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PTB-XL, a large publicly available 
electrocardiography dataset
Patrick Wagner1,2,3,6, Nils Strodthoff  2,6, Ralf-Dieter Bousseljot1, Dieter Kreiseler1, 

Fatima I. Lunze4, Wojciech Samek  2 & Tobias Schaeffter  1,3,5 ✉

Electrocardiography (ECG) is a key non-invasive diagnostic tool for cardiovascular diseases which is 

increasingly supported by algorithms based on machine learning. Major obstacles for the development 

of automatic ECG interpretation algorithms are both the lack of public datasets and well-defined 
benchmarking procedures to allow comparison s of different algorithms. To address these issues, we put 
forward PTB-XL, the to-date largest freely accessible clinical 12-lead ECG-waveform dataset comprising 
21837 records from 18885 patients of 10 seconds length. The ECG-waveform data was annotated by 
up to two cardiologists as a multi-label dataset, where diagnostic labels were further aggregated into 

super and subclasses. The dataset covers a broad range of diagnostic classes including, in particular, 

a large fraction of healthy records. The combination with additional metadata on demographics, 

additional diagnostic statements, diagnosis likelihoods, manually annotated signal properties as 

well as suggested folds for splitting training and test sets turns the dataset into a rich resource for the 

development and the evaluation of automatic ECG interpretation algorithms.

Background & Summary
Cardiovascular diseases are the leading cause of mortality worldwide, which is in high-income countries only 
surpassed by cancer1. Electrocardiography (ECG) provides a key non-invasive diagnostic tool for assessing 
the cardiac clinical status of a patient. Advanced decision support systems based on automatic ECG interpre-
tation algorithms promise signi�cant assistance for the medical personnel due to the large number of ECGs 
that are routinely taken. However, there are at least two major obstacles that restrict the progress in this �eld 
beyond the demonstration of exceptional performance of closed-source algorithms on custom datasets with 
restricted access2,3, (1) the lack of large publicly available datasets for training and validation4, and (2) the lack 
of well-de�ned evaluation procedures for these algorithms. We aim to address both issues and to close this gap 
in the research landscape by putting forward PTB-XL5, a clinical ECG dataset of unprecedented size along with 
proposed folds for the evaluation of machine learning algorithms.

�e raw signal data underlying the PTB-XL dataset was recorded by devices from the Schiller AG between 
October 1989 and June 1996. �e transfer of the raw data into a structured database, its curation along with the 
development of corresponding ECG analysis algorithms was a long term project at the Physikalisch Technische 
Bundesanstalt (PTB). �ese e�orts resulted in a number of publications6–11, but the access to the dataset remained 
restricted until now. �e dataset comprises 21837 clinical 12-lead ECG records of 10 seconds length from 18885 
patients. �e dataset is balanced with respect to sex (52% male and 48% female) and covers the whole range of 
ages from 0 to 95 years (median 62 and interquantile range of 22). �e ECG records were annotated by up to two 
cardiologists with potentially multiple ECG statements out of a set of 71 di�erent statements conforming to the 
SCP-ECG standard12. The statements cover form, rhythm and diagnostic statements in a unified, 
machine-readable form. For the diagnostic labels we provide a hierarchical organization in terms of 5 coarse 
superclasses and 24 subclasses for the diagnostic labels, see Fig. 1 for a graphical summary of the dataset, that 
allow for di�erent levels of granularity. Besides annotations in the form of ECG statements along with likelihood 
information for diagnostic statements, additional metadata for example in the form of manually annotated signal 
quality statements are available.

Apart from the outstanding nominal size of PTB-XL, the dataset is distinguished by its diversity, both in terms 
of signal quality (with 77.01% of highest signal quality) but also in terms of a rich coverage of pathologies, many 
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di�erent co-occurring diseases but also a large proportion of healthy control samples that is rarely found in clini-
cal datasets. It is in particular this diversity, which makes PTB-XL a rich source for the training and evaluation of 
algorithms in a real-world setting, where machine learning (ML) algorithms have to work reliably regardless of 
the recording conditions or potentially poor quality data.

To highlight the uniqueness of the PTB-XL dataset, we compare di�erent commonly used ECG datasets in 
Table 1 based on sample statistics (number of ECG signals, number of recorded leads, number of patients, average 
recording length in seconds) and their respective annotations ((D)iagnostic, (F)orm, (R)hytm, (C)linical, (B)eat 
annotation and the respective number of classes). Most open datasets are provided by PhysioNet13, but typically 
cover only a few hundred patients. Most notably, this includes the PTB Diagnostic ECG Database6, which was 
collected during the course of the same long-term project at the PTB, which, however, shares no records with the 
PTB-XL dataset. �e PTB Diagnostic ECG Database includes only 549 records from a single site and provides 
only a single label per record as opposed to multi-label, machine-readable annotations covering a much broader 
range of pathologies in PTB-XL. �e only exceptions in terms of freely accessible datasets with larger samples 
sizes are the AF classi�cation dataset14 and the Chinese ICBEB Challenge 2018 dataset15, which contain, however, 
either just single-lead ECGs or cover only a very limited set of ECG statements. �ere are several larger datasets 
that are either commercial or where the access is restricted by certain conditions (top �ve rows in Table 1). �is 
includes commercial datasets such as CSE16, which has traditionally been used to benchmark ECG interpretation 
algorithms.

