffic control console auditory alarm. The top 

chart is a fast Fourier transform magnitude spectrum, in which a 

harmonic series is clearly visible. The second chart is the 1/3-

octave band spectrum, showing substantial low frequency noise, 

which the short time window of the FFT was not sensitive to. 

The third chart is the specific loudness pattern, showing the 

loudness attributable to auditory filters from low to high Bark 

values. The bottom chart is the chromatic pitch pattern 

quantized from Terhardt’s pitch model, showing both spectral 

and virtual pitches.

3.3. Roughness and Dissonance 

Roughness is a sensation associated with rapid fluctuations in 

the sound received by auditory filters. As such, it can be caused 

by beats between tone components, amplitude modulation, and 

frequency modulation, with peak roughness sensitivity being for 

modulation around 70 Hz in the mid and high auditory filter 

frequency range. Models of roughness for simple stimuli are 

given by Zwicker and Fastl [19]. A model of roughness 

applicable to arbitrary stimuli was developed by Aures [21] and 

optimized by Daniel & Weber [22]. This model is implemented 

in PsySound3, using code provided by Dik Hermes. 

The concept of ‘acoustic dissonance’ has been used in 

musicology and musical acoustics to explain part of the concept 

of musical dissonance [23-25]. Acoustic dissonance models 

predict the roughness due to tone-pair interactions in the 

frequency domain – hence acoustic dissonance can be 

considered to be a subset of roughness. PsySound2 implemented 

models of acoustic dissonance: ‘spectral dissonance’ used all 

Fourier components, while ‘tonal dissonance’ used a peak 
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extraction algorithm prior to dissonance calculation. PsySound3 

offers users the opportunity to compare acoustic dissonance and 

roughness model results. Hutchinson and Knopoff’s model of 

acoustic dissonance [23] is implemented following peak 

extraction (using the same peak extraction algorithm as for 

Terhardt’s pitch model [24]). 

 
Figure 4. Spectrographic and time series representation of a 

high priority auditory alarm used in air traffic control consoles. 

The top chart shows the FFT spectrogram in which the 

harmonic content of the pulsed tone can be seen. The second 

chart shows the spectral centroid (derived from the 

spectrographic data), which scarcely varies during the duration 

of each pulse due to the dominance of the fundamental frequency 

component (a magnitude centroid would vary more –a power 

centroid is shown). The third chart shows time-varying 

sharpness, which gives a much clearer representation of how 

timbre varies with time. The bottom chart shows instantaneous 

frequency, derived from the Hilbert transform. 

3.4. Pitch Analysis 

Pitch, here, is used in the psychoacoustical sense: it refers to the 

perceived pitch(es) of sound.  This type of analysis is to be 

distinguished from ‘pitch tracking’ (musical score or MIDI 

sequence extraction), and from frequency analysis. Pitch is 

multidimensional, at least involving the components of pitch 

height and pitch strength (or salience). Shepard [26] has 

developed much more sophisticated models of the structure of 

‘pitch space’, accounting for pitch height, octave similarity and 

the cycle of fifths. 

The pitch model of Terhardt et al. [27] has been used in all 

versions of PsySound, primarily because of its track record in 

music analysis, especially in the work of Parncutt [28]. This 

relatively simple model (based on frequency domain template 

matching of harmonic series rather than auto-correlation), 

predicts pitch height and strength, virtual pitches and pitch 

shifts.  Additional measures proposed by Parncutt allow the 

estimation of two types of tonalness (how tone-like the sound is) 

and multiplicity (the number of pitches heard). The 

implementation of these measures in PsySound extends the 

application of Parncutt’s model to the analysis of sound 

(whereas Parncutt restricted his attention to the analysis of 12-

tone equal temperament pitch categories). PsySound3 quantizes 

the results by default to fit the 12-tone equal temperament scale 

(saliences of out-of-tune pitches are shared between the adjacent 

pitch categories).  By default it does not implement Terhardt’s 

pitch shifts, as these degrade the results for such a coarse 

quantization.  Pitch salience patterns are expressed linearly over 

the pitch height range, and circularly over the chroma range. 

Figs 3 and 5 give examples of pitch results. 

 
Figure 5. Spectrographic and time series representation of a 

high priority auditory alarm used in air traffic control consoles. 

The top chart shows the FFT spectrogram in which the 

harmonic content of the pulsed tone can be seen. The second 

chart shows the 1/3-octave band spectrogram (at the time of 

writing, low frequency filters have greater latency than high 

frequency filters, but we plan to change this to constant latency). 

The third chart is the time-varying specific loudness pattern 

(units are sones per Bark). The final chart is the time-varying 

pitch analysis (although in this case the pitch pattern is constant 

despite the substantial changes in sound pressure level and 

loudness). 

