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Abstract: Parity–time (PT) symmetry challenges the long-held theoretical basis that only Hermitian
operators correspond to observable phenomena in quantum mechanics. Non-Hermitian Hamiltonians
satisfying PT symmetry also have a real-valued energy spectrum. In the field of inductor–capacitor
(LC) passive wireless sensors, PT symmetry is mainly used for improving performance in terms of
multi-parameter sensing, ultrahigh sensitivity, and longer interrogation distance. For example, the
proposal of both higher-order PT symmetry and divergent exceptional points can utilize a more drastic
bifurcation process around exceptional points (EPs) to accomplish a significantly higher sensitivity
and spectral resolution. However, there are still many controversies regarding the inevitable noise
and actual precision of the EP sensors. In this review, we systematically present the research status of
PT-symmetric LC sensors in three working areas: exact phase, exceptional point, and broken phase,
demonstrating the advantages of non-Hermitian sensing concerning classical LC sensing principles.

Keywords: exceptional point; LC passive wireless sensor; non-Hermitian Hamiltonians; parity–time
symmetry

1. Introduction

Inductor–capacitor (LC) passive wireless sensors have the key characteristics of mini-
mum volume and theoretically infinite life. These sensors offer significant advantages for
measuring critical parameters in harsh and remote environments, such as confined spaces
and mechanical rotating structures, where wired connections are difficult and challenging.
Therefore, there is extensive attention being paid to the development and innovation of
wireless passive sensors.

First proposed by Collins in 1967 [1], the LC passive wireless sensor is usually com-
posed of an inductor and a sensitive capacitor, whose resonant frequency is modulated
by parameters of interest. An external impedance analyzer interrogates the sensors via
near-field coupling to realize the purpose of passive wireless detection. Due to their low
power consumption, low operating frequency, low cost, good long-term stability, and
remote query capability [2], LC passive wireless sensors have become a research hotspot in
the Internet of Things (IoT) era. They have been widely used in biomedical treatment [3–6],
industrial monitoring [7–10], aerospace [11–13], wearable devices [14,15], and implantable
fields [3,16].

However, the small size of the LC sensor limits their readout distance due to the
dispersion of the magnetic fields and the weak magnetic coupling between the sensor
and readout coil. Several methods have been proposed to prolong the readout distance,
including increasing the size of sensor inductors, which does not meet the requirements of
miniaturization for sensors in the IoT era [17]. Some scholars have also proposed that the
use of a ferrite magnetic core instead of the air magnetic core can improve the measurement
range [18]. However, the ferrite material with constant permeability must be chosen for the
coupling magnetic field magnitudes and resonant frequencies. Inspired by the principle
of strongly coupled magnetic resonances [19], it is found that adding a repeater between
the readout coil and LC sensor to enhance the magnetic coupling can also realize telemetry
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over a longer distance [20,21]. However, this results in multiple peak frequencies and
sensitivity decay. The cyclic-scanning repeater [22] and adaptive repeater [23] have been
put forward, not only increasing the readout distance but improving the difficulty of
sensitivity degradation. In addition, impedance matching can also effectively improve
the signal strength and readout distance of the LC passive wireless sensor system [24].
However, for the change in the sensor’s sensitive capacitance in practical applications,
impedance matching needs to adjust multiple parameters in the readout circuit at the same
time, which is extremely tedious.

With the advancements in quantum mechanics, it has been discovered that the PT-
symmetry-breaking regime can be utilized to extend the remote distance of the LC passive
wireless sensors [25]. The experimental results indicate that the combination of LC passive
wireless sensors with PT symmetry can provide a four-fold increase in readout distance
while keeping the same level of sensitivity. This innovative design strategy offers promising
possibilities for LC passive wireless sensors.

