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The modern obesity epidemic with associated disorders of metabolism and cancer has

been attributed to the presence of “thrifty genes”. In the distant past, these genes

helped the organism to improve energy efficiency and store excess energy safely as

fat to survive periods of famine, but in the present day obesogenic environment, have

turned detrimental. I propose PTEN as the likely gene as it has functions that span

metabolism, cancer and reproduction, all of which are deranged in obesity and insulin

resistance. The activity of PTEN can be calibrated in utero by availability of nutrients

by the methylation arm of the epigenetic pathway. Deficiency of protein and choline

has been shown to upregulate DNA methyltransferases (DNMT), especially 1 and 3a;

these can then methylate promoter region of PTEN and suppress its expression. Thus,

the gene is tuned like a metabolic rheostat proportional to the availability of specific

nutrients, and the resultant “dose” of the protein, which sits astride and negatively

regulates the insulin-PI3K/AKT/mTOR pathway, decides energy usage and proliferation.

This “fixes” the metabolic capacity of the organism periconceptionally to a specific

postnatal level of nutrition, but when faced with a discordant environment, leads to

obesity related diseases.

Keywords: PTEN (phosphatase and tensin homolog deleted on chromosome 10), thrifty gene hypothesis, insulin

resistance, carcinogenesis, polycystic ovarian disease (PCOD), diabetes mellitus, NAFLD

INTRODUCTION

In the early sixties, Neel (1) suggested that evolution has selected some populations for “thrifty
genes” to survive cycles of famines but these genes are now proving detrimental in an age of
overabundance, leading tomodern diseases such as obesity, metabolic syndrome, and cancer. Many
genes have been proposed as the putative thrifty genes [see review by Prentice et al. (2)] but the
evidence for a specific gene alteration generating a thrifty genotype is inconclusive (3). Hales and
Barker (4) suggested a developmental alternative (30 phenotype)—that the fetus, when exposed to
poor nutrition undergoes programming in utero to survive anticipated nutrition constraints in the
post natal nutrition-poor environment also, but develops disease if the post natal environment is
nutrition-rich. This has been backed with epidemiological data (such as birth records in England)
and is the basis for the Developmental Origins of Health and Disease (DOHaD) concept (5–7).
The role of epigenetics in programming the genome has gained prominence more recently and the
argument has been made for a “thrifty epigenotype” (8).

The criteria for a potential thrifty gene has been laid out (2) and a crucial property is energy
efficiency—to reduce energy expenditure and store excess energy in anticipation of periods
of famine.
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THE OBESITY EPIDEMIC

The classical hypothesis that the basis of obesity is energy
imbalance (calorie in, calorie out) does not explain various
features of the obesity epidemic [for excellent discussions, read
(9, 10)]. The “carbohydrate-insulin model” of obesity suggests
that the primary defect lies in fat storage; excess fat storage causes
obesity first which is followed by increased intake (hunger) and
reduced activity. Excess fat storage is driven by hyperinsulinemia
[which in turn is driven by high glycemic index foods and
food additives in processed foods (11)]. Insulin is essentially
an anabolic hormone whose metabolic function is to store
absorbed glucose as glycogen and fat. Food with high glycemic
index (sugary and processed) that is widely available as part
of the Western diet causes a spike in insulin which deposits
glucose as fat (causing obesity with hypoglycemia and increasing
hunger). Insulin also stimulates de novo lipogenesis (DNL),
which is a feature of fatty liver; the latter can also be produced
by fructose (from high sugar intake) metabolism in liver (12).
It follows that any alteration that makes the insulin-glucose
pathway more active will result in efficient fat storage, even
at low or normal insulin levels. PTEN is a protein that sits
astride the metabolic [phosphoinositide 3-kinase (PI3K)-AKT-
mammalian target of rapamycin (mTOR) (PI3K-AKT-mTOR)]
pathway of insulin and suppresses it. Reduced activity of PTEN
will smoothen the passage of signals along this pathway, causing
“relative hyperinsulinemia.”

HYPOTHESIS

It is proposed that PTEN is the primary thrifty gene.
Epigenetic changes in utero due to deficiency of specific
nutrients is the basis for fetal programming for a nutrient-
poor postnatal environment. The modern epidemic of metabolic
diseases and obesity related cancers (ORCs) results when a
PTEN deficient organism, programmed for a nutrient-poor
environment, with limited metabolic capacity, is exposed to
nutrient-rich surroundings.

THE GENE

PTEN (phosphatase and tensin homolog deleted on chromosome
10) (13, 14) was initially recognized as a tumor suppressor
gene (TSG); it acts by suppressing the PI3K-AKT-mTOR
proliferative pathway through its lipid phosphatase activity,
therefore inhibiting cell proliferation. It was later found to
be involved in a wide spectra of other cellular processes
including energy metabolism (as it sits downstream of the insulin
pathway and negatively regulates it, and also alters mitochondrial
functioning), survival, proliferation, and cellular architecture.
PTEN has certain interesting properties such as (15, 16):

- It is dominant negative: the inactive PTEN mutants
hetero-dimerise with wild-type PTEN and reduce its
phosphatase activity.

