
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 16 February 2015

doi: 10.3389/fonc.2015.00024

PTEN: multiple functions in human malignant tumors

Michele Milella, Italia Falcone, Fabiana Conciatori , Ursula Cesta Incani , Anais Del Curatolo, Nicola Inzerilli ,
Carmen M. A. Nuzzo,Vanja Vaccaro, Sabrina Vari , Francesco Cognetti and Ludovica Ciuffreda*

Division of Medical Oncology A, Regina Elena National Cancer Institute, Rome, Italy

Edited by:

Alexandre Arcaro, University of Bern,

Switzerland

Reviewed by:

Daniel Christian Hoessli, University of

Karachi, Pakistan

Bernd E. R. Nuernberg, University

Hospital Tübingen, Germany

*Correspondence:

Ludovica Ciuffreda, Division of

Medical Oncology A, Regina Elena

National Cancer Institute, Via Elio

Chianesi 53, Rome 00144, Italy

e-mail: ludovicaciuffreda@

hotmail.com

PTEN is the most important negative regulator of the PI3K signaling pathway. In addi-

tion to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a

tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a

broad spectrum of biological functions, modulating the flow of information from membrane-

bound growth factor receptors to nuclear transcription factors, occurring in concert with

other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid

and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted

over the past 10 years have expanded our understanding of the biological role of PTEN,

showing that in addition to its ability to regulate proliferation and cell survival, it also plays

an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and

tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activ-

ity through various molecular mechanisms can generate a continuum of functional PTEN

levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can

indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aber-

rant protein localization, and post-translational modifications. This review will discuss our

current understanding of the biological role of PTEN, how PTEN expression and activity

are regulated, and the consequences of PTEN dysregulation in human malignant tumors.

Keywords: PTEN, cancer, subcellular localization, PHTS, PI3K

WHAT IS PTEN?

PTEN stands for Phosphatase and TENsin homolog deleted on

chromosome 10 and is a classical tumor suppressor gene located in

the 10q23 region of chromosome 10 encoding for a 403-aminoacid

multifunctional protein (predicted MW 47 kDa), which possesses

lipid and protein phosphatase activities. PTEN was identified in

1977 by three independent groups: two groups used a positional-

cloning approach, whereas the third group identified PTEN by a

biochemical approach, which aimed to identify a gene encoding for

a phosphatase with tensin and auxilin homology (1–3). The crystal

structure of PTEN was resolved by Lee et al. in 1999, although two

flexible regions of unknown function had to be deleted for techni-

cal reasons; crystal structure revealed the presence of a phosphatase

domain, a C2 lipid membrane-binding domain, and a class I PDZ

binding motif at the C-terminus, which recognizes target proteins

(4). The PTEN gene is almost ubiquitously expressed in mammals

throughout early embryogenesis (5); although the main protein

subcellular localization is cytoplasmic and/or membrane bound,

nuclear localization has been described and bears important func-

tional consequences (6). In addition, it has been reported that the

recently identified PTEN protein variants, such as PTEN-Long,

can exit, exist, and function outside the cell in a paracrine type

fashion (7).

PTEN acts as a classical tumor suppressor, mainly involved

in the homeostatic maintenance of the phosphatidylinositol 3

kinase (PI3K)/AKT cascade (Figure 1A). PI3K, a lipid kinase acti-

vated by receptor tyrosine kinases, G protein-coupled receptors,

and RAS activation, converts the lipid second messenger phos-

phatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol

3,4,5-trisphosphate (PIP3); PIP3 recruits phosphatidylinositol-

dependent kinase 1 (PDK1) and AKT to the plasma membrane,

where AKT is phosphorylated on Thr308 by PDK1 and on Ser473

by the mammalian target of rapamycin (mTOR) complex 2

(mTORC2) (8, 9). By dephosphorylating PIP3 to PIP2, PTEN

reverses the action of PI3K, thereby hampering all downstream

functions controlled by the AKT/mTOR axis, such as cycle pro-

gression, induction of cell death, transcription, translation, stim-

ulation of angiogenesis, and stem cell self-renewal (10–17). Even

though the biological effects of PTEN are dominated by its ability

to dephosphorylate lipid substrates, PTEN has also been reported

to exhibit protein phosphatase activity, responsible for some of its

biological effects, including inhibition of cell migration and cell-

cycle arrest (18, 19). More recently, a growing list of functionally

relevant, phosphatase-independent activities have been described

(Table 1) (20, 21).