2. PT Symmetry

In 1998, Bender and Boettcher proposed the PT symmetry scheme in quantum me-
chanics [26]. They argued that non-Hermitian Hamiltonians satisfying PT symmetry have
a real-valued energy spectrum, which is quite different from the theoretical basis held
for a long time that only Hermitian operators correspond to the observable phenomena
in quantum mechanics. Therefore, the proposal of non-Hermitian Hamiltonians revolu-
tionarily extended quantum theories into new regimes. However, achieving a balanced
distribution of loss and gain required for PT symmetry is challenging from an experimental
perspective, especially at higher operating frequencies [27]. Initially, no actual case satisfied
PT symmetry on the micro level until the discovery of a mathematical equivalence between
the single-particle Schrodinger equation and the Helmholtz wave equation. Since then,
PT symmetry quantum mechanics have garnered widespread attention as it offers new
design strategies for devices with novel functions. In 2009, a practical system satisfying PT
symmetry was realized by Guo et al. through analogizing the Schrodinger equation with
the macroscopic optical wave equation [28], which opened the door to PT-symmetric optics
and photonics [29,30]. PT symmetry was achieved in acoustics in 2014 by analogizing
the Schrodinger equation with the wave equation of sound [31]. From 2017 onwards, the
introduction of PT symmetry in LRC resonators has been found to achieve the enhance-
ment of sensor performance, leading to further exploration of PT symmetry in the field
of electronics.

Nowadays, PT-symmetric quantum mechanics has been extensively studied in var-
ious fields such as photonics, optomechanics [32,33], photonic crystals [34,35], acoustics,
electronics, fully integrated electronics [36], and metamaterials [37]. Due to the one-to-one
correspondence between the anti-PT symmetry and PT symmetry, APT-symmetric systems
have also attracted widespread interest in generating novel non-Hermitian systems and
devices [38]. Intriguing phenomena can be achieved, such as coherent perfect laser ab-
sorbers [39], optical isolators, optical circulators [40,41], and unidirectional acoustic cloaks
realizing the unidirectional transparency of media [31], etc. In the field of electronics,
PT symmetry is mainly used to achieve wireless power transmission [42] and improve
the performance of LC passive wireless sensors, such as multi-parameter, sensitivity, and
readout distance.

2.1. PT Symmetry in Quantum Mechanics

In quantum mechanics, P is defined as a parity inversion operator, representing the
mirror image of continuous space coordinates from x to −x. The parity operator has
effects x → −x, p→ −p, i→ i , which is a linear operator. T is the time reversal opera-
tor, implemented by the transformation from t to −t. Under the inversion of T, there is
x → x, p→ −p, i→ −i , so the T operator is anti-linear. For the parity–time operator PT,
there will be x → −x, p→ p, i→ −i , which is also an anti-linear operator. If the Hamilto-
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nian H of the system and P operator satisfy [H, P] = 0, the system satisfies parity inversion
symmetry. In the same way, when the Hamiltonian H and T operators satisfy [H, T] = 0,
the system will satisfy time inversion symmetry. The PT-symmetric system is not symmet-
ric under P or T operator separately but satisfies space-time reflection symmetry, whose
Hamiltonian H, together with the parity–time combined operator PT, satisfy [H, PT] = 0.
The key point of PT-symmetric quantum mechanics is that the eigenvalues of a system can
be real, even if the Hamiltonian H of the system is non-Hermitian. However, it should be
noted that only when the Hamiltonian H and eigenfunction ϕn(x) of the system satisfy PT
symmetry at the same time can the system possess a real-valued energy spectrum. That is
to say, the following two conditions should be met [26]:

[H, PT] = HPT − PTH = 0, PTϕn(x) = λn ϕn(x). (1)

The Hamiltonian of the system satisfies the eigenequation:

Hϕn(x) = En ϕn(x). (2)

Therefore, it can be concluded that

Hϕn(x) = E∗n ϕn(x). (3)

Considering the uniqueness of the eigenenergy spectrum, we can see that E∗n = En. The
eigenvalues of the system are still real, and the system retains PT symmetry. In the opposite
case, the eigenstates of the system do not satisfy PT symmetry: PTϕn(x) 6= λn ϕn(x).
Similarly, it will be found that the energy spectrum of the system will appear in the form of
complex conjugate pairs, and the PT symmetry of the system will be destroyed. Bender
introduced a Hamilton operator H to verify the properties of PT-symmetric systems [43]:

H =

[
rejθ µ

µ re−jθ

]
, (4)

where r, µ, and θ are real numbers. The Hamiltonian H of Equation (4) is non-Hermitian,
but satisfies PT symmetry. Parity operator P can be expressed by a matrix as follows [43]:

P =

[
0 1
1 0

]
(5)

One can derive the following equation:

PTHPT =

[
0 1
1 0

][
re−jθ µ

µ re+jθ

][
0 1
1 0

]
=

[
rejθ µ

µ re−jθ

]
= H (6)

This verifies again that the Hamiltonian H satisfies PT symmetry. Compared with
the coupled mode equation, the PT-symmetric Hamilton operator can be transformed as
follows: ω = rcosθ; γ = rsinθ. Then, the H can be expressed as follows:

H =

[
ω + jγ µ

µ ω− jγ

]
(7)

Solve the eigenvalue equation as follows:

E± = ω±
(

µ2 − γ2
)1/2

(8)

The eigenvalues are related to the coupling coefficient µ and the loss factor γ. Figure 1
shows a schematic transition of real and imaginary parts in the eigenvalues from exact PT
symmetry to broken PT symmetry.
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• µ > γ, En = ω ±
(
µ2 − γ2)1/2. The eigenvalues are real-valued numbers, and the

system is in the PT-symmetric exact phase;
• µ = γ, the eigenvalues will merge. This point is described as the exceptional point

(EP), at which the eigenstates are also merged;
• µ < γ, En = ω± j

(
µ2 − γ2)1/2. The eigenvalue is a complex conjugate, and the system

is in the PT-symmetric broken phase.
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PT symmetry introduces an exciting phenomenon: phase transition, which arises
from spontaneous breaking around EPs. This kind of transition unveils its non-Hermitian
nature, where the eigenvalue spectrum of systems changes from real value to complex
value. Therefore, the appearance of PT symmetry does not conflict with conventional
quantum mechanics but is rather a generalization in the complex domain [26,43,44].

2.2. PT Symmetry in LC Sensors

According to Kirchhoff’s law, all the spatial symmetries can be reduced to the network
topology problem in the circuit. As long as the node topology of the network is satisfied
and selects connection elements appropriately, the real physical spatial symmetry will
not need to be considered, which greatly facilitates the implementation of PT symmetry
in the circuit [45]. Similarly, the P operation is equivalent to swapping the subscripts
of the corresponding pair of circuit elements. Additionally, the time inversion operator
T is equivalent to changing the sign of the pure resistive impedance element, while the
reactance part remains the same. Therefore, the negative resistance needs to be introduced,
which is essentially equivalent to an amplifier [46].

Figure 2 shows the basic structure of the PT-symmetric LC passive wireless sensor,
a pair of inductively coupled LCR resonators. The sensor has a positive resistance ( Rs)
as a loss end, and the reader has a negative resistance (Rr) as a gain end with energy
amplification. To satisfy PT symmetry, the components in the loop are required to meet the
following requirements: Lr = Ls = L, Cr = Cs = C,−Rr = Rs = R. The mutual inductance
between the two inductors is M = k

√
LrLs = kL, where k (0 < k < 1) is the coupling

coefficient between inductors.
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According to Kirchhoff’s law,

ir
jωC

+ jωLir − Rir + jωMis = 0, (9)

is

jωC
+ jωLis + Ris + jωMir = 0, (10)

the following matrix equation can be obtained:[
1

jωC + jωL− R jωM
jωM 1

jωC + jωL + R

](
ir
is

)
= 0. (11)

Make the following substitution

ω0 =
1√
LC

, γr,s = Rr,s

√
C
L

, (12)

where ω0 is the natural frequency at both ends of the system, ω is the angular frequency
of the system, and γ is the gain or loss parameter; the following matrix is obtained
after sorting: [

ω2
0 −ω2 − jω R

L −kω2

kω2 ω2
0 −ω2 + jω R

L

](
ir
is

)
= 0. (13)

The eigenvalues of the system can be rewritten as

ωn = ±

√
2− γ2 ±

√
4k2 − 4γ2 + γ4

2(1− k2)
ω0. (14)

When γ < γEP,

γEP =
√

2

√
1−

√
(1− k2), (15)

The system is in the PT-symmetric exact phase and has two unequal positive real-valued
eigensolutions:

ω1,2 =

√
−2 + γ2 ∓

√
4k2 − 4γ2 + γ4√

2(−1 + k2)
ω0. (16)
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The values of capacitance and resistance can be deduced from the above two equations:

C =
1

L
√

1− k2ω1ω2
, (17)

R = L
√

(ω 2
1 + ω2

2
)
(k 2 − 1

)
+ 2ω1ω2

√
1− k2. (18)

Therefore, we can extract the two resonance frequencies to judge the change in system
parameters, realizing the purpose of passive wireless detection ultimately. The state of the
PT-symmetric LC system depends on the values of γ and γEP (15).