Methods
�is section covers following aspects: In Data Acquisition, we describe in detail the data acquisition process and 
in Preprocessing we discuss the applied preprocessing steps in order to facilitate a widespread use for training and 
evaluating machine learning algorithms.

Data acquisition. �e raw data acquisition was carried out as follows:

 1. �e waveform data was automatically trimmed to 10 seconds segments and stored in a proprietary com-
pressed format. For all signals, we provide the standard set of 12 leads (I,II,III,aVL,aVR,aVF,V1–
V6) with reference electrodes on the right arm. �e original sampling frequency was 400 Hz.

 2. �e corresponding metadata was entered into a database by a nurse.
 3. Each record was annotated as follows:

 (a) An initial ECG report string was generated by either:

 i. 67.13% manual interpretation by a human cardiologist
 ii. 31.2% automatic interpretation by ECG-device

 A. 4.45% validation by a human cardiologist
 B. 26.75% incomplete information on human validation

 iii. 1.67% no initial ECG report.

In Quality Assessment for Annotation Data (ECG Statements), we provide a more extensive discussion 
on this step.

Fig. 1 Graphical summary of the PTB-XL dataset in terms of diagnostic superclasses and subclasses, see Table 5 
for a de�nition of the used acronyms.
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 (b) �e report string was converted into a standardized set of SCP-ECG statements including likelihood 
information for diagnostic statements.

 (c) �e heart’s axis and the infarction stadium (if applicable) was extracted from the report.
 (d) A potential second validation (for �rst evaluation in case of a missing initial report string) was carried 

out by a second independent cardiologist, who was able to make changes to the ECG statements and 
the likelihood information directly. In most cases, the deviating opinion was also reported in a second 
report string.

 4. Finally, all records underwent another manual annotation process by a technical expert focusing mainly on 
qualitative signal characteristics.

Preprocessing. �e waveform �les were converted from the original proprietary format into a binary for-
mat with 16 bit precision at a resolution of 1 µV/LSB. �e signals underwent minor processing to remove spikes 
from switch - on and switch- o� processes of the devices, which were found at the beginning and the end of some 
recordings, and were upsampled to 500 Hz by resampling. For the user’s convenience, we also release a downsam-
pled version of the waveform data at a sampling frequency of 100 Hz.

With the acquisition of the original database from Schiller AG, the full usage rights were transferred to the 
PTB. �e Institutional Ethics Committee approved the publication of the anonymous data in an open-access 
database (PTB-2020-1). ECGs and patients are identi�ed by unique identi�ers. Instead of date of birth we report 
the age of the patient in years at the time of data collection as calculated using the ECG date. For patients with 
ECGs taken at an age of 90 or older, age is set to 300 years to comply with Health Insurance Portability and 
Accountability Act (HIPAA) standards. All ECG dates were shi�ed by a random o�set for each patient while 

Fig. 2 Overview of populated columns in ptbxl_database.csv. Each entry corresponds to a row in the 
table in temporal order from top to bottom. Black pixels indicate existing values, missing values remain white.

Fig. 3 Demographic overview of patients in PTB-XL.

Fig. 4 Venn Diagram illustrating the assignment of the given SCP ECG statements to the three categories 
diagnostic, form and rhythm.
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preserving time di�erences between multiple recordings. �e names of validating cardiologists and nurses and 
recording site (hospital etc.) of the recording were pseudonymized and replaced by unique identi�ers. �e orig-
inal data contained implausible height values for some patients. We decided to remove the height values for 
patients where the body-mass-index calculated from height and weight was larger than 40.

Fig. 5 Distribution of diagnostic subclasses for given diagnostic superclasses.

Fig. 6 Distribution of ECG statements, sex and age across ten folds with strati�ed folds. �e ninth and tenth 
fold are folds with a particularly high label quality that are supposed to be used as validation and test sets.
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�e ECG data was annotated using a codebook (SCP-ECG v0.4 (Annex B)) of ECG statements that preceded 
the current SCP-ECG standard12. All annotations were converted into SCP-ECG statements by accounting for the 
minor modi�cations that occurred between the release of the codebook and the publication of the �nal standard.

Data Records
�e data is composed of the ECG signal waveform data and additional metadata that comprises, most impor-
tantly, ECG statements in accordance with the SCP-ECG standard12. �is section describes the components of 
the released data repository5 in detail and is organized as follows: In Waveform Data, we describe how the ECG 
signal waveform data is stored. Metadata describes the heart of PTB-XL including all information attached to 
each record.

Waveform Data. For the user’s convenience, we provide waveform data in the WaveForm DataBase (WFDB) 
format as proposed by PhysioNet (https://physionet.org/about/so�ware/) that has developed into an de-facto 
standard for the distribution of physiological signal data. In particular, there exist WFDB-parsers for a large num-
ber of frequently used programming languages such as C, Python, MATLAB and Java. In addition, the WFDB 
library also provides conversion routines to other frequently used data formats such as the European Data Format 

Fig. 7 Example Python code for loading data and labels also using the suggested folds and aggregation of 
diagnostic labels.

https://doi.org/10.1038/s41597-020-0495-6
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(edf). We stress that the original 16 bit binary data obtained a�er the conversion from the proprietary �le for-
mat used by the ECG devices remained unchanged during this process. �e WFDB-format only allows for a 
structured way of accessing the data that includes all required signal-speci�c metadata, such as channel names 
or conversion to physical units. In the WFDB-format every ECG is represented by a tuple of two �les, a dat-�le 

