
Introduction Algorithms for efficient parallel reordering Results Conclusion

PT-SCOTCH: A tool for efficient parallel graph

ordering

Cédric Chevalier and François Pellegrini

LaBRI and INRIA Futurs
Université Bordeaux I

351, cours de la Libération, 33405 TALENCE, FRANCE

PMAA’06, Rennes

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 1 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Outline

1 Introduction

Graph Partitioning

Use of Graph Partitioning

The Multi-Level Framework

2 Algorithms for efficient parallel reordering

Nested Dissection Parallelism

Parallelization of the Multi-level algorithm

Parallelization of refinement

3 Results

Time Results

Quality Results

4 Conclusion

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 749 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Graph Partitioning

Graph Partitioning

Process which consists in dividing vertices of a graph into a

given number of sets, while enforcing two constraints :

1 Boundary constraint : the size of the interface between the

parts should be as small as possible

2 Balance constraint : all sets should be evenly weighted

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 750 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Use of Graph Partitioning

Use of graph partitioning

Many applications : load balancing, matrix ordering,

database storage, VLSI design, bio-informatics . . .

Many sequential graph partitioning tools already exist

=⇒ SCOTCH, developed within the SCALAPPLIX team at

INRIA Futurs

But size of problems increases steadily
=⇒ Need for a parallel graph partitioner as large graphs
cannot fit in the memory of a sequential computer

The PT-SCOTCH (Parallel Threaded SCOTCH) project

Currently focusing on matrix ordering (recursive graph

bisection problem)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 13 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Use of Graph Partitioning

Use of graph partitioning

Many applications : load balancing, matrix ordering,

database storage, VLSI design, bio-informatics . . .

Many sequential graph partitioning tools already exist

=⇒ SCOTCH, developed within the SCALAPPLIX team at

INRIA Futurs

But size of problems increases steadily
=⇒ Need for a parallel graph partitioner as large graphs
cannot fit in the memory of a sequential computer

The PT-SCOTCH (Parallel Threaded SCOTCH) project

Currently focusing on matrix ordering (recursive graph

bisection problem)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 13 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Use of Graph Partitioning

Use of graph partitioning

Many applications : load balancing, matrix ordering,

database storage, VLSI design, bio-informatics . . .

Many sequential graph partitioning tools already exist

=⇒ SCOTCH, developed within the SCALAPPLIX team at

INRIA Futurs

But size of problems increases steadily
=⇒ Need for a parallel graph partitioner as large graphs
cannot fit in the memory of a sequential computer

The PT-SCOTCH (Parallel Threaded SCOTCH) project

Currently focusing on matrix ordering (recursive graph

bisection problem)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 13 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Use of Graph Partitioning

Matrix Ordering

When solving sparse linear systems with direct methods,

non-zero terms are created during the factorization

process (A −→ LLt , A −→ LDLt or A −→ LU)

Fill-in depends on the order of the unknowns

=⇒ Need to provide fill-reducing orderings

We do graph ordering in SCOTCH by means of Nested

Dissection using a Multi-Level technique

Metric of ordering quality : OPC, that is, OPeration Count

of Cholesky factorization (overall number of additions,

multiplications and divisions)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 13666 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Use of Graph Partitioning

Matrix Ordering with Nested Dissection

Principle (George 1973)
Find a vertex separator of the graph

Number separator vertices with the highest available

numbers

Apply recursively to both separated subgraphs

Interest
Induces high quality block decompositions

Increases the concurrency of computations

→֒ very suitable for parallel factorization (PASTIX solver)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 238 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

The Multi-Level Framework

The Multi-Level Framework

A classical approach to improve

partition quality (Barnard and

Simon, 1994)

Three steps

1 Coarsening phase

2 Initial separation

3 Uncoarsening phase

Decrease the number of vertices

by merging pairs of neighbour

vertices

=⇒ At every step, obtain a smaller

graph with the same topology

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 43 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

The Multi-Level Framework

The Multi-Level Framework

A classical approach to improve

partition quality (Barnard and

Simon, 1994)

Three steps

1 Coarsening phase

2 Initial separation

3 Uncoarsening phase

Apply a local heuristic to compute

a partition of the smallest graph

Typically, the size of coarsest

graphs is about 100 vertices.