• γ < γEP, The eigenvalues ω1,2 are real-valued numbers, and the system is in the
PT-symmetric exact phase. The whole system will maintain equilibrium, and the total
energy is also conserved;

• γ = γEP, this special point is the EP point. The system is still in the PT-symmetric
phase, but the eigenvalues and eigenstates coalesce. In the following sections, we will
see that the abrupt nature of phase transition results in intriguing phenomena;

• γ > γEP, The eigenvalues ω1,2 are a pair of conjugate complex numbers, and the
system is in the PT-symmetric broken phase. In this region, the whole system is not
in an equilibrium state, and the total energy is not conserved, which is exactly the
opposite of the exact phase.

LC passive wireless sensors will combine with the PT-symmetric quantum theories to
achieve improvement and changes in the sensors’ performance, respectively, in the exact
phase, EP point, and broken phase.

3. PT-Symmetric LC Sensing Systems
3.1. PT-Symmetric LC Sensors in Exact Phase

Superior detection and great robustness to noise have been a long-sought goal for
LC microsensors, which require sensors to exhibit high Q-factor and sharp, narrowband
resonant reflection dips. However, due to the inevitable power dissipation caused by
skin effects and eddy currents [47], traditional LC microsensors usually have a low modal
Q-factor [48]. A PT-symmetric telemetric sensor system designed to work in the exact
PT-symmetric phase can exhibit sharp and deep resonant reflection dips, boosting the
effective Q-factor and sensitivity. Moreover, the single-port scattering multi-frequency
resonance characteristics in the exact PT-symmetric phase can realize the simultaneous
measurement of multiple parameters of the LC single-resonance circuit sensor.

3.1.1. High Q-Factor and Deep Reflection Dips

Sakhdari et al. presented an LC wireless readout sensor based on the theory of PT
symmetry [49]. It is pointed out that the exact PT-symmetric phase results in real eigenfre-
quencies, which introduces the narrow band and sharp-peaked resonances. Compared with
the conventional coil-antenna readout technique, it is evidently seen that the PT-symmetric
wireless readout sensors enable the exhibition of much sharper reflection dips and greater
Q-factor when operated in the exact phase. They explained the cause of improvement to be
that the reflectionless property in one-port measurement owes to the impedance matching.
In the exact PT-symmetric phase, the input impedance looking into the active reader can be
matched to the impedance of the generator (Z0) at the eigenfrequencies, leading to the dips
observed in the reflection spectrum.

Based on the second-order PT-symmetric circuit, Yin et al. [50] proposed a sandwich-
type wireless capacitance readout mechanism based on a perturbed PT-symmetric electronic
trimer consisting of a gain–neutral–loss LC resonator chain to realize a higher Q-factor.
Different from the standard second-order and third-order PT-symmetric systems, the
proposed sandwich-type sensing system can maintain a high Q-factor in the whole range
of k, rather than only in the exact phase, and extend the interrogation distance while
maintaining ultrahigh resolution even in the weak coupling regime.
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3.1.2. The Multi-Parameter Sensitive Measurement

In the practical application of wireless sensor networks, it is necessary to measure
multiple target parameters in the environment simultaneously. Therefore, inspired by the
method of Ren et al. [51], Zhou et al. utilized the multi-frequency resonance characteristics
of the PT-symmetric LC passive wireless sensor system in the exact PT-symmetric phase
to realize the simultaneous measurement of multiple parameters in the single-port LC
sensor [52]. Figure 3 shows the equivalent circuit model for single-port measurement of a
PT-symmetric system, where Z0 is the impedance of the frequency network analyzer. ω1,2
can be derived as

ω1,2 =

√
2L + CR2 ∓

√
C2R4 − 4LCR2 + 4L2k2√

2(1− k2)L2C
ω0. (19)
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They analyzed the two frequencies ω1,2 by extracting the amplitude extremum of the
amplitude-frequency characteristics curve of S11 in the PT-symmetric exact phase, and
obtained two sensitive parameters by decoupling the equations. This method improves the
limitation of the double-parameter scheme that requires known coupling coefficients. In
addition, a three-parameter sensing method for a single-loop LC sensor is proposed by using
the three resonant frequencies at the zero phase of amplitude-frequency characteristics,
which provides a feasible way to realize LC passive wireless multi-parameter sensing.