- It is haploinsufficient: One copy of the gene is insufficient
for proper function. Loss-of-function mutation results in a

situation where the amount of protein product created from
the remaining wild-type allele is not sufficient for normal
cellular function.

- It is quasi-insufficient (17): it cannot sustain adequate
biological functions upon a subtle reduction in the protein
levels. Marginal reductions in PTEN expression (“dose”) (18)
along the mitogenic pathway gives rise to a variety of cancers;
this hypothesis implies that similar dose modifications can
exist along the metabolic pathway with lower doses making
the pathway more efficient (resulting in storage of more fat at
equivalent levels of insulin).

The expression and function of PTEN can be
modified in a variety of ways, ranging from gene
mutations, epigenetic regulation by promoter
methylation, post transcriptional modifications and by
microRNAs (19).

It is proposed that deficiency of specific nutrients (proteins
especially methionine, and choline) leads to upregulation
of DNA methyltransferases (DNMT3a, possibly DNMT1)
by hypomethylation; this leads to promoter methylation of
PTEN and varying degrees of suppression (proportional to
the availability of the specified nutrients), resulting in fetal
programming. Thus, nutritional supply decides the degree
of PTEN expression (“dose”) and the thrifty phenotype,
but when faced with post natal nutrition-rich environment,
can lead to modern diseases such as metabolic syndrome
and cancer.

There are certain questions that need to be answered in
support of this hypothesis.

1. Is it the calorie restriction per se or lack of specific
nutrients that lead to epigenetic changes? Interest in the
field of nutritional epigenetics is expanding and there are
multiple epidemiological studies and experimental animal
models addressing the fetal and transgenerational outcomes of
maternal dietary manipulation. Epigenetic changes, especially
DNA methylation, in response to changes in maternal
nutrition has been well documented (20). Calorie restriction
per se has been noted to lead to changes in gene expression
(notable research being carried out in the hope of extending
life span) but current interest is in teasing out the specific
components of diet that contribute to altered gene expression.
The current concept of “protein leverage (21) suggests that
most important part of diet is protein, especially the essential
amino acid methionine, and the body can sense and respond
to protein and methionine deficiency (via FGF21) (22).
However, methionine levels are tightly controlled in the fetus
(23) as befitting its importance, and other one-carbon donors
such as choline and folates can step in as needed to regulate
DNAmethylation (24). It is thus suggested that choline is also
an important factor in fetal (mal)nutrition that decides the
degree of methylation of PTEN and thus the level of its protein
expression. Consistent with this hypothesis, maternal low
protein diet produced low Pten expressing mouse mammary
Tumors in the offspring (25). The effect of low protein
or low choline on normal tissue has not been reported to
my knowledge.
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2. Which are the DNA methyltransferases (DNMT) sensitive to
nutritional changes? DNMTs are responsible for methylation
of promoter regions and usually repress gene expression; the
main ones are DNMT1, 3a and 3b. DNMT3a is consistently
upregulated in calorie (26), protein (27–29), methionine (30),
and choline deficient states (31). Gong et al. reported that
both the expression levels of DNMT1 and DNMT3a were
significantly increased when pregnant rats were fed a low-
protein diet (27). Choline deficient diet in mother resulted in
upregulation of both Dnmt1 and 3a in offspring in another
study (31). There are multiple studies using combination
deficiencies such as the choline deficient, amino acid defined
(CDAA) diet (32), methionine-choline deficient (MCD) (33)
diet and folate-methyl deficient (FMD) (34) models where the
results are generally consistent with upregulation of one or
both DNMTs.

3. Does alteration in maternal diet lead to changes in PTEN
expression in the offspring? As mentioned above, low
protein diet in dams can result in downregulation of PTEN
in the offspring mammary Tumors (25). Food restriction
per se has been shown to downregulate Pten in fetal liver
(35). However, in another study of calorie restriction, Pten
expression was not changed in skeletal muscles (though
Akt was activated) (26). Methionine restriction (MR) has
also been shown to keep PTEN inactive by reducing the
amount of GSH need to keep it in an active, reduced state
(30). Choline deficiency downregulated the expression of
Pten in the liver of mice fed choline deficient, amino acid
defined (CDAA) diet (32). (Note that the latter studies were
in adult mice; the effect of choline deficient maternal diet
on offspring has not been studied to my knowledge). This
is consistent with the fact that choline deficient diet leads
to non-alcoholic fatty liver disease (NAFLD); a condition
known to be associated with PTEN downregulation (36).
However, the classical MCD (methionine-choline deficient)
diet model of NASH is associated with PTEN upregulation
in murine liver (37) [while a high fat diet (HFD) model
of NASH results in downregulation of PTEN in liver (38)].
Interestingly, PTEN deficiency in adipose tissue protects
against NAFLD (39), suggesting that the resultant more
efficient insulin action could lead to preferential fat storage
in adipose tissue, sparing ectopic fat deposition in liver. The
expression and function of PTEN appears to be thus tissue and
context dependent.

4. Has calorie/nutrient restriction been shown to result in
downregulation of PTEN? There are large data sets from
the survivors of famines [such as Dutch Winter Hunger
(40), Chinese (41, 42) or Bangladeshi (43) famines] but the
published data sets do not include status of PTEN. There is,
however, evidence from cell lines and animal models.

