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Pt-O bond as an active site superior to Pt0

in hydrogen evolution reaction
Fei-Yang Yu1,3, Zhong-Ling Lang1,3, Li-Ying Yin1, Kun Feng2, Yu-Jian Xia2, Hua-Qiao Tan1*, Hao-Tian Zhu1,

Jun Zhong2, Zhen-Hui Kang2* & Yang-Guang Li1*

The oxidized platinum (Pt) can exhibit better electrocatalytic activity than metallic Pt0 in the

hydrogen evolution reaction (HER), which has aroused great interest in exploring the role of

oxygen in Pt-based catalysts. Herein, we select two structurally well-defined poly-

oxometalates Na5[H3Pt
(IV)W6O24] (PtW6O24) and Na3K5[Pt

(II)
2(W5O18)2] (Pt2(W5O18)2)

as the platinum oxide model to investigate the HER performance. Electrocatalytic experi-

ments show the mass activities of PtW6O24/C and Pt2(W5O18)2/C are 20.175 Amg−1 and

10.976 Amg−1 at 77 mV, respectively, which are better than that of commercial 20% Pt/C

(0.398 Amg−1). The in situ synchrotron radiation experiments and DFT calculations suggest

that the elongated Pt-O bond acts as the active site during the HER process, which can

accelerate the coupling of proton and electron and the rapid release of H2. This work com-

plements the knowledge boundary of Pt-based electrocatalytic HER, and suggests another

way to update the state-of-the-art electrocatalyst.
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P
latinum (Pt) is generally considered as a state-of-the-art
electrocatalyst for the hydrogen evolution reaction (HER)1–8.
In recent decades, enormous efforts have been made to

design Pt-based catalysts to boost the utilization and catalytic
efficiency of Pt through the composition, morphology, and crystal
phase-engineering strategies9–13. Most of these studies have
revealed the inherent catalytic activity of Pt0 metal14–23; however,
some interesting phenomena involved in oxidized platinum are
still far from being studied. For example, when the metal Pt is
oxidized, its HER activity can be obviously better than that of
metal element Pt0 (Supplementary Figs. 1 and 2). The reason has
not been clearly clarified so far. Recently, great efforts have been
made to prepare platinum oxide models such as PtOx/TiO2

24 and
MoSx-O-PtOx

25 and confirmed that the presence of oxygen in Pt
catalysts did possess superior HER catalytic performance com-
parable to that of commercial Pt/C and even superior to that of
MoSx-Pt. These pioneering works inspired chemists to find more
suitable and distinct platinum oxide models so as to reveal the
role of oxygen in Pt-based electrocatalysts and develop new
efficient electrocatalysts superior to commercial Pt/C.

Considering that polyoxometalates (POMs) are a unique type
of nanoscale metal-oxo clusters with definite structures26–29 and
can be used to simulate the surface of metal oxides30,31, the Pt-
containing POMs could be a readily available and ideal platinum
oxide model to investigate the electrocatalytic HER. Therefore, we
selected two structurally well-defined Pt-containing
POMs Na5[H3Pt(IV)W6O24] (abbr. PtW6O24) and Na3K5[Pt
(II)

2(W5O18)2] (abbr. Pt2(W5O18)2) as model catalysts to investi-
gate their HER performance. Electrochemical experiments show
that PtW6O24/C and Pt2(W5O18)2/C electrocatalysts with 1 wt%
Pt content exhibit superior catalytic activities. The overpotentials
of PtW6O24/C and Pt2(W5O18)2/C with 1 wt% Pt content are
22 and 26 mV at 10 mA cm−2, and their mass activities are
20.175 and 10.976 Amg−1 at an overpotential of 77 mV,
respectively, which are better than that of commercial 20% Pt/C
(0.398 Amg−1). A series of control experiments, in situ syn-
chrotron radiation experiments, and density functional theory
(DFT) calculations suggest that the Pt-O bond in POMs should
be the active site for HER. Specifically, Pt is mainly an electron-
obtaining center, while its coordinated O atoms are proton-
capturing centers. During the HER process, when more electrons
and protons were injected, the elongated Pt-O bond accelerates
the coupling of protons and electrons, which leads to the rapid
release of H2 from the Pt-O bond.