3.1.3. Generalized Parity–Time Symmetry

Despite the advantages of traditional PT-symmetric systems, practical implementa-
tions of an exact PT-symmetric phase for the LC wireless sensors still encounters many
difficulties. For instance, given the limited physical space of medical bioimplants and
MEMS sensors, the inductance of the sensor’s microcoil is usually designed to be smaller
than that of the reader’s coil. Although downscaling the reader’s coil does not affect the
match between them, it will reduce the mutually inductive coupling and degrade the
operation of the wireless sensor.

To overcome the limitations in the spatial dimensions and significantly improve the
performance of PT-symmetric LC sensors, Chen et al. introduced the concept of parity–time-
reciprocal scaling symmetry (PTX), consisting of an active reader (−RLC tank), wirelessly
interrogating a passive microsensor (RLC tank) [48]. In the system, x is the reciprocal-scaling
coefficient, an arbitrary positive real number, which means that PTX-symmetric systems do
not have to maintain a strict symmetry mechanism as PT-symmetric systems do. Despite the
introduction of the X operator, the whole system has an unequal gain and loss coefficient;
the PTX-symmetric system and its associated PT-symmetric system exhibit exactly the same
eigenspectrum and bifurcation points, thus leading to sharp and deep resonant reflection
dips. The scaling operation X offers an additional degree of flexibility in system designs,
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allowing arbitrary scaling of the coil inductance and other parameters. More importantly,
the scaling provided by the X(x > 1) operator leads to linewidth sharpening, boosting the
Q-factor, sensing resolution, and overall sensitivity.

3.2. PT-Symmetric LC Sensors Based on Exceptional Points (EPs)

As we already described, the PT-symmetric EP is the merging point in the physical
system, at which the eigenvalues and eigenvectors merge and the eigenfrequencies undergo
a bifurcation process branching out in the complex plane. It is precisely due to this large
bifurcation effect that the PT-symmetric system can significantly exhibit greater sensitivity
and resonance frequency shift when operated around EP.

3.2.1. PT-Symmetric LC Sensors with Enhanced Sensitivity

In 2019, an ultrasensitive wireless displacement sensing technique operated around
EP was proposed [53]. Specifically, such a non-Hermitian electronic system obeying the
PT symmetry achieves drastic frequency responses and high sensitivity, well beyond the
limit of conventional fully passive wireless displacement sensors. They theoretically point
out that, for the EP case, the normalized resonance frequency shift can be derived as
∆ω/ω0 ≈

√
c∆k, where c is a constant associated with the γ. However, the resonance

frequency is approximately given by ∆ω/ω0 ≈ 2c∆k in the conventional passive-coil reader.
Obviously, the smaller the ∆k is, the more excellent the sensitivity of EP sensors is. The
PT-symmetric system can achieve more excellent sensitivity.

The same year, Dong et al. demonstrated that a reconfigurable wireless system subcuta-
neously implanted in a rat could automatically lock to an EP, showing the spectral response
of ∆ω ≈ k2/3, beyond the ∆k linear limit encountered by existing readout schemes [54].
The experiment proves the minimum coupling coefficient k that can produce detectable
frequency shifts lowered from 0.037 to 1.4 × 10−3, or about 26 times, which provides a new
idea for extending the detection distance.

Based on the presence of the gain and the loss, Zhou et al. established a second-
order PT-symmetric LC passive wireless sensor to analyze the frequency responses of
asymmetric and symmetric perturbations shown in Figure 4 [55]. Although the results
show that the frequency splitting caused by the two kinds of perturbations is proportional
to the square root of the perturbation, the sensitivity of the asymmetric perturbation is the
highest. Theoretical derivation shows that the asymmetric perturbation is more sensitive
than 1/

√
2γ times the symmetric.
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3.2.2. LC Sensors Based on High-Order PT-Symmetric EP and DEP