- Fasting caused (transient) inhibition of Pten in intestinal
stem cells (44).

- Calorie restriction reduced expression of Pten in silkworm
larvae (45).

- Maternal undernutrition reduced the expression of Pten in
the liver of sheep offspring singletons (46).

- Offspring of mice with gestational diabetes mellitus have
raised Pten expression; calorie restriction downregulated
this (47).

- Pten was down regulated in fetal liver following a choline
deficient, aminoacid defined (CDAA) diet in C57BL/6 mice
(32).

- Maternal protein deprivation resulted in upregulation of
PI3K and GLUT4 in muscles of the offspring of rats
(consistent with Pten deficiency, though this was not
specifically reported) and increased insulin sensitivity into
adulthood (48).

5. Has altered PTEN expression been demonstrated in normal
human tissue? Defining the “normal dose” of the protein is
impractical as it varies across tissues; studies usually compare
the expression of the PTEN protein to that of a protein from
another gene (by immunohistochemistry). Not surprisingly,
most reported studies are from cancer patients, where
expression of PTEN in Tumor tissue has been compared
to adjacent “normal tissue”(which may not necessarily be
normal) (49). There are scattered studies reporting loss in
adjacent normal tissue in cancers of breast (50), endometrium
(51), gallbladder (52), colon (53), esophagus (54), thyroid (55),
and kidney (56).

Interestingly, these are also obesity related cancers (ORCs),
a point to which I will return to later. It is, of course, not
known whether these individuals with loss in normal tissue were
nutritionally deprived in utero.

Information about methylated PTEN in normal tissue is
even scarcer (57–61). There are several caveats about promoter
methylation and resultant repression of the gene that is worth
keeping in mind (62, 63).

- Epigenetic change is not an “all or none” phenomenon—a
promoter can be partially methylated in precursor lesions and
then progress to full methylation and complete gene silencing.
As noted earlier (18), subtle suppression of PTEN protein
production is enough for carcinogenesis.

- Transcriptional silencing does not always require
hypermethylation of the entire CpGisland, but methylation of
a few specific core CpGdinucleotides may be sufficient.

- Methylation can occur outside the promoter region (long
range epigenetic silencing).

DOWNREGULATION OF PTEN PRIMES
THE ORGANISM FOR NUTRITION-POOR
ENVIRONMENT

If PTEN is indeed the 30 gene, how will a downregulated PTEN
prime the offspring for a nutrition poor environment? The ideal
thrifty gene makes efficient use of available energy to grow and
reproduce (64). The information we have about PTEN loss is
based on knock out (KO) animal models (65); this leads to
complete absence, and may not strictly conform to what occurs
when there is more subtle reduction of PTEN expression, as
envisioned in this theory.
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1. Loss of PTEN is associated with increased self-renewal, cell
survival, and proliferation; this is seen in normal human
embryonic stem cells (66), as well as cancer stem cells (67).

2. PTEN loss is associated with resistance to starvation, by
improved energy efficiency and macropinocytosis (scavenging
necrotic cell debris, proteins, and extracellular fluid). Pten
mutant Drosophilia flies survived starvation better than Pten
wild (68). Similarly, Pten mutant cells proliferate better under
conditions of nutrition restriction (69); they switched from
hypertrophic growth to hyperplastic growth in one study
[though this is point is controversial with some studies
showing Pten mutant cells are larger (70)]. Cancer cells
deficient in PTEN are resistant to starvation, which is restored
by replacing PTEN (71, 72).

3. PTEN deficient cells are more energy efficient. Overexpression
of Pten, by introducing an extra Pten, caused these transgenic
mice (73, 74) to display increased energy expenditure by
activation of brown adipose tissue (BAT) via uncoupling
protein 1 (UCP1). Over-expression of PTEN is clearly
detrimental in a nutrient-poor environment, resulting in
energy wastage. However, it is important to remember this
property as insufficient PTEN expression will prevent the
organism from “burning off” excess calories, which then has to
be stored as fat. (The importance of burning off excess calories
is discussed later under the section on “protein leverage.”
PTEN inactivation bestowed a bioenergetic advantage to the
cells by up-regulating mitochondrial respiratory capacity (75,
76). These cells upregulate oxidative phosphorylation and
generate more ATP, wasting less energy in heat production.
[However, cancer cells prefers aerobic glycolysis (Warburg
effect), presumably to promote flux into biosynthetic pathways
(77); despite frequent loss of PTEN].