Results
Structure and electronic property of Na5[H3PtW6O24]
(PtW6O24). PtW6O24 compound was synthesized according to
the literature32. As depicted in Fig. 1a and Supplementary Figs. 3
and 4, the structure of PtW6O24 is constructed by a {PtO6}
octahedron connected to six {WO6} octahedra in an edge-sharing
mode. The center Pt atom is surrounded by six O atoms forming
the {PtO6} octahedron with a Pt-O bond length of 2.005–2.020 Å.
As the pH decreases during synthesis, the number of protons on
PtW6O24 cluster increases (Supplementary Table 1). Further-
more, PtW6O24 exhibits excellent stability in a wide pH range
(0–6) and under different potentials at room temperature (Sup-
plementary Figs. 5 and 6). The electrospray-ionization mass
spectra (EIS) and capillary electrophoresis (CE) show that
PtW6O24 compound has reversible redox-active property and
good stability (Supplementary Figs. 7 and 8).

X-ray photoelectron spectroscopy (XPS) also shows the definite
oxidized platinum feature (Fig. 1 and Supplementary Fig. 9). In
the high-resolution XPS spectra of Pt (Fig. 1b), peaks for Pt 4f7/2
and Pt 4f5/2 are located at 73.9 and 77.3 eV, respectively, which

are in accordance with the presence of Pt(IV) as reported in the
literature. It is noteworthy that there are no signals at 71.4 and
74.7 eV, indicating the absence of metallic Pt33. The XPS spectra
of O 1s is depicted in Fig. 1c, the peaks at 529.6 and 530.7 eV
belong to W=O and W-O-W bonds, respectively. The peaks
belong to 532.1 and 533.5 eV can be attributed to the protonation
of the Pt-OH-W bond and crystalline H2O, respectively34. These
experiments further demonstrate that PtW6O24 can be a platinum
oxide model to carry out the electrochemical study.

First, the electrochemical cyclic voltammetry (CV) experiments
of PtW6O24 were studied in acetonitrile and 0.5 M H2SO4

aqueous solution, respectively35,36. As depicted in Supplementary
Fig. 10a, PtW6O24 exhibits a series of obvious redox peaks in the
range of −1.5 to 2.0 V in acetonitrile. Specifically, the two redox
peaks at 0.68 and 1.02 V are ascribed to the stepwise Pt(III)→ Pt
(II) and Pt(IV)→ Pt(III) processes, respectively (Supplementary
Figs. 10–13). The redox peak at −1.2 V is attributed to the
reduction of tungsten. The CV results were further simulated by
the DFT calculation, which showed that the injection of the initial
two electrons mainly occurs on the Pt center (Fig. 1d and
Supplementary Fig. 14b), leading to a decrease of the oxidation
state from PtIV to PtII. The DFT calculation further suggests that
after PtW6O24 species were 2e-reduced, the main contribution to
the LUMO became the d orbitals of the surrounding W centers,
meaning that the third-reduction step will occur on W instead of
Pt. Both CV experiments and DFT calculation reveal that the Pt
center in PtW6O24 can more easily obtain electrons than W in
PtW6O24, but no metallic Pt0 is generated in the whole
electrochemical process. The CV curve of PtW6O24 measured
in 0.5 M H2SO4 is obviously different from that in acetonitrile
(Supplementary Fig. 10b). Only the redox peaks of platinum can
be detected, and then the hydrogen evolution signal arises and
covers the redox peak region of tungsten. Moreover, the
molecular electrostatic potential (MEP, see Fig. 1e) maps suggest
O atoms on PtW6O24 species should be the main proton-
capturing centers (because the red area of O atoms in Fig. 1e
represents the most basic positions), which may serve as proton
transfer stations to continuously supply H2 generation. All above
results imply that PtW6O24 may function as an efficient HER
catalyst.