Section Variable Data Type Description

Identi�ers

ecg_id integer unique ECG identi�er

patient_id integer unique patient identi�er

�lename_lr string path to waveform data (100 Hz)

�lename_hr string path to waveform data (500 Hz)

General Metadata

age integer age at recording in years (see Fig. 3 le�)

sex categorical sex (male 0, female 1)

height integer height in centimeters (see Fig. 3 right)

weight integer weight in kilograms (see Fig. 3 middle)

nurse categorical involved nurse (pseudonymized)

site categorical recording site (pseudonymized)

device categorical recording device

recording_date datetime ECG recording date and time

ECG Statements

report string ECG report from diagnosing cardiologist

scp_codes dictionary SCP ECG statements (see Tables 6, 7 and 8)

heart_axis categorical heart’s electrical axis (see Table 10)

infarction_stadium1 categorical infarction stadium (see Table 11)

infarction_stadium2 categorical second infarction stadium (see Table 11)

validated_by categorical validating cardiologist (pseudonymized)

second_opinion boolean �ag for second (deviating) opinion

initial_autogenerated_report boolean initial autogenerated report by ECG device

validated_by_human boolean validated by human

Signal Metadata

baseline_dri� string baseline dri� or jump present

static_noise string electric hum/static noise present

burst_noise string burst noise

electrodes_problems string electrodes problems

extra_beats string extra beats

pacemaker string pacemaker

Cross-validation Folds strat_fold integer suggested strati�ed folds

Table 2. Columns provided in the metadata table ptbxl_database.csv. Each ECG is identi�ed by a 
unique ID (ecg_id) and comes with a number of ECG statements (scp_codes) that can be used to train a 
multi-label classi�er that can be evaluated based on the proposed fold assignments (strat_fold).

Name # ECG # Leads # Patients
Average length 
in seconds

Available 
labels # Classes

restricted

CSE16 1220 15 1220 30 D 7

AHA20 154 2 154 1800 DFRB 8

Stanford2 64121 1 29163 30 R 14

CCDD21 179130 12 179130 30 D 378

THEW22 (Chest Pain LR) 1172 12 1154 86400 CB 5

Mayo CV3 649931 12 180922 10 R 2

ICBEB Challenge 201815 6877 12 6877 30 DFR 8

non-restricted

MIT-BIH Noise Stress Test23 15 1 15 22500 B 1

MIT-BIH Arrhythmia24 48 2 47 1800 B 1

Malignant Ventricular Arrhythmia25 22 2 22 1800 R 3

Ventricular Tachyarrhythmia26 35 1 35 480 B 3

European ST-T Database27 90 2 79 7200 F 2

AF Classi�cation Challenge 201714 8528 1 8528 32.5 R 4

PTB Diagnostic ECG6 549 15 294 60 D 9

PTB-XL (this work) 21837 12 18885 10 DFR 71

Table 1. Summary of selected ECG datasets.

https://doi.org/10.1038/s41597-020-0495-6
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containing the binary raw data and a corresponding header �le with same name and hea-extension. We provide 
both the original data sampled at 500 Hz as well as a downsampled version at 100 Hz that are stored in respective 
output folders records100 and records500.

Metadata. �e WFDB-format does not provide a standardized way of storing signal-speci�c metadata. For 
easy accessibility, we provide the metadata for all ECG records as a table in comma-separated value (csv) format 
in ptbxl_database.csv containing 28 columns, which can be easily accessed by using existing libraries in 
all common programming languages. Table 2 gives an overview of the columns provided in this table.

�ere are in total 21837 signals from 18885 patients. Figure 2 gives an graphical overview of the tempo-
rally ordered dataset in terms of populated �elds, where black pixels indicating populated �elds and white pixels 

Acronym SCP statement Description

Superclasses

NORM Normal ECG

CD Conduction Disturbance

MI Myocardial Infarction

HYP Hypertrophy

STTC ST/T change

Subclasses

NORM NORM Normal ECG

CD

LAFB/LPFB le� anterior/le� posterior fascicular block

IRBBB incomplete right bundle branch block

ILBBB incomplete le� bundle branch block

CLBBB complete le� bundle branch block

CRBBB complete right bundle branch block

_AVB AV block

IVCB non-speci�c intraventricular conduction disturbance (block)

WPW Wol�-Parkinson-White syndrome

HYP

LVH le� ventricular hypertrophy

RHV right ventricular hypertrophy

LAO/LAE le� atrial overload/enlargement

RAO/RAE right atrial overload/enlargement

SEHYP septal hypertrophy

MI

AMI anterior myocardial infarction

IMI inferior myocardial infarction

LMI lateral myocardial infarction

PMI posterior myocardial infarction

STTC

ISCA ischemic in anterior leads

ISCI ischemic in inferior leads

ISC_ non-speci�c ischemic

STTC ST-T changes

NST_ non-speci�c ST changes

Table 5. SCP-ECG acronym descriptions for super- and subclasses.

# Records 1 2 3 4 5 6 7 8 9 10

# Patients 16758 1604 348 103 43 16 5 4 3 1

Table 3. Overview of number of records per patient.