Therefore, good initial

partitions can be computed

at low cost

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 43 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

The Multi-Level Framework

The Multi-Level Framework

A classical approach to improve

partition quality (Barnard and

Simon, 1994)

Three steps

1 Coarsening phase

2 Initial separation

3 Uncoarsening phase

Project the computed partition from

the coarsest graph to finer graphs

Locally optimise using heuristics

such as Kernighan-Lin or

Fiduccia-Mattheyses (F.M.)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 43 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

The Multi-Level Framework

The Multi-Level Framework

Three steps

1 Coarsening phase

2 Initial separation

3 Uncoarsening phase

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 43 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

The Multi-Level Framework

Limits of this model in parallel

Multi-level algorithms are difficult to parallelize

Problems with the coarsening step :

Parallel formulations of classical sequential coarsening

algorithms require many distant communications to match

vertices located on different processors

Coarsening quality decreases when local vertex matching

is privileged

The uncoarsening step is even harder :

Best refinement algorithms (like F.M.) are sequential by

nature and do not parallelize well

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 4275 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

The Multi-Level Framework

Limits of this model in parallel (2)

Available parallel ordering tools such as PARMETIS also use

multi-level schemes

To reduce the amount of communication required to optimize

partition boundaries when vertices are located on distant

processors, PARMETIS disables the hill-climbing capabilities of

their parallel local optimisation algorithms

→֒ Gradient-like method

→֒ Very poor results when number of processors increases

Our efforts aim at allowing hill-climbing even in parallel in order

to obtain the same quality as the best sequential methods

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 -40 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Outline

1 Introduction

Graph Partitioning

Use of Graph Partitioning

The Multi-Level Framework

2 Algorithms for efficient parallel reordering

Nested Dissection Parallelism

Parallelization of the Multi-level algorithm

Parallelization of refinement

3 Results

Time Results

Quality Results

4 Conclusion

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 19 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Parallelization of multi-level graph bipartitioning

Our parallel graph bipartitionining algorithm exploits three levels

of concurrency:

1 In the Nested Dissection process itself

2 In the Multi-Level coarsening algorithm

3 In the refinement process when uncoarsening

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 20 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Nested Dissection Parallelism

Parallelization of Nested Dissection

Straightforward, coarse-grain parallelism

All subgraphs at the same dissection level are computed

concurrently on separate groups of processors

After a separator is computed, the two separated subgraphs

are folded, that is, redistributed, on two subsets of the available

processors

Can fold on any number of processors (not only powers of two)

=⇒ Better data locality

=⇒ The two subtrees are separated not only logically but also

physically, which helps reducing network congestion

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 740 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Nested Dissection Parallelism

Nested Dissection Parallelism (2)

Outline of the process :

The sub-orderings of A and B are computed in parallel

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 79 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Parallelization of the Multi-level algorithm

Parallelization of the Multi-level algorithm

During the coarsening phase, every coarser subgraph is folded

and duplicated on the remaining subset of processors until it is

reduced to one processor

Folding with duplication allows us to improve data locality and

speed-up the asynchronous distributed matching of graph

vertices, by reducing further the number of distant neighbors

When uncoarsening, only the best of the two partitions is kept

and forwarded to the finer level

=⇒ Improves partition quality through multiple tries

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 369 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Parallelization of the Multi-level algorithm

Parallelization of the Multi-level algorithm (2)

Outline of the process:

Currently, we use folding with duplication at every stage

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 -18434 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Parallelization of refinement

Parallelization of refinement

During the multi-level uncoarsening phase, experiments show

that only vertices located on a small band around the separator

may actually be moved during the local refinement process

By explicitely pre-computing, before each refinement step, a

distributed band graph to which optimization algorithms will be

applied only, we have been able to reduce dramatically problem

size for refinement heuristics

(Chevalier and Pellegrini, EuroPar 2006)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 36 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Parallelization of refinement

Parallelization of refinement (2)

Surprisingly, better partition quality was achieved (≈ −15% in

OPC on average)