PTEN function is commonly lost in a large proportion of

human cancers through somatic mutations, gene silencing, or

epigenetic mechanisms (Table 2). Tumor-associated mutations

may occur in all PTEN domains, thus implying that each distinct

protein region (and each related PTEN activity) may be patho-

logically relevant to cancer initiation and progression. In addi-

tion, emerging evidence shows that PTEN gene/protein dosage is

quantitatively relevant during tumor development, as partial loss

of PTEN function (haploinsufficiency) is sufficient to promote

growth in some human malignancies. The mechanisms involved

in regulation of PTEN dosage include methylation, micro-RNA

www.frontiersin.org February 2015 | Volume 5 | Article 24 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00024/abstract
http://loop.frontiersin.org/people/55143/overview
http://www.frontiersin.org/people/u/193178
http://www.frontiersin.org/people/u/200694
http://loop.frontiersin.org/people/196853/overview
http://www.frontiersin.org/people/u/175645
mailto: ludovicaciuffreda@hotmail.com
mailto: ludovicaciuffreda@hotmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Milella et al. Broad spectrum of PTEN biological functions

FIGURE 1 | Cytoplasmic and nuclear PTEN functions. PTEN acts in

regulating a wide spectrum of biological functions, at least in part determined

by its subcellular localization. (A) In the cytoplasm PTEN dephosphorylates

PIP3 to PIP2, thereby reversing the action of PI3K and hampering all

downstream functions controlled by the AKT/mTOR axis, such as cycle

progression, induction of cell death, transcription, translation, stimulation of

angiogenesis, and stem cell self-renewal. In addition, through its protein

phosphatase activity directed against FAK and SHC, PTEN modulates complex

pathways affecting cell migration. (B) In the nucleus, PTEN cooperates in

maintaining genomic integrity, repairing DNA double-strand breaks,

controlling homologous recombination, and promoting ubiquitin-dependent

degradation of oncoproteins such as PLK1 and AURK. In addition, PTEN

controls cell-cycle progression by modulating ERK phosphorylation and cyclin

D1 levels and regulates chromatin remodeling by binding to histone H1.

(miR) or pseudogene expression, and protein phosphorylation

(31–33). In this review, we will discuss the cellular functions

controlled by PTEN, the molecular mechanisms of the subtle

regulation of PTEN expression and function, and the role of its

mutational/expression status in cancer.

CELLULAR FUNCTIONS CONTROLLED BY PTEN

PTEN-MEDIATED REGULATION OF METABOLIC PATHWAYS

The PTEN/PI3K pathway may influence key steps in metabolic

pathways during cell proliferation and tumorigenesis. Recent

data from two independently generated transgenic mouse mod-

els, based on two similar PTEN-containing bacterial artificial

chromosomes (BAC), have shown that PTEN is involved in the

control of metabolic pathways through PI3K-dependent and -

independent functions (30, 84). Garcia-Cao et al. demonstrated

that transgenic mice overexpressing PTEN show reduced body

size, due to decreased cell number, increased energy expendi-

ture, and reduced body fat accumulation. Cells derived from these

mice show reduced glucose and glutamine uptake, increased mito-

chondrial oxidative phosphorylation, and resistance to oncogenic

transformation. Ortega Molina et al. showed that mice carry-

ing additional genomic copies of PTEN have increased energy

expenditure and are protected from metabolic pathologies and

cancer. Moreover, a recent human study demonstrates that PTEN

haploinsufficiency is a monogenic cause of profound constitutive

insulin sensitization that is apparently obesogenic. In particular,

the authors demonstrated that patients who are heterozygous car-

riers of PTEN mutations, which cause Cowden syndrome, are at

increased risk of obesity and cancer, but at decreased risk of dia-

betes due to enhanced insulin sensitivity (85). The role of PTEN in

insulin-stimulated glucose uptake is controversial in the literature.

Substantial evidence suggests a role for PTEN in the regulation

of glucose uptake, due to its ability to modulate insulin signal-

ing (86, 87). For example, Nakashima et al. have shown that

PTEN overexpression in adipocytes inhibits insulin-stimulated,

PI3K activation-dependent 2-deoxyglucose uptake, and glucose

transporter type 4 (GLUT4) translocation, a key event in insulin

signaling (88), which ultimately leads to decreased glucose cellu-

lar uptake. Conversely, Mosser et al. suggest that PTEN does not

modulate GLUT4 translocation and metabolic functions of insulin
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Milella et al. Broad spectrum of PTEN biological functions

Table 1 | Selected cell functions controlled by specific PTEN activities/domains and their dependency on regulation of the PI3K pathway.