Keywords
Weighting Factor 
(Con�dence)

nicht auszuschliessen, cannot rule out, cannot be excluded 15%

möglicherweise, consider, suggest, likely 35%

wahrscheinlich, possible, maybe, probably, ablaufend, Verdacht auf 50%

Sonst, Bild 80%

Consistent with, Diagnose, Zustand nach… 100%

Table 4. Likelihood statements for diagnostic statements inferred from keywords in the ECG report as 
introduced in ECG Statements.

https://doi.org/10.1038/s41597-020-0495-6
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indicating missing values. Please note how the data acquisition process changed over time, i.e. in the beginning 
of this study physiological data such as height and weight were gathered more o�en (mostly diagnostic reports 
written in English). Also note that towards the end of the study, the fraction of automated reports increases.

A detailed breakdown in terms of number of ECGs per patient is given in Table 3. In particular, there are 2127 
patients for which multiple ECGs available that could be used for longitudinal studies. �e rest of this section is 
organized according to the sections headings in Table 2.

Identi�ers. Each ECG record is identi�ed by a unique ID (ecg_id) and the corresponding patient is encoded 
by a patient ID (patient_id). �e path to the corresponding waveform data is stored in filename_lr 
(100 Hz) and filename_hr (500 Hz).

# Records Description Superclass Subclass

LAFB 1626 le� anterior fascicular block CD LAFB/LPFB

IRBBB 1118 incomplete right bundle branch block CD IRBBB

AVB 797 �rst degree AV block CD _AVB

IVCD 789 non-speci�c intraventricular conduction disturbance (block) CD IVCD

CRBBB 542 complete right bundle branch block CD CRBBB

CLBBB 536 complete le� bundle branch block CD CLBBB

LPFB 177 le� posterior fascicular block CD LAFB/LPFB

WPW 80 Wol�-Parkinson-White syndrome CD WPW

ILBBB 77 incomplete le� bundle branch block CD ILBBB

3AVB 16 third degree AV block CD _AVB

2AVB 14 second degree AV block CD _AVB

LVH 2137 le� ventricular hypertrophy HYP LVH

LAO/LAE 427 le� atrial overload/enlargement HYP LAO/LAE

RVH 126 right ventricular hypertrophy HYP RVH

RAO/RAE 99 right atrial overload/enlargement HYP RAO/RAE

SEHYP 30 septal hypertrophy HYP SEHYP

IMI 2685 inferior myocardial infarction MI IMI

ASMI 2363 anteroseptal myocardial infarction MI AMI

ILMI 479 inferolateral myocardial infarction MI IMI

AMI 354 anterior myocardial infarction MI AMI

ALMI 290 anterolateral myocardial infarction MI AMI

INJAS 215 subendocardial injury in anteroseptal leads MI AMI

LMI 201 lateral myocardial infarction MI LMI

INJAL 148 subendocardial injury in anterolateral leads MI AMI

IPLMI 51 inferoposterolateral myocardial infarction MI IMI

IPMI 33 inferoposterior myocardial infarction MI IMI

INJIN 18 subendocardial injury in inferior leads MI IMI

PMI 17 posterior myocardial infarction MI PMI

INJLA 17 subendocardial injury in lateral leads MI AMI

INJIL 15 subendocardial injury in inferolateral leads MI IMI

NORM 9528 normal ECG NORM NORM

NDT 1829 non-diagnostic T abnormalities STTC STTC

NST_ 770 non-speci�c ST changes STTC NST_

DIG 181 digitalis-e�ect STTC STTC

LNGQT 118 long QT-interval STTC STTC

ISC_ 1275 non-speci�c ischemic STTC ISC_

ISCAL 660 ischemic in anterolateral leads STTC ISCA

ISCIN 219 ischemic in inferior leads STTC ISCI

ISCIL 179 ischemic in inferolateral leads STTC ISCI

ISCAS 170 ischemic in anteroseptal leads STTC ISCA

ISCLA 142 ischemic in lateral leads STTC ISCA

ANEUR 104 ST-T changes compatible with ventricular aneurysm STTC STTC

EL 97 electrolytic disturbance or drug (former EDIS) STTC STTC

ISCAN 44 ischemic in anterior leads STTC ISCA

Table 6. Diagnostic Statement Overview, where the acronyms of super- and subclass are introduced in Table 5.

https://doi.org/10.1038/s41597-020-0495-6
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General Metadata. �is section covers demographic data and general recording metadata contained in PTB-XL. 
Demographic data includes age, sex (52% male and 48% female), height (values set for 31.98% of records) 
and weight (values set for 43.18% of records). �e age denotes the patient’s age at the time of the ECG record-
ing. �e distributions of age, height, and weight across the whole dataset are shown in Fig. 3. �e median 
age is 62 with interquantile range (IQR) of 22 with minimum age of 0 and maximum age of 95. �e median height 
and weight are 166 and 70 with IQRs of 14 and 20 respectively.