Electrocatalytic HER performance of PtW6O24/C. The HER
performance of PtW6O24 was assessed by fabricating a PtW6O24/
C composite electrocatalyst. Its preparation method and physical
characterization are shown in Supplementary Figs. 15–21. The
inductively coupled plasma-atom emission spectrometry (ICP-
AES) (Supplementary Table 2) demonstrated a 1 wt% Pt content
in PtW6O24/C. The electrocatalytic activity of 1% PtW6O24/C
for the HER was evaluated and compared to commercial
20% Pt/C in N2-saturated 0.5 M H2SO4. The polarization
curves in Fig. 2a and Supplementary Fig. 22 show that
1% PtW6O24/C exhibits excellent HER activity with over-
potentials of 22, 55, and 65 mV at current densities of 10, 70, and
100 mA cm−2, respectively, which are better than those of com-
mercial 20% Pt/C (33, 90, and 118 mV) and 1% Pt/C (68, 269,
and 357mV), and exceed most of the reported Pt-based catalysts
(Supplementary Fig. 23 and Table 7). As a comparison, series of
PtW6O24/C with different loading amount of Pt have been pre-
pared. As described in Supplementary Fig. 24, the HER perfor-
mance of catalysts was obviously enhanced with the increase of Pt
loading. However, when the loading amount of Pt reaches 5%, the
electrocatalytic activity did not increase significantly. It is pre-
sumed that the partial aggregation of PtW6O24 species results in a
decrease in the utilization of the catalyst. In addition, as described
in Fig. 2b and Supplementary Fig. 25, the Tafel slope of
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1% PtW6O24/C is 29.8 mV dec−1, which is consistent with the
Volmer–Tafel mechanism, in which the recombination of che-
misorbed H atoms and ions is the rate-determining step37. Fur-
thermore, the 1% PtW6O24/C exhibits an exchange current
density of 1.65 mA cm−2 (Supplementary Fig. 26), which means a
superior intrinsic electrocatalytic activity. The mass activity and
specific activity were normalized by the mass loading and the
electrochemical surface area (ECSA) of Pt. As depicted in Fig. 2c,
at an overpotential of 77 mV, PtW6O24/C displays a mass
activity of 20.175 Amg−1, while the mass activity of 20% Pt/C is
0.398 Amg−1. Furthermore, 1% PtW6O24/C displays a specific
activity of 35.266 mA cm−2 at 50 mV, and the value of 20% Pt/C
is 0.132 mA cm−2 under the same condition. As shown in Sup-
plementary Fig. 27, the turnover frequencies (TOFs) displays a
near linear increase with the overpotential. At an overpotential of
100 mV, 1% PtW6O24/C exhibits a high TOFs of 33.35 s−1, which
is a 58.5-fold increase over 20% Pt/C (0.57 s−1). Figure 2d indi-
cates the relationship between the current density, the over-
potential and the Pt content, demonstrating that the current
density of 1% PtW6O24/C is obviously better than that of 20%
Pt/C at all overpotentials. Even compared with Pt/C with a higher
Pt content, its value is also better in most of the overpotentials.

Electrochemical impedance spectroscopy (EIS) are depicted in
Supplementary Figs. 28 and 29 and suggest that 1% PtW6O24/C
possesses an extremely low charge transfer resistance (Rct= 6.7Ω),
which is obviously lower than that of 20% Pt/C (Rct= 46.8Ω),
demonstrating the fast Faradaic process between the interface of
the catalysts and electrolyte. The Faradic efficiency of 1%
PtW6O24/C is nearly 100% for the HER, resulting in the high

evolution efficiency of H2 (Supplementary Fig. 30). As shown in
Supplementary Fig. 31 (anti-toxicity test), the activity of 1%
PtW6O24/C exhibits negligible changes in the presence of Co2+,
Fe2+, Mn2+, and Ni2+ ions, while the performance of 20% Pt/C
decreases obviously after three cycles. Such results indicate that 1%
PtW6O24/C possesses good anti-toxicity properties.

Besides the aforementioned features, stability is also an
important factor for evaluating an excellent electrocatalyst. The
accelerated degradation test (ADT) in Fig. 2e was used to estimate
the electrocatalytic durability. After 1000 and 3000 cycles, the
polarization curves of PtW6O24/C show a slight loss. In addition,
the long-term stability test for PtW6O24/C was carried out at an
overpotential of 30mV for 24 h (Fig. 2e, inset). The current density
exhibits a small loss, demonstrating the good electrocatalytic
stability of PtW6O24/C. The Pt content in PtW6O24/C shows
negligible loss before and after the HER, indicating no dissolution
of the catalyst during the electrocatalytic process (Supplementary
Table 3). The Transmission electron microscopy (TEM) images of
PtW6O24/C after long-term electrochemical test demonstrate that
its morphology stays the same without aggregation, meaning the
good stability of PtW6O24/C (Supplementary Fig. 32). Infrared (IR)
spectra of 1% PtW6O24/C after long-term electrocatalytic tests also
suggest that 1% PtW6O24/C is stable during the electrochemical
reaction process (Supplementary Fig. 33).