4. PTEN loss permits safe storage of excess fat. Insulin is
primarily a fat storage hormone and higher levels of insulin
is a postulated reason for obesity (as per the carbohydrate-
insulin model of obesity).“Safe” here means storage without
inducing insulin resistance. This is best seen in Cowden
syndrome that occurs due to germline mutation of PTEN
where insulin sensitivity is maintained despite obesity (78).
PTEN loss in sporadic mutations also leads to obesity with
retained insulin sensitivity (79), which is consistent with
its position downstream of the insulin pathway, inhibiting
PI3K/AKT/mTOR pathway. Loss of PTEN has a “brake-off”
effect on this pathway, with unrestricted flow of signals at
lower serum insulin levels. The major impact of any gene
on thriftiness would be modulation of the insulin pathway
proportional to availability of nutrition (64), and PTEN fits
this role. Women have higher insulin sensitivity despite
higher fat mass, apparently due to downregulation of PTEN
gene expression in skeletal muscle; however, here the PTEN
inactivation is possibly by phosphorylation (80). Incidentally,
PTEN deficient preadipocytes derived from lipomas seen in
PTEN mutant children have been noted to have increased
fat storage (and proliferative) capacity (81); this can be
suppressed by inhibitors of mTOR (everolimus) or PI3K
(alpelisib) (82). Pten haploinsufficient mice, when given high
calorie diet, had lower insulin (and glucose) levels but put on

same overall and visceral weight as their wild counterparts
(suggesting higher efficiency of the metabolic pathway), with
similar increase in cholesterol and triglyceride (83).

5. PTEN deficiency leads to smaller size offspring. As noted
by Prentice et al. (2), chronic food shortages end up
creating a smaller mother, which imposes a “maternal uterine
constraint” on the size of the fetus. Obviously, having a large
baby poses serious health risks to the malnourished mother.
In mouse models, partial PTEN deletion in the hypothalamus
resulted in whole body growth restriction (84, 85). However,
this is not universal finding; other studies have reported Pten
deficient mice cannot be “physically distinguished” from their
litter mates (86).

6. Pten deficiency induces Behavioral changes including
hyperphagia (87); it reduces muscle protein degradation (88)
and improves endurance (89), both presumably contributing
to a survival benefit in a harsh environment. PTEN alteration
can also possibly influence Behavior, as loss of PTEN
function is implicated in Behavioral disorders such as
autism (90).

7. PTEN deficiency in murine oocytes causes the entire oocyte
pool to become activated prematurely; this has the effect of
females having a maximum of one normal-sized litter before
they became infertile at 12–13 weeks of age (91). In nutrition
constrained environment, limiting the number of offspring
and reducing competition could have its own evolutionary
advantages. However, in another study but in adult mice, low
protein diet given ad libitum resulted in increased expression
of Pten in oocytes and delayed the activation of ovarian
primordial follicles (92).

8. Another evolutionary benefit is a shortened lifespan seen in
Pten deficient mice, partly attributable to a higher incidence
of cancer (93). PTEN can be thought to set the level of
“energy entitlement” at conception; the upper limit of what
the offspring is eligible to consume through its life in that
particular degree of nutrition availability. Consuming more
than entitlement is potentially detrimental to other members
of the society; in this sense, it can be thought of as a “self-
destruct button”.

In summary (Table 1), subtle dose reduction of PTEN
proportional to the degree of nutritional deprivation can
modify the organism to adapt to a nutrition-poor environment
by improving energy efficiency, safe storage of excess energy
as fat, and early reproduction. However, this also results in
restricted ability to burn off excess calories, resulting in obesity,
and its consequences.

DOWNREGULATED PTEN RESULTS IN
DISEASES IN NUTRIENT-RICH
ENVIRONMENT

The key reason why we are currently concerned with
identification of thrifty genes is their postulated role in
human disease in a discordant, nutrient-rich environment. The
ability of a thrifty gene to reduce energy expenditure and store
fat, has distinct survival benefits in a nutrient-poor environment
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TABLE 1 | Potential benefits of reduced PTEN expression.

SR No Benefit

1 Improved cell proliferation and survival

2 Resistance to starvation

3 Energy efficiency

4 Efficient storage of excess fat

5 Smaller offspring

6 Altered behavior (hyperphagia)

7 Early fertility

8 Reduced life span (quicker turn over)

However, excess fat storage can lead to obesity. Fat stored in
ectopic locations leads to insulin resistance (IR) and metabolic
disorders (type 2 diabetes mellitus, dyslipidemia, cardiovascular
diseases) and obesity related cancers (ORCs) in an obesogenic
environment. Whether hyperinsulinemia, a marker of IR, is the
cause or effect of obesity is still a matter of debate (94).

It has been proposed that the thrifty gene should have the
property of plasticity to adapt to a nutrient-rich environment (2)
but I believe that it is the inability to adapt that leads to disease.

PTEN, Obesity and Insulin Resistance
The relationship between obesity, IR and metabolic syndrome
is still a matter of discussion and controversy; the two leading
hypothesis being the conventional “calorie imbalance (calorie in;
calorie out) model” and the more recent “carbohydrate-insulin
model.” Whether hyperinsulinemia, a marker of IR, is the cause
or effect, is also debated (95). Until this is settled, the role played
by PTEN will remain a matter of speculation. It is obvious that
PTEN deficiency as proposed in this paper is not compatible
with insulin resistance, as PTEN loss is consistently associated
with insulin sensitivity [retained even in obese patients of PTEN
mutations such as Cowden syndrome (78)].