�e general recording metadata comprises nurse, site, device and recording_date. Both nurse 
and site are published in pseudonymized form, where in total there are 12 unique nurses across 51 sites, i.e. the 

# Records Description

NDT 1829 non-diagnostic T abnormalities

NST_ 770 non-speci�c ST changes

DIG 181 digitalis-e�ect

LNGQT 118 long QT-interval

ABQRS 3327 abnormal QRS

PVC 1146 ventricular premature complex

STD_ 1009 non-speci�c ST depression

VCLVH 875 voltage criteria (QRS) for le� ventricular hypertrophy

QWAVE 548 Q waves present

LOWT 438 low amplitude T-waves

NT_ 424 non-speci�c T-wave changes

PAC 398 atrial premature complex

LPR 340 prolonged PR interval

INVT 294 inverted T-waves

LVOLT 182 low QRS voltages in the frontal and horizontal leads

HVOLT 62 high QRS voltage

TAB_ 35 T-wave abnormality

STE_ 28 non-speci�c ST elevation

PRC(S) 10 premature complex(es)

Table 7. Form Statement Overview.

# Records Description

SR 16782 sinus rhythm

AFIB 1514 atrial �brillation

STACH 826 sinus tachycardia

SARRH 772 sinus arrhythmia

SBRAD 637 sinus bradycardia

PACE 296 normal functioning arti�cial pacemaker

SVARR 157 supraventricular arrhythmia

BIGU 82 bigeminal pattern (unknown origin, SV or Ventricular)

AFLT 73 atrial �utter

SVTAC 27 supraventricular tachycardia

PSVT 24 paroxysmal supraventricular tachycardia

TRIGU 20 trigeminal pattern (unknown origin, SV or Ventricular)

Table 8. Rhythm Statement Overview.

Level 0 1 2 3 4 5 6 7 8 9

Diagnostic 407 15019 4242 1515 529 121 4 0 0 0

Diagnostic Superclass 407 16272 4079 920 159 0 0 0 0 0

Diagnostic Subclass 407 15239 4171 1439 475 102 4 0 0 0

Form 12849 6693 1672 524 90 9 0 0 0 0

Rhythm 771 20923 142 1 0 0 0 0 0 0

All 0 705 11247 5114 2597 1254 597 253 63 7

Table 9. Overview of number of statements per ECG introduced in ECG Statements.

https://doi.org/10.1038/s41597-020-0495-6
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location where the ECG was recorded, and recorded using 11 di�erent types of devices. �e �eld recording_
date is encoded as YYYY-MM-DD hh:mm:ss.

ECG Statements. �is section introduces the ECG statements as the core component of PTB-XL. It is organ-
ized as follows: First, we introduce the most important �elds, namely report and scp_codes. A�erwards, 
heart_axis, infarction_stadium1 and infarction_stadium2 are discussed. Finally, we intro-
duce the �elds validated_by, second_opinion, initial_autogenerated_report and vali-
dated_by_human that are important for the technical validation of the annotation data.

report and scp_codes: �e original ECG report is given as string in the report-column and is written 
in 70.89% German, 27.9% English, and 1.21% Swedish. �e ECG report string was converted into structured 
sets of SCP-ECG statements as described in Methods. All information related to the used annotation scheme is 
stored in a dedicated table scp_statements.csv that was enriched with additional side-information, see 
Conversion to other Annotation Standards in Usage Notes for further details.

�ere are 71 unique SCP-ECG statements used in the dataset. We categorize them by assigning each statement 
to one or more of the following categories: diagnostic, form and rhythm statements. �ere are 44 di�erent diagnos-
tic statements, 19 different form statements describing the form of the ECG signal, where 4 statements for 

Keywords # Records

UNK Unknown 8505

MID Normal axis 7687

LAD Le� axis deviation 3764

ALAD Abnormal LAD, extreme le� axis deviation 1382

RAD Right axis deviation 221

ARAD Abnormal RAD, extreme right axis deviation 122

AXL Horizontal axis 102

AXR Vertical axis 51

SAG Saggital type (S1-S2-S3 Pattern) 3

Table 10. Distribution of heart_axis as introduced in ECG Statements.

Keyword # Records

Stadium I acut, early 186

Stadium I–II acut/subacut, ablaufend 5

Stadium II recent, subacut, bereits abgelaufen 107

Stadium II–III subacut/chronisch 943

Stadium III old, abgelaufen, chronisch 1045

unknown uncertain, unknown, unbekannt 3443

Table 11. Distribution of infarction stadium across the dataset as introduced in ECG Statements. Counts are 
cumulated from infarction_stadium and infarction_stadium2 which are only set to a value if at 
least one statement belongs to the superclass of Myocardial Infarction (MI).

Column Description

acronym SCP statement

description short statement description

diagnostic �ag if statement is diagnostic

form �ag if statement is related to form

rhythm �ag if statement is related to rhythm

diagnostic_class superclass for diagnostic statements

diagnostic_subclass subclass for diagnostic statements

Statement Category o�cial SCP statement category

SCP-ECG Statement Description o�cial SCP statement description

AHA code unique ID in the AHA standard

aECG REFID IEEE 11073-10102 Annotated ECG (aECG) standard

CDISC Code Controlled Terminology

DICOM Code DICOM Tags

Table 12. SCP-ECG statement summary. Description of annotation scheme stored in scp_statements.
csv.

https://doi.org/10.1038/s41597-020-0495-6
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diagnostic and form coincide, 12 di�erent non-overlapping rhythm statements describing the cardiac rhythm 
(Fig. 4 gives an overview as a Venn-diagram of the proposed categories and their overlap). In addition, for all 
diagnostic statements, a likelihood information was extracted based on certain keywords in the ECG report, see 
Table 4 for details which is based on7. �e likelihood ranges from 0 to 100 conveying the certainty the cardiologist 
(if the diagnosing cardiologist is very certain about a statement). For form and rhythm statements or in cases 
where no likelihood information was available, the corresponding likelihood was set to zero. �e likelihood infor-
mation is potentially interesting to account for the non-binary nature of diagnosis statements in real-world data. 
�e SCP statements are presented as a unsorted dictionary (i.e. particular ordering of the statements within the 
dictionary does not follow any priority) of SCP-ECG statements in the scp_codes-column, where the key 
relates to the statement itself and the value relates to the likelihood.