Electrocatalytic mechanism of PtW6O24/C. First, a series of
control experiments were studied to understand the origins of the
excellent HER activities of PtW6O24/C. All the reference catalysts
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such as LaW10/C, Kenjet black, and Pt(C2H5N4O2)2/C exhibit
poor HER activities. These results indicate that PtW6O24/C has
excellent HER catalytic properties due to the existence of {PtO6}
core (Supplementary Fig. 34).

Furthermore, in situ X-ray adsorption spectroscopy (XAS) was
performed under pretreatment and electrocatalytic conditions to
gain insight into the electronic state variation of Pt. As shown in
Fig. 2f, in initial (before HER) state, the Pt K-edge X-ray
absorption near edge structure (XANES) spectrum of PtW6O24/C
show similar intensity to the Na2Pt(OH)6 reference, manifesting
that the Pt element in PtW6O24/C takes on a similar valence state
as in Na2Pt(OH)6. On the other hand, a shift in the edge position
to lower energy was observed when moved to HER condition, and
the intensity for Pt was significantly decreased. This indicates a
reduction in the Pt oxidation state. In addition, the XAS during
HER was found closely matching with K2PtCl4 species, strongly
suggesting the existence of PtII electronic state during the HER
catalytic process. These results demonstrate that the mechanism of
the HER process could be attributed to the formation of the PtII

intermediate. The valence state of Pt decreased from Pt(IV) to Pt
(II), and then the state was maintained between Pt(II) and Pt(I),
which is consistent with the results of CV tests. Feature B is due to
the interference of W L2-edge, which does not affect the analysis of
main peak of PtW6O24/C. During the HER process, the intensity
of feature B also decreased, indicating that W might also
participate in the HER reaction. This result indicates that no
metallic Pt0 is formed during the electrocatalytic HER process.
The Pt-O bonds always exist in the PtW6O24/C catalyst, except for
the valence state changes of Pt. This result is consistent with the
above experimental data, as well as the previous literatures35,36.

DFT calculations were employed at the M06 level to survey the
detailed pathways of H2 generation (Fig. 3). [H6PtW6O24] can
engage in multiple reduction and protonation reactions under
electrocatalytic conditions (Supplementary Table 6). However, H2

evolution from the 2e-reduction state ([H6PtW6O24]2e/2H) is
completely restricted due to the high energy demand of 2.41 eV
(Supplementary Fig. 35c). Among the considered routes, the most
accessible catalytic cycle is proposed to be through the highly
reduced [H6PtW6O24]4e/4H state to generate H2 and then
regenerate [H6PtW6O24]2e/2H (Fig. 3a). Noticeably, two Pt-O
bonds are apparently weakened (or elongated) by the two-
electron reduction; therefore, providing an available site for H
attack (Supplementary Fig. 14) to form a Pt-H state. The
configuration with one H on the Pt site ([H6PtW6O24]4e/4H(Pt))
was revealed to be 0.04 eV energetically more favorable than on
the O ([H6PtW6O24]4e/4H(O)) due to a fast intramolecular
electronic rearrangement process (Supplementary Figs. 35b and
36). Starting from the [H6PtW6O24]4e/4H(Pt) intermediate, a
transition state (TS) search demonstrated that H2 production is
kinetically promising with a barrier of only 0.15 eV, and the
singlet-state [H6PtW6O24]2e/2H can be spontaneously reconsti-
tuted via an exothermic process (Fig. 3b). Our calculations assign
a partial charge of QH= 0.12 to the H in the Pt-H moiety (clearly
smaller than that on the OH moiety QH= 0.47), supplying the
active H and combining with adjacent proton from O to
encourage H2 evolution (Fig. 3b, inset). In addition, the catalytic
cycle is computed to be catalytically efficient between the Pt(II)
and Pt(I)-involved intermediates (Supplementary Fig. 36), and
these charge assignments are consistent with the trends obtained
in XAS.
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Discussion
Based on the DFT and XAS results, [H6Pt(II)W6O24]2e/2H may
represent an important intermediate for the high HER perfor-
mance of H6PtW6O24. This result aroused our curiosity to detect
the electrocatalytic activity of another POM Na3K5[Pt
(II)