Although sensors working in the second-order EP have demonstrated sensitivity
responses beyond conventional sensors, the emergence of the higher-order PT symmetry
theory still opened the door to a new LC sensing world. The eigenfrequency splitting
of a higher-order PT symmetry telemetry wireless LC sensor will be more dramatic. An
N-level PT-symmetric system can obtain N + 1 eigenfrequency branches, leading to the
ever-boosted level of eigenfrequency bifurcation and greater sensitivity to perturbation [56].
In addition, increasing the order N can also downshift the exceptional point so that the exact
symmetry phase can be obtained with real eigenfrequencies and high Q-factor resonances.
Figure 5 illustrates Nth-order PT-symmetric RLC telemetric electric circuit with N = 2 and
N = 3.
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Inspired by the higher-order PT symmetry, a battery-free, wearable wireless sensor
based on the third-order was presented, which is capable of simultaneously detecting
temperature and relative humidity during the wound healing process with extraordinary
sensitivity and accuracy [57]. Similarly to the schematic of third-order PT in Figure 5, the
sensing system also consists of a passive RLC tank, a neutral LC tank, and an active −RLC
tank inductively coupled with the adjacent one. In particular, the passive RLC tank is
composed of a thermistor and a capacitive humidity sensor for responding to changes in
temperature and humidity simultaneously. During the experimental demonstration, the
resonant frequencies appear as dips in the reflection spectra, which respond sensitively and
differently to changes in temperature and relative humidity.

Based on further studies on higher-order PT symmetry, in 2019, the concept of di-
vergent exceptional points (DEPs) was proposed and indirectly realized in third-order
PT-symmetric electronic circuits composed of inductively coupled −RLC, LC, and RLC
oscillators [58]. DEPs are the combination of EPs with a mathematical divergent singularity.
When the inductive coupling strength is close enough to DEPs, the real eigenfrequencies
of the system will rapidly diverge in response to perturbation, which may be more sig-
nificant than the regular bifurcation process of EPs, providing more ultrahigh sensitivity
and resolvability.
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Sakhdari et al. discussed the higher-order electronic circuitry again in 2022 [59].
Although the critical inductive coupling strength necessary for DEPs decreases with in-
creasing the order of PT electronic system, some practical problems are unavoidable in
a very high-order electronic circuitry, such as noise and interference, unreliability, and
instability during measurement. As a result, there exists a subtle compromise among
various aspects of the sensing system, including the degree of inductive coupling strength,
sensitivity, stability, and spectral noises. That is the reason why the higher-order theory has
not been applied widely and practically so far.

3.2.3. Noise and Precision of LC Sensors Based on the EPs

Although numerous theories and experiments have confirmed that the PT-symmetric
EP sensor does achieve enhanced sensitivity, Langbein et al. pointed out back in 2018
that the sensitivity was a very ambiguous quantity [60]. It can either refer to the sensors’
transduction coefficient from the quantity to be measured to some intermediate output
quantity, or to the smallest measurable change in the input quantity given by the noise
of the output. The second expression is also defined as the precision of the measurement,
different from the sensitivity in the traditional sense. Due to the existence of additional
noise during the gain process in signal, EP has higher noise in measuring the perturbation
than DP. Therefore, it is obvious that the complex frequency splitting of the EP sensor is
not suitable for estimating the precision.

Similar views on the relationship between sensitivity and noise were proposed by
Duggan et al. [61]. They thought that noise could stem from a variety of sources, including
mechanical vibrations, thermal noise, quantum uncertainty, or fundamental resolution
limits, and never be fully eliminated. Once the output noise is exactly enhanced by the
same level as the enhanced sensitivity, there will be no enhancement of precision. With
a thorough discussion of the inevitable noise and enhanced precision in EP sensors, the
doubts about the actual sensitivity of sensors operating near an EP have been explained to
some extent.

3.2.4. Solutions to Overcome Noise Effect

Considering the above issues, a PT-symmetric sensing circuit bearing a sixth-order EP
is fabricated to address the potential drawbacks of EP sensing, including both fundamental
resolution limit and noise effects [62]. The sixth-order EP achieved an enhanced resonance
shift proportional to the fourth-order root of the perturbation strength and enhanced
sensitivity compared to corresponding DP sensors. At the same time, due to the low-pass
feature of the sixth-order circuit by choosing a proper working capacitance in the resonator,
thermal noise is mitigated down to the identical level of the DP sensing scheme, solving
the problem of noise limitation.