Finally, for diagnostic statements we provide a hierarchy of superclasses and subclasses that can be used to 
train classi�cation algorithms on a set of broader categories instead of the original �ne-grained diagnostic labels, 
see Table 5 for a de�nition of the acronyms and Fig. 1 for graphical overview of the whole dataset. Tables sum-
marizing the distribution of diagnostic, form and rhythm statements can be found in Tables 6, 7 and 8 respec-
tively, where the �rst column indicates the acronym associated with the statement (Table 5 for description of 
acronyms), the second column re�ects the number of records (ordered ascending) and the third column gives a 
short description for each statement. In addition for Table 6 we provide two additional columns indicating the 
proposed super- and subclass. If we aggregate the diagnostic statements according to superclasses and subclasses 
using the mapping as described above and in Table 5, the distribution of diagnostic superclass statements assumes 
the form shown in the uppermost panel in Fig. 5. Particular mentioning deserves the large number of healthy 
patients that are typically underrepresented in most ECG datasets that are, however, crucial for the development 
of ECG classi�cation algorithms. Figure 5 shows the distribution of subclasses for a given diagnostic superclass.

In summary, we provide six sets of annotations with di�erent levels of granularity, namely raw (all state-
ments together), diagnostic, diagnostic superclass, diagnostic subclass statements, form and rhythm statements. 
Depending on granularity, a di�erent number of statements per ECG record is available. A detailed breakdown in 
terms of number of statements in each level per ECG signal is given in Table 9. For example, there are 410 samples 
for which no diagnostic statement is given, which are mainly pacemaker ECGs.

heart_axis, infarction_stadium1 and infarction_stadium2: �e column heart_axis 
was automatically extracted from the ECG report and is set for 61.05% of the records. It represents the heart’s 
electrical axis in the Cabrera system. Table 10 shows the distribution, the acronyms and the respective descrip-
tions for entries in the column heart_axis.

In case of myocardial infarction, potentially multiple entries for infarction stadium (infarction_sta-
dium and infarction_stadium2) were extracted from the report string. Table 11 shows the respective dis-
tributions in addition to a short description, see7 for further details. In particular, we distinguish also intermediate 
stages “stadium I-II” and “stadium II-III” in addition to the conventionally used infarction stages I, II, and III.

validated_by and second_opinion: �e validated_by-column provides the identi�er of the 
cardiologist who performed the initial annotation. �e column second_opinion is set to true for records, 
where a second opinion is available and the corresponding report string is appended to report with a preceding 
“Edit:”. �e column initial_autogenerated_report is set to true for all records, where the report string 
ended with “unbestätigter Bericht’” indicating that the initial report string was generated by an ECG device, as 
described in Data Acquisition. Unfortunately, there is no precise record of the ECGs that underwent the second 
validation. For this reason, we store a conservative estimate if the record was validated by a human cardiolo-
gist in the column validated_by_human. It is set to true for all records, where validated_by is set, 
or initial_autogenerated_report is false, or second_opinion is true, see Quality Assessment for 
Annotation Data (ECG Statements) in Technical Validation for more details.

Signal Metadata. As additional metadata that might potentially be of future use, the signal quality was quanti�ed 
by a di�erent person with long technical expertise in ECG devices and signals, who went through the whole data-
set and annotated the records with respect to signal characteristics such as noise (static_noise and burst_
noise), baseline dri�s baseline_drift and other artifacts such as electrodes_problems. In addition 
to these technical signal characteristics, we provide extra_beats for counting extra systoles which is set for 
8.95% of records and pacemaker for signal patterns indicating an active pacemaker (for 1.34% of records).

Possible �ndings in each of the di�erent categories are reported as string without a regular syntax. Overall, 
these reports represent a very rich source of additional information. �e most basic use of these �elds is to �lter 
for data of a particularly high quality by excluding all records with non-empty values in the columns mentioned 
above. We refer to Quality Assessment for Waveform Data in Technical Validation for a summary of the signal 
quality in terms of the provided annotations.

Cross-validation Folds. For comparability of machine learning algorithms trained on PTB-XL, we provide fold 
assignments (strat_fold) for all ECG records that can be used to implement recommended train-test splits. 
�e incentive to use strati�ed sampling is to reduce bias and variance of score estimations, see17. In addition, 
it leads to a test set distribution for holdout evaluation that mimics the training set distribution as closely as 
possible to disentangle aspects of covariate shi�/dataset shi� from the evaluation procedure. We extend existing 
multilabel strati�cation methods from the literature to achieve a balanced label while additionally providing two 
distinguished folds with a particularly high label quality. During this process, each record is assigned to one of 
ten folds, where the tenth fold is intended to be used for holdout set evaluation and the penultimate ninth fold is 
supposed to be used as validation set, see Prediction Tasks and Train-Test-Splits for ML Algorithms in Usage Notes 
for a more detailed description. �e fold assignment always respects the underlying patient assignments. �is 
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avoids data leakage arising from having ECG signals from the same patient in di�erent folds. In detail, the fold 
assignment proceeds as follows:

�e proposed procedure extends existing strati�ed sampling methods from the literature18 by accounting for 
sampling based on patients and by optionally incorporating quality constraints for certain folds. To achieve not 
only a balanced label distribution but also a balanced age and sex distribution, we do not only incorporate all ECG 
statements but also sex and age (in �ve bins each covering 20 years). All ECG statements, sex and age for a given 
patient are appended into a single list with potentially non-unique entries to ensure sampling based on patients. 
�en the labels are distributed label-by-label as proposed18, starting with the least populated label within the 
remaining records. Patients with ECG records that are annotated with this label are subsequently distributed onto 
the folds. If there is a unique fold that is in most need of the given label, all ECGs of the patient that is currently 
under consideration are assigned to this fold. In case of a tie, the assignment proceeds by trying to balance the 
overall sizes of the candidate folds.

During this process, we keep track of the quality of the ECG annotations. A patient is considered clean if for 
all corresponding ECGs validated_by_human is set to true. When assigning ECGs from a patient that does 
not carry this �ag, we exclude the ninth and tenth fold from the set of folds the samples can be assigned to. As 
the dataset and in particular the ratio of clean vs. non-clean patients is large enough, the sampling procedure still 
leads to a label distribution in the clean folds that still approximates the overall distribution of labels and sexes in 
the dataset very well, see Fig. 6.

We believe that this procedure is of general interest for multi-label datasets with multiple records per patient 
and, in particular in the current context, for exploring the impact of di�erent strati�cation methods. For the fold 
assignments in strat_fold, we based the strati�cation on all available ECG statements but it might also con-
ceivable to consider just subsets of labels, such as all diagnostic statements. To allow a simple exploration of these 
issues, we provide a Python implementation of the strati�cation method in the Supplementary Material.

Technical Validation
Quality Assessment for Waveform Data. Since we present the waveform data in its original (binary) 
form without any modi�cations (apart from saving it in WFDB-format), we expect a lot of variability with respect 
to recording noise and several artifacts. For this purpose we summarize the results of the technical validation of 
the signal data by an technical expert brie�y. �e signal quality was quanti�ed by a person with technical exper-
tise according to the following categories:

•	 baseline_drift for global dri�s in 7.36% of the signal.
•	 static_noise for noisy signals and burst_noise for noise peaks, set for 14.94% and 2.81% of records 

retrospectively.
•	 electrodes_problems for individual problems with electrodes (0.14% of records).

In total 77.01% of the signal data are of highest quality in the sense of missing annotation in the signal quality 
metadata. At this point we would like to stress again that the di�erent quality levels re�ect the range of di�erent 
quality levels of ECG data in real-world data and have to be seen as one of the particular strengths of the dataset. 
�is dataset contains a realistic distribution of data quality in clinical practice and is an invaluable source for 
properly assessing the performance of ML algorithms in the sense of the robustness against changes in the envi-
ronmental conditions or against various imperfections in the input data.

Quality Assessment for Annotation Data (ECG Statements). As already mentioned in ECG 
Statements, it has not been possible to retrospectively reconstruct the labeling process in all cases. In some cases 
the validating cardiologist (validated_by-column) was le� empty even though an automatically created ini-
tial ECG report (autogenerated_initial_report) was validated by a human cardiologist. In addition, 
there is no precise record of those ECGs that went through the second human validation step. Before submission, 
we randomly selected a subset of recordings from our proposed test set via strati �ed sampling (as described in 
Crossvalidation Folds) and had them reviewed by another independent cardiologist (Author FIL). �ese exami-
nations con�rmed the annotations.

Due to missing information about this process, we can only conservatively estimate that set of ECGs that 
were potentially only automatically annotated. �erefore, we set validated_by_human to false for the set of 
automatically annotated ECGs (initial_autogenerated_report=True) with empty validated_
by-column and second_opinion=False. �e precise fractions are as follows:

•	 73.7% validated_by_human=True
•	 56.9% validated_by is given
•	 16.18% initial_autogenerated_report=False
•	 0.62% second_opinion is given

•	 26.3% validated_by_human=False

�is is to the best of our knowledge a very conservative estimate as a large fraction of the dataset went through 
the second validation step, but from our perspective the most transparent way of dealing with this missing meta-
data issue. Moreover, the second validation was not performed independently but as an validation of the �rst 
annotation. Unfortunately, there is no precise record of which diagnostic statements were changed during the 
�nal validation step. �erefore, even though most records were evaluated by two cardiologists (albeit not inde-
pendently), one can only reasonably claim a single human validation.
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To make best use of the available data, we decided to incorporate the information which ECGs certainly 
underwent human validation into the sampling process. To this end, we construct the fold assignment process in 
such a way that the tenth fold only contains only ECGs that certainly underwent a human validation. �is allows 
to use the tenth fold as a reliable test set with best available label quality for a simple hold-out validation. �is is 
described in detail in Prediction Tasks and Train-Test-Splits for ML Algorithms in Usage Notes.