It is important to understand that fat storage leading to obesity
is not sine qua non for insulin resistance (IR). It is generally
accepted that it is the location, rather than the amount of stored
fat that determines IR. Current dogma suggests that IR is due to
ectopic fat deposition (96) in locations such as liver [intrahepatic
lipids (IHL)], muscles [intramyocellular lipid (IMCL)] or visceral
adipose tissue (VAT). Storage in subcutaneous fat (SAT) is
considered benign. Liver specific deletion of Pten causes NAFLD
(a form of IHL), but these mice remain insulin sensitive and
have an overall reduction in body fat (97). This is consistent
with the possibility that higher insulin sensitivity in Pten
deficient hepatocytes drives glucose into liver cells, increases
de no lipogenesis (DNL) and results in fatty liver; presumably
peripheral fat is preferentially drawn in and stored in liver.

Similarly, deletion of Pten in adipose tissue (39, 98), skeletal
muscle cells (99), pancreatic beta cells (100), or neurons
expressing Cre (101) results in insulin sensitivity, despite massive
deposits of fat in SAT after high fat diet (HFD) as seen in the
last model. Systemic inhibition of Pten in diabetic mice using
antisense oligonucleotide resulted in downregulation of Pten in

liver (by 90%) and fat (by 75%), reduced insulin levels and
restored insulin sensitivity (102).

It is interesting to speculate that PTEN could have a role in
body fat distribution and lay the foundations of a metabolically
unhealthy organism (such as reduced capacity in subcutaneous
adipose tissue forcing storage in the unhealthy visceral adipose
tissue); however, the data available is not sufficient to support
such a possibility. Deletion of Pten in a subset of adipocytes
leads to redistribution of body fat with lipomatosis and partial
lipodystrophy (103); however, the changes were not specific to
SAT vs. VAT pattern.

Organ of involvement: Does downregulation of PTEN occur
in all body tissues or in specific organs (such as liver, muscles or
fat)? Downregulation in adipose tissue can explain most of the
features of metabolic syndrome. AiPKO mice (39), where Pten
was deleted in mature adipocytes, maintained insulin sensitivity
despite putting on (mainly)SAT on high fat diet; knocking out
Pten after HFD-induced weight gain restored insulin sensitivity
and reduced hepatic steatosis.

In a more recent study (104), fat depot specific deletion of
Pten induced expansion of local fat depots, with upregulation
of Pten in other depots and reduced fat mass there (analogs
to deletion of Pten in liver resulting in fatty liver); this
is thought to work through an “adipose PTEN—leptin—
sympathetic nervous system” activation pathway. The authors
suggest that the compensatory upregulation of PTEN in other
adipose tissues suggests a “homeostatic set point of PTEN” and
the “adipose PTEN-leptin—SNS—PTEN” loop contributes to the
maintenance of whole-body adiposity and adipose distribution in
adult animals.”

It is tempting to suggest that PTEN downregulation
in nutrionally stressed organism occurs preferentially in
subcutaneous adipose tissue (SAT), priming the organism for safe
fat storage. Evolutionarily, SAT has been the organ around which
the “fasting vs. feasting” revolves. As the study by Huang et al.
(104) indicates, when this storage capacity is overcome, ectopic
fat storage results (96); this is thought that excessive fat storage
leads to distension of adipocytes of SAT, activation of adipose
triglyceride lipase (ATGL) enzyme, leak of FFA into blood and
uptake in other tissues, leading to IR and metabolic syndrome.
However, to explain other facets of the thrifty gene hypothesis,
such as altered reproduction and increased susceptibility to
cancer, deficiency of PTEN in other tissues is essential.

Interestingly, new born Indian babies, though lighter, have
increased fat storage (“thin-fat babies”) and this has been
correlated with increased risk of metabolic syndrome in
adulthood (105). Although the PTEN values in these babies
are unknown, the insulin levels are equivalent to a comparable
cohort born in London, suggesting greater efficiency of the
metabolic pathway (106). (The authors have tried to prove
hyperinsulinemia in the Indian babies by adjusting insulin levels
to the birth weight, but the serum values (which are more
relevant) are not statistically different. The level of clinically
relevant glucose value, for example, is “per 100ml serum,”
not “100ml serum adjusted to body weight”). The authors
have suggested that vitamin B12 deficiency and 1-carbon chain
abnormalities could result in this thrifty phenotype and has led
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to the current DM epidemic in India (107). Experimentally,
increasing folate levels in breast cancer cell lines lead to
increased DNMT1 levels, with promoter methylation of PTEN
and its downregulation (and cancer progression) (108). Since
pregnant women in India are routinely supplemented with folate
(and iron) to prevent neural tube defects, this could be an
aggravating factor for the T2DM epidemic in India. In the Pune
cohort referred to above, higher maternal erythrocyte folate
concentrations at 28 weeks predicted higher offspring adiposity
and IR at 6 years of age (109).

Americans have higher rates of T2DM than Europeans
(110); Americans also suffer from more side effects of an oral
chemotherapy drug called capecitabine. The latter has been
linked to higher folate levels in Americans (111) due to food
fortification; further investigations are warranted in the relation
between folate, PTEN and T2DM.

The relationship between PTEN and insulin sensitivity has
been demonstrated in other studies. A Korean study reported
that the commonly used oral hypoglycemic agent, metformin,
downregulates PTEN via AMPK in preadipocytes and sensitizes
them to insulin (112).