2(W5O18)2] (Pt2(W5O18)2), since it contains a similar PtII-O
moiety in the molecular structure. The overpotential of 1%
Pt2(W5O18)2/C is 22 mV at 10 mA cm−2. Its exchange current
density and mass activity at 77 mV are 1.65 mA cm−2 and
20.175 Amg−1, respectively, which are quite close to PtW6O24.
More detailed data are provided in the Supplementary
Figs. 37–57 and Supplementary Tables 4 and 5)38. This result
further confirms that Pt-O bond is the active site during the HER
process. Herein, it should be also clarified that although com-
mercial Pt/C is widely used as a standard reference for HER
research, its performance is already not the best. No matter in
size, morphology, and dispersion of metal Pt, there exists enough
space to improve its catalytic activity9–14,39. Thus, surpassing
commercial Pt/C does not mean that metal Pt-based catalysts are
out of date, which exactly suggests an important driving force for
deeply developing such state-of-the-art catalysts.

In summary, we selected two structurally well-defined Pt-
containing POMs as the platinum oxide model to reveal the role
of O atom in Pt-based electrocatalysts towards HER. The elec-
trochemical experiments show that PtW6O24/C and Pt2(W5O18)2/
C possess the overpotentials of 22 and 26 mV at a current
density of 10 mA cm−2, and their mass activities are 20.175 and
10.976 Amg−1, respectively. In situ XAS experiments and DFT
calculations suggest that the Pt-O bond should be the active site
for the HER. Specifically, Pt is mainly an electron-obtaining
center, while the O acts as the proton-adsorption center. When

extra electrons and protons were injected during electrochemical
process, the elongated Pt-O site accelerates the coupling of elec-
tron and proton and leads to a rapid release of H2 on the Pt-O
bond. Therefore, Pt-O can be utilized as a new active site towards
HER. This work answers the important role of O atoms in the
oxidized platinum-based electrocatalytic HER, which may bring
an another enlightenment for the design and preparation of more
efficient Pt-based electrocatalysts in the near future.

Methods
Characterization. Single-crystal X-ray diffraction data for Pt-POMs was collected
by using a Bruker Smart Apex CCD diffractometer with Mo-Kα radiation (λ=
0.71073 Å) at the temperature of 298(2) K. Powder X-ray diffraction measurements
were carried out on a Rigaku D/max-IIB X-ray diffractometer with Cu-Kα radiation
(λ= 1.5418 Å). TEM and high-resolution TEM images were obtained on JEOL-
2100F and JEM-F 200 instruments at an accelerating voltage of 200 kV. Scanning
transmission electron microscopy (STEM) images were obtained on a Titan Cubed
Themis G2 300 equipped with a probe corrector and HF5000. The XPS measure-
ments were performed on a KRATOS Axis ultra DLD X-ray photoelectron spec-
trometer with a monochromatized Mg Kα X-ray source (hυ= 1283.3 eV). XANES
and extended X-ray absorption fine structure (EXAFS) data were collected on the
BL14W beamline at the Shanghai Synchrotron Radiation Facility, operated at
3.5 GeV with injection currents of 140–210mA. The ICP-AES elemental analyses
were performed on a Teledyne Leeman Labs ICP-AES spectrometer. Electro-
chemical measurements and electrocatalytic HER performance were tested by using
a CHI760E workstation (CH Instruments, China). The evolved gases during HER
decomposition were detected by gas chromatography (Shimadzu, GC-2014C with a
thermal conductivity detector). K2PtCl4, Na2Pt(OH)6, Na2WO4·2H2O, La
(NO3)3·6H2O, and Ketjen black carbon were purchased from Aladdin Industrial
Co., Ltd. Nafion solution (5 wt%) and commercial 40% Pt/C, 20% Pt/C, and 5%
Pt/C were purchased from Alfa Aesar China (Tianjin) Co., Ltd. All solution used in
experiments were prepared with Millipore water (18.2 MΩ).