Kononchuk et al. proposed a PT-symmetric electromechanical accelerometer-based
EP in the proximity of the detuning from a transmission peak degeneracy (TPD) as a
measurement of the sensitivity to the influence of excess noise effects [63]. TPD would
form when the system is weakly coupled to transmission lines. Thanks to the existence
of coupling Ce shown in Figure 6, the TPDs occur at distinct parameter values from
the EP, ensuring completeness of the eigenbasis. The experiments demonstrated a three
times signal-to-noise ratio enhancement and a ten times increase in responsivity to small
perturbations compared to configurations operating away from the TPD.

3.3. PT-Symmetric LC Sensors in Broken Phase

Zhou et al. proposed and demonstrated that the PT symmetry-breaking regime could
be utilized to extend the remote distance of the LC passive wireless sensors [25]. The
impedance matching enables non-reflection energy transfer, and the negative resistance
(−R0) at the reader has an amplifying effect on the signal. The combination of impedance
matching and negative resistance realizes longer read-out distances compared to conven-
tional sensors. Experimental results show that the read-out distance of PT-symmetric
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sensors is approximately four times as long as that of conventional sensors, while keeping
the same sensitivity. The schematics of conventional and PT-symmetric sensing systems
are shown in Figure 7a, in which Z0 is the characteristic impedance of the transmission line
of the Vector Network Analyzer (VNA). As previously mentioned, the eigenfrequencies
are coming in complex conjugate pairs with nonvanishing real parts in the PT-symmetric
broken phase. Different from the double-frequency resonance of the exact phase [52], when
the system enters the PT-symmetric broken phase, ω1,2 will be a complex conjugate pair.
The real-domain sweep cannot read the imaginary information, so the single frequency at
the minimum value of the reflection coefficient S11 is the real part of its eigenfrequency ωr,

ωr =
1
2

√
2− γ2 + 2

√
1− k2

1− k2 . (20)
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Figure 7b shows the change in S11 at the resonant frequency with the coupling coef-
ficient k, intuitively illustrating the enhancement effect of the readout distance. Even in
the weak coupling regime of the PT-symmetric broken phase corresponding to a longer
distance, the reflection coefficient almost remains constant as the coupling strength weak-
ens. In contrast, the conventional method can only obtain the dip of the S11 signal over
a shorter distance. Therefore, longer detection distances can be obtained by working in
the broken phase of PT-symmetric LC passive wireless sensing systems, which overcomes
the long-standing challenge of extending the interrogation distance of the scaled-down LC
passive wireless sensor.

Moreover, the third-order PT-symmetry-breaking regime also shows the same superi-
ority in long interrogation distances [50]. A sandwich-type wireless capacitance readout
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system consisting of a gain–neutral–loss LC resonator chain is fabricated, extending the
interrogation distance in the PT-symmetric broken phase compared to the standard second-
order PT-symmetric system. PT symmetry-breaking regimes for the LC passive wireless
sensors can be used in the interrogation of implanted or sealed fields, where a longer
interrogation distance is necessary.

Although there are still many controversies regarding the performance of the PT-
symmetric sensors, the PT symmetry LC passive wireless sensors have been widely applied
and developed in many fields, including biomedical and biotelemetry applications, indus-
trial measurement and telemetry, and various wearable and implantable devices, as listed
in Table 1.

Table 1. Application fields of PT symmetry LC passive wireless sensors and numbered references.

Application Fields References

biomedical and biotelemetry [50,57,64,65]
industrial measurement and telemetry [25,36,48,55,56,62,66]

wearable and implantable devices [49,50,54,57]

4. Conclusions

This review systematically summarizes the research status of PT-symmetric LC sensors
in the exact phase, exceptional point, and broken phase, demonstrating the advantages
and controversies of non-Hermitian sensing with respect to classical sensing principles.
However, there are still many controversies regarding the inevitable noise and actual
sensitivity of the EP sensors. The innovative construction strategy of the PT sensors still
needs to be further studied and explored to avoid the negative effect of noise.

In general, numerous works have demonstrated the real superiority of PT-symmetric
LC sensing systems, including higher Q-factor and sensitivity, longer interrogation distance,
and multi-parameter sensing method, which will shine brilliantly in the future of LC
sensing systems.
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