Functions controlled by PTEN PTEN activity involved PTEN domain involved PI3K/AKT

dependency

References

Cell proliferation Lipid phosphatase Phosph/C2 (PBD?) Yes (4, 17)

Cell survival Lipid phosphatase Phosph/C2 (PBD?) Yes (4, 17)

Cell metabolism Lipid phosphatase Phosph/C2 (PBD?) Yes (4, 17)

Cell motility Lipid and protein phosphatase Phosph/C2 Partiala (4, 17)

Angiogenesis Lipid phosphatase Phosph/C2 (PBD?) Yes (4, 17)

Chromosomal stability Nuclear localization (phosphatase independent) C-Tail (4, 6, 17, 22)

Double-strand DNA breaks repair Nuclear localization (phosphatase independent) C-Tail No (4, 6, 17, 22, 23)

Cell-cycle progression Lipid phosphatase Phosph/C2 (PBD?) Yes (4, 17)

APC/C-CDH1-dependent PLK

and AURK degradation

Nuclear localization (phosphatase independent) Not determined No (6, 24)

Chromatin remodeling Direct interaction with H1 C-Tail No (25)

JNK pathway activation Not determined Not determined No (26)

eIF2α- or MSP58-mediated

transformation

Not determined (phosphatase independent) C-Tail No (4, 17, 27, 28)

SRC activation Protein phosphatase Phosphatase No (17, 29)

Paracrine suppression of AKT

activation

Secretion and lipid phosphatase (PTEN-Long)b/Phosph/C2 (PBD?) Yes (7)

Mitochondrial metabolism and

ATP production

Phosphatase PTENαc/Phosph No (17, 30)

aPTEN effects on cell motility are related to the PI3K-dependent formation/degradation of localized intracellular PIP3 gradients, as well as to the PI3K-independent

dephosphorylation of FAK, SHC, and SRC family members.

bPTEN-Long is a translational variant of PTEN endowed with lipid phosphatase activity and the additional 173 aminoacids at the N-terminus constitute a secretion

sequence that allows the protein to exit, exist, and function outside the cell.

cPTENα is a N-terminally extended form of PTEN that localizes to the mitochondria and regulates mitochondrial metabolism through the induction of cytochrome c

oxidase activity and ATP production.

under normal physiological conditions (89). However, Morani

et al. using genetic manipulations of PTEN expression, have shown

the involvement of PTEN in the regulation of membrane expres-

sion of glucose transporter type 1 (GLUT1), suggesting that PTEN

regulates glucose uptake, at least in transformed cells, such as thy-

roid cancer cells (90). On the other hand, PTEN is involved in

the modulation of gluconeogenesis through inhibition of fork-

head box O (FOXO) 1, peroxisome proliferator activated receptor

(PPAR)γ, and PPARγ-coactivator 1a (84).

PTEN ROLE IN CELL MOTILITY

Among its many functions, PTEN plays an important role in the

regulation of cell motility, particularly, in controlling the direc-

tionality of chemotaxis. Studies conducted in Dictyostelium over

the past years suggest that both PI3K and PTEN activities, and

the resulting formation of localized intracellular PIP3 gradients,

are required during chemotaxis (91–93). In these studies, the

authors show that during chemotaxis PIP3 levels are enriched

at the leading edge of migrating cells, while PTEN relocalizes

at the opposite side of the cell; as a result, when PTEN is lost,

Dictyostelium cells have defects in polarization and chemotaxis

(94, 95). Several in vitro studies have shown that PTEN phos-

phatase activity is required to regulate cellular migration with

some reports indicating the involvement of the C2 domain and

another implicating PTEN’s protein phosphatase activity (96–

99). In particular, it has been shown that PTEN overexpression

is able to inhibit the spreading of glioblastoma cells and the

migration and spreading of fibroblasts. On the other hand, knock-

down of endogenous PTEN expression enhanced cell migration

in fibroblasts possibly through the involvement of focal adhesion

kinase (FAK) (100): PTEN dephosphorylates FAK, a cytoplas-

mic phosphoprotein activated by integrins, thereby inhibiting cell

migration. PTEN may also dephosphorylate SHC, thus inhibiting

downstream pathways, including the mitogen activated protein

kinase (MAPK) pathway, which leads to the modulation of cell

motility (Figure 1A). Recent studies, aimed at understanding the

role of PTEN in cell motility, suggest that both lipid and protein

phosphatase activities contribute to PTEN-mediated regulation

of migration, through interactions with Rac1 and the SRC family

kinase, FYN (101).