We think it is because local optimization algorithms cannot be

trapped in purely local optima but must comply with the “global

picture” computed on the coarser graphs

−→ Multi-sequential refinement is possible when centralized

band graphs fit into the memory of a single node

−→ For 3D graphs up to a billion vertices, it is theoretically

possible to apply multi-sequential F.M. on the band graphs

−→ Costly but highly scalable algorithms such as Genetic

Algorithms can also be used at the highest levels of

uncoarsening

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 733 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Parallelization of refinement

Parallelization of refinement(3)

Outline of the process:

Currently, we use multi-sequential F.M. refinement on band

graphs without Genetic Algorithms

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 9383 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Outline

1 Introduction

Graph Partitioning

Use of Graph Partitioning

The Multi-Level Framework

2 Algorithms for efficient parallel reordering

Nested Dissection Parallelism

Parallelization of the Multi-level algorithm

Parallelization of refinement

3 Results

Time Results

Quality Results

4 Conclusion

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 1307 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Time Results

Time Results (1)

Tests have been run on a eight dual-core opteron computer

Conesphere1m : CEA graph with

106 vertices and 8 × 106 edges Audikw1 : 0.94 × 106 vertices and

38 × 106 edges

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 1308 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Time Results

Time Results (2)

Scalability in time is not good when graphs have too few

vertices, because the cost of the coarsening algorithm

dramatically increases along with the number of distant

neighbors.

...But in the above tests, above 16 processes, we sequentialize

duplicate folded computations that were supposed to be run in

parallel...

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 1338 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Quality Results

Quality Results (1)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 389 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Quality Results

Quality Results (2)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 390 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Quality Results

Quality Results (3)

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 391 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Quality Results

Quality Results (4)

The increase of quality along with the number of processors

can be explained by the increase of the searched space due to

concurrency in :

The multi-level algorithm: the best separator for a level is

chosen among the two yielded by the coarser level

The multi-sequential refinement: for any pair of finer and

coarser graphs, the finer separator is the best among all

band graphs built around the projection of the coarser

separator, refined by sequential F.M.

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 392 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Outline

1 Introduction

Graph Partitioning

Use of Graph Partitioning

The Multi-Level Framework

2 Algorithms for efficient parallel reordering

Nested Dissection Parallelism

Parallelization of the Multi-level algorithm

Parallelization of refinement

3 Results

Time Results

Quality Results

4 Conclusion

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 63550 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Conclusion

High quality parallel ordering can be achieved by
parallelizing three key algorithms :

1 Nested Dissection
2 Multi-Level
3 Separator refinement

First results are very satisfactory in terms of quality, but the

scalability of the matching algorithm must be improved

significantly

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 63551 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Conclusion

High quality parallel ordering can be achieved by
parallelizing three key algorithms :

1 Nested Dissection
2 Multi-Level
3 Separator refinement

First results are very satisfactory in terms of quality, but the

scalability of the matching algorithm must be improved

significantly

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 63551 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

Work in progress

Optimize coarsening by implementing asynchronous

multi-buffered matching

(will be available very soon)

Parallelize refinement over the band when band graphs no

longer fit into memory

−→ Build a fully parallel Genetic Algorithm to be used on

band graphs when these latter cannot fit in the memory of

a single node

Design efficient and scalable k-way graph partitioning

algorithms

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 369 / 26



Introduction Algorithms for efficient parallel reordering Results Conclusion

First public release of PT-SCOTCH (ordering only) planned for

November 2006

http://www.labri.fr/∼pelegrin/scotch

http://gforge.inria.fr/projects/scotch

Any questions ?

C. Chevalier, F. Pellegrini PT-SCOTCH PMAA’06 26 / 26

http://www.labri.fr/~pelegrin/scotch
http://gforge.inria.fr/projects/scotch

	Introduction
	Graph Partitioning
	Use of Graph Partitioning
	The Multi-Level Framework

	Algorithms for efficient parallel reordering
	Nested Dissection Parallelism
	Parallelization of the Multi-level algorithm
	Parallelization of refinement

	Results
	Time Results
	Quality Results

	Conclusion