Liver specific knock out of Pten in mice lead to fatty liver
with maintained insulin sensitivity (100). Obese Zucker Diabetic
Fatty (ZDF) rats that display all features of IR and metabolic
syndrome (high glucose, insulin, triglycerides and fatty liver) had
reduced PTEN expression (mRNA) (by around 40%) in the liver;
the same was found in liver of obese humans (38). This study also
suggested that unsaturated fatty acids downregulated Pten, which
then lead to upregulation of free fatty acid (FFA) transporter
CD36 and increased synthesis of triglycerides (setting up a
vicious cycle). [Another study by the same team suggested that
liver PTEN was downregulated by FFA via micro-RNA-21(113)].
In conclusion, PTEN insufficiency leads to fatty liver (whether
by liver specific knockout, where systemic insulin sensitivity is
maintained as fat preferentially accumulates in liver; or by obesity
per se, where excess FFA released by overloaded adipocytes of
SAT can downregulate PTEN in liver via FFA; this of course,
will be associated with insulin resistance). An organism born
with PTEN insufficiency is thus prone to fatty liver, a major
component of metabolic syndrome.

It may appear paradoxical but one study showed higher
levels (more than 3 fold) of Pten mRNA and protein in skeletal
muscle of obese Zucker rats (114), and lean Zucker rats showed
upregulation of Pten (2 fold) on high fructose diet in the face
of systemic insulin resistance. However, this PTEN upregulation
can be interpreted as being protective for the muscle against
glucotoxicity and lipotoxicity by dampening down the metabolic
pathway. Although there is higher intramyocyte fat content in
these obese individuals, there is no equivalent pathological “fatty
muscle disease.”

The status of PTEN in humans in relation to obesity and Type
2 diabetes mellitus (T2DM) has not been studied well (115) and
the reported data is patchy; for instance:

- A bioinformatics analysis of the search for the CpG islands in
the promoter regions of obesity-related genes has identified
PTEN as being hypermethylated (116) (downregulation).

- A study from Iran (117) showed that patients with metabolic
syndrome were more likely to have methylated PTEN than
normal people (downregulation).

- PTEN mRNA is overexpressed in omental tissue (which
is considered as VAT) in obese patients with endometrial
carcinoma [Table 3, refer Berstein et al. (118)].

- A study on Uyghur Muslims (61) showed lower
promoter methylation of PTEN in T2DM patients
as compared to normal (3.27 vs. 7.28%), leading to
PTEN overexpression.

- A PTEN-polymorphism that results in higher expression
of PTEN showed significant correlation with T2DM in
Japanese (119), marginal with Chinese Han (120) and none
in Danish population (121). This is not an epigenetic
change but is included to indicate of how conflicting
the data is.

Obviously, the maternal nutrition or intrauterine history of the
subjects in the above studies is not known.

Downregulation of PTEN represses the ability of body to burn
of excess calories. The ability to burn off excess calories is crucial,
because, as per the “protein leverage theory,” organisms will
continue to ingest food till a certain level of proteins (especially
methionine) is acquired (21). In this obesogenic environment
with excess of carbohydrates, getting adequate proteins would
mean ingesting large amounts of calories. Inability to burn them
would leave the only option of storage, which would be facilitated
by an adapted PTEN.

In summary, underexpression of PTEN would promote
fat storage due to a more efficient insulin-PI3K/AKT/mTOR
pathway, and an inability to burn of excess calories. The reasons
for progression to IR must remain speculative. PTEN is certainly
not the sole factor determining insulin response. It is possible
the PTEN remains underexpressed and is bypassed/ overcome in
creation of IR in a nutrient-rich environment. Hyperinsulinemia,
which accompanies IR, could be the cause, rather than the
effect of obesity (94). The possibility that hyperinsulinemia
(present in small for date infants) is needed for growth, and
IR is the body’s response to protect muscles from glucotoxicity
has been discussed by Wells (64). Interestingly, PTEN positive
and negative cells proliferate similarly up to a certain level of
glucose, but PTEN deficient cells start proliferating rapidly at
higher levels (122). Insulin levels rise in response to higher levels
of dietary glucose, leading to storage of excess energy as fat
(acceptable in adipose tissue) but could lead to a proliferative
response in other cells (such as in PTEN deficient); this is
detrimental to the organism and IR (by whichever mechanism)
could be a protective response by the body to prevent tissues
from reacting to high proximate glucose (123). Multiple
mechanisms, mostly PTEN-independent, has been postulated as
cause of IR; one such is the secretion of Galectin-3 protein by
macrophages infiltrating the adipose tissue, which binds directly
to insulin receptor and causes IR (124). Fetuin-A, secreted
from liver and adipose tissue, can also result impair insulin
signaling (125).

It is theoretically possible that the offspring born with low
“dose” of PTEN, when faced with a nutrition rich environment,
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upregulates PTEN, leading to IR and its ill effects. This would
imply plasticity of the gene, which is against the basic premise
of this hypothesis; obesity related diseases results from a
fixed metabolic capacity at birth, and an inability to adapt.
PTEN can be upregulated in obesity to create IR via free
fatty acids (FFA) (126) and several pro-inflammatory cytokines
such as Tumor Necrosis Factor alpha (TNFα) (127) and
resisting (128, 129).