3.4.1. Harmonic Content 

For 12-tone equal temperament musical sound, PsySound2 

calculated the most likely tonic of the key (using long term 

average pitch weights) and chord (using short term pitch 

weights), and these functions will soon be implemented in 

PsySound3. Parncutt [28] presents chroma profiles for the 24 

major and minor keys based on octave spaced tones (Shepard 

tones). PsySound calculates the Pearson correlation coefficient 

(r) of the chroma salience pattern to each of these key profiles, 

and the one with the highest coefficient is output. The r2 value is 

also output - a value close to unity indicates a close correlation, 

while a low value suggests that the key of best fit fits poorly. 
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Chroma profiles of 27 common chords (the monad, and 

every dyad, triad and tetrachord) have been calculated for octave 

spaced tones. With 12 transpositions, this makes 324 chords 

(except that some are duplicated when transposed). The same 

correlation-based matching procedure is used to determine the 

most likely chord. 

3.5. Articulation 

Articulation is of interest to musicians and indicates the amount 

of time for which a musical note is sounded with respect to the 

note interonset interval. A note held up until the commencement 

of the next note is said to have legato articulation, whereas a 

note sounded for a relatively short time with respect to the 

interonset interval is usually said to be played with staccato 

articulation. Articulation calculations can be performed using 

PsySound3 based on the Average Silence Ratio [29]. However, 

subjective articulation is generally more complex due to 

perceptual non-linearities and effects of ‘key overlap time’ [30] 

and future versions will implement systems based on algorithms 

with a more statistical approach, such as that described by 

Brosbøl and Schubert [31]. 

3.6. Binaural Analysis 

Spatial analysis of sound recordings is not currently 

implemented, but will be done assuming binaural recordings. A 

stereo-to-binaural converter may be used to convert recordings 

that would normally be listened to in 2-channel stereo. This is 

simply a 2x2-channel convolution (left and right loudspeakers to 

left and right ears) using dummy head head-related transfer 

functions for azimuths of ±30º. The binaural analysis will 

consist of cross correlation between the signals of the two ears 

for each auditory filter (with lags of ±1 ms). The peak height of 

this function may be used to indicate apparent source width, and 

the lag time of the function may be used to indicate 

lateralization. Interaural level differences will be calculated. 

PsySound2 implemented binaural analysis in this way, but 

without any spectral analysis. 

4. RESULTS ANALYSIS 

4.1. Data Format 

The use of the data that are gained from each of the algorithms 

presents particular challenges. To avoid the laborious process of 

reformatting, cleaning and re-labeling data before its use, we are 

following an object-oriented approach to data storage. Each 

analyzer’s output is formatted in a data object before being 

saved. These objects allow all the relevant pieces of information 

about the data to be saved in a single location and in a standard 

hierarchical format. For example, such information may include 

the name of the algorithm or the units its output is measured in, 

choices the user has made about the algorithm’s process, or even 

methods or functions for performing tasks like averaging. Also, 

non-analysis information, such as independent parameters that 

are being varied between samples, may be stored within the data 

object. By storing all this information in a single location we 

reduce the user’s reliance on their records or memory to 

successfully repeat the data analysis process.  

Data objects are defined relatively abstractly, to allow 

maximal reuse of functions that accept these objects as 

arguments. An advantage of this object-oriented approach is that 

that functions may be defined that respond in the most 

appropriate way for each data object type (also called 

‘overloading’ a function). This makes it easy to define a new 

algorithm and its output and still have access to the full set of 

analysis, graphing and export functionality that may be applied 

to similar algorithms that are already included in the program. 

Similarly, new analysis, graphing or export functionality may be 

added to the program without needing to address each specific 

algorithm output individually.  

There are currently 3 main data objects. The ‘time series’ 

object is the simplest object, and stores a single value that 

changes with time (for instance broadband A-weighted sound 

pressure level). A ‘spectrum’ object accepts data that is two 

dimensional in nature, but is not time varying (e.g. one-third 

octave band levels). A ‘spectrum’ object, may not necessarily be 

a spectrum in the defined sense, but is named this way in order 

to signify its most likely use. A ‘time spectrum’ object is the 

third major type of object, and defined for spectral data that 

changes over time (e.g. spectrogram data). With three main data 

objects we provide frameworks for storing the outputs of all the 

algorithms we intend to include at this stage. By simplifying and 

codifying the possibilities for data storage it is hoped that less 

errors will be caused during the results analysis process.  