Synthesis of PtW6O24/C. Crystal (0.065 g) of Na5[H3Pt(IV)W6O24] was uni-
formly dispersed in 1 mL H2O, and 5 mg Ketjen black carbon was added to, stirring
at room temperature for 2 h. Then, 10 µL melamine-formaldehyde was added to
the aqueous and stirred 4 h. The electrocatalyst can be obtained after centrifuged
and dried. The obtained sample is denoted as PtW6O24/C.

Synthesis of Pt2(W5O18)2/C. Crystal (0.065 g) of Na3K5[Pt(II)2(W5O18)2] was
uniformly dispersed in 1 mL H2O, and 5 mg Ketjen black carbon was added to,
stirring at room temperature for 2 h. Then, 10 µL melamine-formaldehyde was
added to the aqueous and stirred 4 h. The electrocatalyst can be obtained after
centrifuged and dried. The obtained sample is denoted as Pt2(W5O18)2/C.

Electrochemical characterization of Pt-POMs. All reagents are guaranteed
reagent and chemicals are of high-purity grade, which were purchased from
Aladdin Industrial Co., Ltd. The electrolyte was 0.05M tetrabutylammonium
perchlorate/CH3CN deoxygenated thoroughly for 30 min with pure nitrogen and
keep under a positive pressure of this gas during the electrochemical tests. The
working electrode was well clean bare glassy carbon. The platinum wire was used as
the counter electrode. Non-aqueous Ag/Ag+ electrode served as reference elec-
trode. The filling solution of non-aqueous Ag/Ag+ electrode was 0.01 M AgNO3/
CH3CN. All electrochemical tests were carried out by using a CHI760E workstation
and performed at room temperature under atmospheric pressure.

Electrochemial measurements of HER. HER tests were carried out a conventional
three-electrode electrochemical system in N2-saturated 0.5 M H2SO4 at 300 K. A
modified glassy carbon electrode (GCE; d= 3 mm) was used as the working
electrode. A saturated calmoel electrode (SCE) and a carbon rod served as reference
electrode and counter electrode, respectively. All electrochemical tests were carried
out by using a CHI760E workstation. Polarization curves were tested at a scan rate
of 5 mV s−1 in 0.5 M H2SO4. The measured potentials vs. SCE were standardized
with a reversible hydrogen electrode (RHE) based on E vs. RHE= EθSCE+ 0.059
pH (EθSCE= 0.242 V). All data are presented with IR compensation. the electro-
chemical double layer capacitance (Cdl) was evaluated by cyclic voltammogram
(CV) from 0.1 to −0.1 V with different scan rates. The ADT was measured by CV
with sweeps at 100 mV at between +0.1 and −0.2 V vs. RHE. The long-term
stability was measured at controlled potential.

DFT computational details. All calculations were performed through the facilities
provided by the Gaussian09 package (revision D.01)40. Geometry optimizations for
all intermediates and TSs were carried out at the M06 level without symmetry
restrictions41. The LANL2DZ basis set was employed for the Pt and W, whereas the
6–31G(d, p) basis set was used for the O and H42,43. To confirm the stability of all
structures, frequency calculations were performed at the same level as optimization.
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The TSs were confirmed by the existence of only one imaginary frequency along
the reaction coordinate and intrinsic reaction coordinate (IRC) calculations, which
indeed connect the right reactants and products (Supplementary Fig. S56)44. The
solvation effects of water were introduced by using the PCM model45. Further-
more, the single-point energies of all stationary points were completed at (U)M06/
PCM(H2O)/[6–311++G(d,p)/SDD(Pt&W)] level for all energy calculations46.
Optimized coordinates (xyz) for all related species are performed Supplementary
Table 8. Finally, a data set of computational results is available in the ioChem-BD
repository and can be accessed via https://doi.org/10.19061/iochem-bd-6-27
(http://www.iochembd.org/)47.

Data availability
All relevant data are available from the corresponding author on request.
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