The only study aimed at finding PTEN level in relation
to maternal diet comes from the laboratory of Dr. Susan
Ozanne and has been referred to earlier (25). A maternal low
protein diet resulted in increased mammary tumorigenesis in
the offspring, with underexpression of PTEN in tumor tissue. A
highly palatable diet post weaning induced weight gain but did
not increase PTEN in the tumor tissue of the low protein group
significantly. Unfortunately, the status of Pten in normal tissue
was not reported.

PTEN and Cancer
The data regarding the role of PTEN in cancer is abundant
and reviewed (130, 131) and is consistent; PTEN insufficiency
increases cancer susceptibility. This is not surprising as PTEN
was initially identified as a Tumor suppressor gene. Reduced

“dose” of PTEN increases PIP3 and activates the proliferative
PI3K/AKT/mTOR pathway (18). Deficiency of PTEN has been
recorded in multiple cancers and Pten knock out animals are
good models for tumorigenesis (132). As noted earlier (50),
PTEN loss can be seen in adjacent “normal” tissue as well.
PTEN expression can be lost due to multiple reasons but
methylation leading to repression has been reported in cancers
of endometrium (62), gallbladder (52), colon (53), prostate (133),
and breast (134).

Studies also show that PTEN deficient animals develop more
cancers when exposed to high fat diet, such as of prostate
(135) and endometrium (136). Interestingly, most PTEN related
cancers are also ORCs (137). Correlation between ORCs and
PTEN deficiency in light of the thrifty gene theory suffers
from lack of data about in utero influences or even weight of
the patients. One study on endometrioid endometrial cancer
(which is strongly correlated with obesity) showed “increased
AMPK phosphorylation and IGFBP2 expression were observed
in obese patients with PTEN loss. These findings are markers
of nutrient deprivation, which is unexpected in the context
of obesity”(138).

PTEN deficiency leads to hyperproliferation and probably
plays a permissive role in carcinogenesis; additional events,

FIGURE 1 | Deficiency of nutrients in utero, specifically proteins and choline lead to upregulation of DNMT3a and possibly 1, resulting in promoter methylation and

suppression of PTEN, to varying degrees. This adapts the offspring to a nutritionally constrained post natal environment with efficient fat storage and reduced

thermogenesis. If the birth environment continues to lack nutrition, the organism is well-adapted for survival, but in an obesogenic environment, would result in obesity,

metabolic disorders, and cancer.
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usually in form of second mutation [e.g., in MYC (139)
gene], is needed for malignant transformation—this is possible
even in the absence of obesity. In the context of obesity,
there are other postulated mechanisms. The role of fibroblast
growth factors (FGF) and their receptors (FGFR) is especially
compelling. It has been shown that visceral adipose tissue
(VAT) produces FGF2 (140) which acts on FGFR to induce
transformation of epithelial tissue; interactions involving PTEN
in breast (141), endometrial (142), and prostate (143) cancers
have been reported but exact nature of these interactions await
further clarification.

Interestingly, feeding HFD to female mouse mammary tumor
virus-Wnt-1 transgenic (Tg) mice resulted in higher incidence
of breast cancers in their offspring; this was associated with
downregulation of Pten (144). Similarly, in another mouse study,
HFD in dams produced Pten-inactivated prostatic proliferation
in the offspring (145). Thus, PTEN deficient cells can turn
cancerous when exposed to HFD.

PTEN and PCOS
Nutrition (lack and excess) has significant effect on
reproductive functions (146) and the metabolic syndrome
equivalent in the reproductive system is polycystic ovary
syndrome (PCOS); these two syndromes tend to overlap
(147). It has been suggested that PCOS is likely a result of
interactions between genetic predispositions and the modern
obesogenic environment (148). Components of this syndrome
include obesity, hyperandrogenism, polycystic ovaries, and
anovulation (149). The exact cause of this syndrome is still not
fully understood.

The role of PTEN in the ovary is pleiotropic and appears
to be cell dependent. Essentially, the ovarian follicle has three
types of cells—the oocyte, the granulosa cells and the covering
theca cells.

a. As seen earlier (91), Pten deletion in primordial follicle lead to
premature activation of oocytes and early infertility. However,
a chronic low protein diet actually lead to upregulation of Pten
in primordial ovarian follicle (via FGF21 and adiponectin)
(92) with preservation of fertility; this was in adult mice;
the effect of maternal low protein diet on Pten has not been
studied (150).

b. In granulosa cells of PCOS patients, PTEN expression was
reported as reduced (151) but in another study, insulin was
shown to upregulate PTEN in granulosa cells (152). In another
study, disruption of Pten in granulosa cells was associated with
improved fertility (153).

c. In theca-interstitial cells, Pten deletion produced features of
PCOS including hyperandrogenism and early fertility loss
(154). Animal models suggest that the PI3K/AKT pathway
plays a significant role in the molecular pathology of PCOS
(155); the outcome of Pten deletion in theca cells is consistent
with this. The involvement of PI3K pathway in PCOS is
further demonstrated by the fact that PTEN expression is
altered in endometrium of PCOS patients (156).