4.2. Data Compression/Thinning 

When there is a large number of long files to be analyzed, and 

some analyses (e.g., spectral analysis) may yield dimensional 

enlarging of the data size, it is very important to build methods 

for thinning the data down to a practical size. Also, in many 

situations high-resolution data is often no more useful than low-

resolution data is. This thinning is achieved before the data 

objects are saved by using a user specified down-sampling ratio 

(incorporating anti-aliasing filters), and a window and time step 

to step through the data and group (average) blocks of data 

together. Another method used to reduce the data quantity is to 

choose an upper frequency limit within the output format. For 

example, by omitting the upper two octaves of a full bandwidth 

linearly distributed spectral analysis, the data quantity is reduced 

to one quarter of its original size, whilst retaining most of the 

most useful data. 

4.3. Data Object Processing 

There are a number of procedures that can be undertaken on 

each of the data objects outlined above. They can be 

summarized by the following categories: 

Export: Exporting data to a text file to be analyzed in 

another program. 

Graphing: Visualizing the data in a graphical format. 

Data Conversion: Changing the data from one data object 

to another, usually by reducing its dimensionality. This includes 

averaging results down to single number ratings of various 

aspects of a sample using various descriptive statistics methods. 
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Sonification: Whilst visual graphing dominates data 

analysis in acoustics, sonification is an excellent alternative, 

especially for this type of data.  

Spectral and Time Series Analysis: Much of this data is 

well-suited to spectral and time-series analysis. Thus, while 

PsySound3 does not aim to be a fully featured statistics tool, it is 

worthwhile noting that many spectral options are available to 

process the time series data objects. These may include options 

such as percentile distributions, statistical moments, fast Fourier 

transform, cepstrum, auto-correlation, and cross-correlation 

functions.  

5. APPLICATIONS IN AUDITORY DISPLAY 

PsySound3 has many possible applications, some of which are in 

auditory display. One possibility is the analysis of existing 

auditory displays (such as auditory alerts) in terms of their 

physical and psychoacoustical characteristics. Such an analysis 

might be helpful in improving the consistency or contrast 

between sets of auditory display sounds (such as auditory alerts), 

or in examining masking and streaming effects for multiple 

sounds. Table 1 gives an example of psychoacoustical 

measurements of four auditory alarms used in air traffic control 

consoles.  Although these alerts were not designed using 

psychoacoustical models, the measurements show a general 

tendency for the scale values to increase with urgency. 

 

Table 1. Selected psychoacoustical measurements (averaged 

over time) of four auditory alarms used in air traffic control 

consoles, representing four levels of urgency (1 is highest, 4 is 

lowest). 

Urgency Loudness 

(sone) 

Loudness Fluctuation 

(vacil) 

Sharpness 

(acum) 

1 7.45 1.77 1.16 

2 5.42 1.50 0.92 

3 3.13 1.37 0.69 

4 3.39 0.90 0.59 

 

Sensory pleasantness may be a desirable attribute of auditory 

displays. The field of ‘sound quality’ develops models of 

sensory unpleasantness (usually for appliances and machinery 

noise) based on psychoacoustical models, which typically 

combine loudness, sharpness, roughness and tonalness [32]. A 

similar approach might be taken to the refinement of auditory 

display sounds. 

As proposed previously by the authors [33], auditory graphs 

can be developed based on psychoacoustical parameters, instead 

of simple signal parameters. This is not done by directly 

inverting psychoacoustical models (which, for arbitrary signals, 

is not possible), but by generating a large set of parametrically 

defined stimuli that are measured using psychoacoustical 

models, and then the information from that is used for an 

indirect model inversion. The requisite matrix of stimulus 

parameter values can be developed using PsySound3. A similar 

approach could be taken in alert design. Design principles for 

hierarchical alert schemes currently use simple signal properties 

such as pulsation rate, tone fundamental frequency, 

inharmonicity, and so on [34]. An alternative approach could be 

to use psychoacoustical signal parameters to control urgency, 

although research is required to determine the relationship 

between such parameters and perceived urgency. 

It is desirable in some psychophysical experiments in 

auditory display to have stimuli equal in terms of 

psychoacoustical parameters (eg equal loudness, equal sharpness 

etc). PsySound3 can be used to do this through iterative 

measurement, analysis and adjustment of each stimulus. Finally, 

PsySound3’s sonification of analysis data is itself an auditory 

display application. This idea of sonifying data pertaining to 

sound is discussed further by the authors elsewhere [35] (if 

accepted). 

6. FUTURE DIRECTIONS 

Future versions of PsySound will include modules for music 

analysis, such as vibrato and trills [36], beat mapping and tempo 

curves [37].  Furthermore, initial part extraction of voices [38] 

will allow separate analysis of each part from a polyphonic 

sound recording using some of the analysis modules.  This will 

include stream segregation of the kind described by Temperley 

[39].  Drawing results of multiple analysis modules together 

could be a kind of computational auditory scene analysis, and 

this may be considered in the future. The open source 

architecture will facilitate the flexibility of the program, and 

therefore PsySound is likely to see many further augmentations. 
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