Usage Notes
In this section, we provide instructions on how to use PTB-XL to train and validate automatic ECG interpreta-
tion algorithms. To this end, we �rst explain how to convert to other standards than SCP in Conversion to other 
Annotation Standards, a�erwards we explain in Prediction Tasks and Train-Test-Splits for ML Algorithms how the 
proposed cross-validation folds are supposed to be used for a reliable benchmarking of machine learning algo-
rithms on this dataset and outline possible prediction tasks on the dataset. Finally, in Example Code we provide a 
basic code example in Python that illustrates how to load waveform data and metadata for further processing and 
provide directions for further analysis.

Conversion to other Annotation Standards. As already mentioned in ECG Statements, besides our 
proposed SCP standard, we also provide the possibility of transition to other standards such as the scheme put 
forward by the American Heart Association19. For this purpose and the user’s convenience our repository also 
provides SCP_labelmap.csv with further information, see ECG Statements for details on the used SCP-ECG 
statements.

Table 12 gives a detailed description of the table scp_statements.csv. �e �rst column serves as index 
with SCP statement acronym, the second, eighth and ninth column (description, Statement Category, SCP-ECG 
Statement Description) describes the respective acronym. �e third, fourth and ��h column (diagnostic, form 
and rhythm) indicate to which broad category each index belongs to. �e sixth and seventh column (diagnos-
tic_class and diagnostic_subclass) describes our proposed hierarchical organization of diagnostic statements, see 
ECG Statements for additional information on the latter two properties.

�e latter three columns of Table 12 provide cross-references to other popular ECG annotation systems as 
provided on the SCP-ECG homepage (http://webimatics.univ-lyon1.fr/scp-ecg/), namely: AHA aECG REFID, 
CDISC and DICOM. In Example Code, we provide example Python code for using scp_statements.csv 
appropriately.

Prediction Tasks and Train-Test-Splits for ML Algorithms. �e PTB-XL dataset represents a very rich 
resource for the training and the evaluation of ECG analysis algorithms. Whereas a comprehensive discussion 
of possible prediction tasks that can be investigated based on the dataset is clearly beyond the format of this data 
descriptor, we still �nd it worthwhile sketching possible future direction. �e most obvious tasks are prediction 
tasks that try to infer di�erent subsets of ECG statements from the ECG record. �ese tasks can typically be 
framed as multi-label classi�cation problems. Although a thorough description of proposed evaluation metrics 
would go beyond of the scope of this manuscript, we highly recommend macro-averaged and threshold-free 
metrics, such as the macro-averaged area under the receiver operating curve (AUROC). Micro-averaged metrics 
would overrepresent highly populated classes, whose distribution just re�ects the data collection process rather 
than the statistical distribution of the di�erent pathologies in the population. �e large number of more than 2000 
patients with multiple ECGs potentially allows to develop prediction models for future cardiac conditions or their 
progression from previously collected ECGs. Beyond ECG statement prediction, the dataset allows for age/sex 
inference from the raw ECG record and to develop ECG quality assessment algorithms based on the signal qual-
ity annotation. Finally, the provided likelihoods for diagnostic statements can be used to study possible relations 
between prediction uncertainty compared to human uncertainty assessments.

For comparability of machine learning algorithms trained on PTB-XL, we provide recommended train-test 
splits in the form of assignments of the record to one of ten cross-validation folds. We propose to use the tenth 
fold, which is ensured to contain only ECGs that have certainly be validated by at least one human cardiologist 
and are therefore presumably of highest label quality, to separate a test set that is only used for the �nal perfor-
mance evaluation of a proposed algorithm. �e remaining nine folds can be used as training and validation set 
and split at one’s own discretion potentially utilizing the recommended fold assignments. As the ninth and the 
tenth fold satisfy the same quality criteria, we recommend to use the ninth fold as validation set.

Example Code. In Fig. 7, we provide a basic code example in Python for loading both waveform and meta-
data, aggregating the diagnostic labels based on the proposed diagnostic superclasses and split data into train 
and test set using the provided crossvalidation folds. �e two main resulting objects are the raw signal data (as 
a numpy array of shape 1000 × 12 for the case of 100 Hz data) loaded with wfdb as a numpy array as described 
in Waveform Data and the annotation data from ptbxl_database.csv as a pandas dataframe with 26 
columns as described in Metadata. In addition, we illustrate, how to apply the the provided mapping of indi-
vidual diagnostic statements to diagnostic superclass mapping as introduced in ECG Statements and described 
in Conversion to other Annotation Standards which consists of loading scp_statements.csv, selecting for 
diagnostic and creating multi-label lists by applying diagnostic_superclass given the index. Finally, 
we apply the suggested split into train and test as described in Prediction Tasks and Train-Test-Splits for ML 
Algorithms.

A�er the raw data has been loaded, there are di�erent possible directions for futher analysis. First of all, there are 
dedicated packages such as BioSPPy (https://github.com/PIA-Group/BioSPPy) that allow to extract ECG-speci�c 
features such as R-peaks. Such derived features or the raw signals themselves can then be analyzed using classical 
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machine learning algorithms as provided for example by scikit-learn (https://scikit-learn.org) or popular deep 
learning frameworks such as TensorFlow (https://www.tensor�ow.org) or PyTorch (https://pytorch.org).

Code availability
�e code for dataset preparation is not intended to be released as it does not entail any potential for reusability. 
We provide the strati�ed sampling routine in Supplementary File 1 to allow users to create strati�cation folds 
based on user-de�ned preferences.
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