It would appear that, just in case of cancer, downregulation of
PTEN in specific cells of ovary creates a permissive background

for PCOS, which is precipitated by a high-nutrition environment.
It, of course, remains to be demonstrated that maternal protein
restriction results in PTEN downregulation in the ovary,
especially the theca cells. Curiously, NAFLD is another condition
with PTEN downregulation (in hepatocytes)which is associated
with peripheral insulin resistance (38), and both PCOS and
NAFLD tend to overlap—in fact, about 40% of the PCOS
patients have NAFLD (157). Metformin, which is used with some
success in both conditions, is an AMPK activator which induces
PTEN (158).

DIFFERENTIAL EXPRESSION OF PTEN
EXPLAINS LACK OF CONSISTENCY IN
DATA

The data regarding PTEN and maternal nutrition, as collated
in this paper, is not and cannot be consistent as it would vary
depending on experimental conditions. However, it is known
that gene expression varies among tissue and it is likely that
PTEN expression is not uniformly suppressed across major tissue
types (brain, liver, adipose tissue, and muscles) in response
to nutritional constraint. Pten haploinsufficient or KO mice
are not appropriate models to decide this and unfortunately,
there is no low protein (LP) or maternal methionine-choline
deficient (MCD) dietmodels where Pten has been analyzed across
different tissues. There is indirect evidence to suggest PTEN
expression can be variable. For instance, analysis of metabolically
stressed in vitro fertilized mice showed acetylation of Txnip gene
(involved in metabolism); the adult mice had upregulated mRNA
and protein expression of the Txnip as compared to controls

TABLE 2 | Summary of evidence supporting the hypothesis.

Postulate Evidence References

CAUSE: LOW PTEN DUE TO:

1. Specific nutritional

deficiency reduces

PTEN expression in

tissues & offspring

Experimental data with low protein,

methionine and choline diets.

(25, 30, 32,

46)

2. This effect is

through epigenetic

pathway

Experimental data shows

upregulation of DNMT3a.

(27, 31)

EFFECT: LOW PTEN CAN LEAD TO:

1. Obesity Seen in Cowden syndrome. (78)

HFD causes obesity with PTEN

deleted models.

(39, 101)

Hypermethylated (downregulated)

PTEN is associated with metabolic

syndrome.

(116, 117)

2. Fatty liver (NAFLD) Liver specific deletion causes fatty

liver.

(97, 100)

3. Cancer Tumor suppressor gene. (130, 131)

Low expression in multiple obesity

related cancers (ORCs).

(52, 53, 62,

133, 134)

4. PCOS Deletion in theca-interstitial cells leads

to features of PCOS.

(154)
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(159). But there was differential expression in the tissues—with
increased expression of Txnip RNA and protein in adult fat and
muscle but not liver or pancreas. TXNIP can activate PTEN by
reduction; interestingly, in Txnip KO mice, Pten is inactive in
oxidative tissue (skeletal muscle and hearts) but not in lipogenic
tissues (liver and adipose tissue) (160). Similarly, in a porcine
model (29), low protein diet reduced levels of Dnmt1 and 3b
in fetal liver while increasing expression of 3a; but in fetal
muscle, Dnmt3a was reduced, Dnmt1 increased with no change
in 3b. Target genes were altered and the authors suggest that
the “differential DNMT3a and DNMT3b gene expression (in
liver and muscle) implicates a tissue-specific impact of maternal
diet on both fetal liver and muscle tissue” (29). It would appear
that in utero epigenetic modifications do not uniformly affect
diverse tissues. There could be differential expression depending
on various factors such as the availability of redox mechanisms.

PROVING THE HYPOTHESIS

There are enough gene expression and methylome profiles
existing of both human and animal models of nutrition
deprivation that can be analyzed for PTEN expression; the
difficulty would be in defining the normal expression since
there is no “on” or “off” level, only degrees of activity. It
would be particularly interesting to see the Pten levels in
normal tissue of the low protein model (25) generated in

Dr. Ozanne’s laboratory. Experimentally, this can be proven
by analyzing PTEN levels in offspring of animals deprived of
specific nutrients, especially in organs of interest such as adipose
tissue, liver and muscles, and confirming that these changes were
brought about by via the methylation arm of the epigenetic
pathway. Additional generations can be analyzed to look for
transgenerational inheritance.

CONCLUSIONS (FIGURE 1)

It is proposed that PTEN is the primary thrifty gene (Table 2).
Epigenetic modification (methylation) of PTEN promoter
suppresses the expression of the gene proportional to availability
of nutrients (protein, and possibly choline). This sets the
metabolic capacity and adapts the fetus to nutrition availability
in post natal environment. A mismatch with calorie abundance
results in efficient storage and limited expenditure and causes
obesity, metabolic syndrome and cancer. The crux of a thrifty
gene is its ability to efficiently use limited energy for growth and
reproduction, and store the excess safely, and multiple lines of
evidence suggest that PTEN does this brilliantly.
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