PTEN AND ANGIOGENESIS

Recent studies performed in glioblastoma cell lines suggest that

PTEN is potentially important in the control of angiogenesis

within brain tumors. In fact, reconstitution of PTEN expression in

the PTEN−/− U87 MG glioma model caused a dramatic decrease

in tumor growth in vivo and increase in mice survival, without

significantly effecting the proliferation of these cells in vitro. The

observed effect was due to the induction of thrombospondin-

1, a negative regulator of angiogenesis, consequently reducing

recruitment of blood vessels to the tumor (102). In addition,

PTEN loss can also facilitate glioma growth by promoting HIF1
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Milella et al. Broad spectrum of PTEN biological functions

Table 2 | Incidence and prognostic significance of PTEN alterations in PHTS and sporadic human cancers.

Malignancy type Increased risk

in PHTS

Molecular mechanism(s) of

PTEN alteration

Prognostic/therapeutic implications

of PTEN loss

References

Breast cancer Yes (85 vs. 12% LR) Mutations <5%, LOH 40%, methylation

50%, and loss of expression ~40%

Resistance to endocrine and

HER2-targeted therapy

(34–39)

Thyroid cancer Yes (35 vs. 1% LR) Homozygous deletion <10%, methylation

>50%, rearrangement in most papillary

thyroid carcinomas

PTEN loss cooperates with other

genetic alterations and is more frequent

in aggressive cancers (ATC)

(34, 35, 40)

Kidney cancer Yes (34 vs. 1.6% LR) Homozygous deletion or somatic

mutations 1–5% of ccRCC and 6.4%

of chRCC

High PTEN expression correlates with

better DSS and better response to

VEGFR-TKI

(34, 35,

41–43)

Endometrial cancer Yes (28 vs. 2.6% LR) Mutations 15–88% depending on specific

subtype, methylation 18%, and loss of

expression 20%

Favorable or unfavorable prognostic

implications depending on mutation type

and association with obesity and/or other

factors

(34, 35,

44, 45)

Colorectal cancer Yes (9 vs. 5% LR) Up to 18% mutated and up to 19% LOH

depending on tumor type, concomitant

promoter hypermethylation

Inconsistent negative prognostic impact;

lack of response to EGFR-targeted mAbs

(34, 35,

46–49)

Melanoma Yes (6 vs. 2% LR) LOH 30–60%, mutation 10–20%

(metastases), and >50% frequent

promoter methylation in patients with XP

Inconsistent association with prognosis;

subcellular localization important;

decreased response to BRAF-selective

inhibitors

(34, 35,

50–53)

Glioma Dysplastic gangliocytoma

of the cerebellum in LD

LOH >70%, mutation 44% (coincident

with LOH) and miR-26a amplification

Mutations associated with shorter OS (34, 35,

54, 55)

Prostate cancer NR Homozygous deletion and mutation in up

to 20%, miR-22 and miR-106b-25 cluster

overexpression

Early recurrence after surgery,

development of metastases, hormone

refractoriness, and shorter survival

(34, 56–58)

Leukemia/lymphoma NR Deletion 10% of T-ALL and 27% mutation

in T-ALL, aberrant RNA splicing in AML

Shorter survival and resistance to

NOTCH inhibitors in T-ALL

(34, 59–70)

Lung cancer Occasional Mutations 6–9% (predominantly

squamous), promoter methylation 24%,

frequent miR-21 upregulation, and loss of

PTEN 24–44%

Inconsistent association with poor

prognosis, resistance to EGFR-targeted

therapies

(34, 71–75)

Bladder cancer NR LOH 23%, homozygous deletion 6%,

mutation 23% (late stage), and decreased

or absent expression 53%

Significant association with recurrence in

pTa and progression in pT1

(34, 76, 77)

Liver cancer NR Mutation ~5%, deletion or loss of

expression ~50%, and protein expression

downregulated by HBV and HCV viral

proteins

Association with high tumor grade,

advanced stage, high αFP expression;

increased recurrence, shorter OS and

possibly resistance to sorafenib

(34, 78, 79)

Pancreatic cancer NR Hetero or homozygous deletions 15%,

loss of protein expression ~70%

(exocrine); LOH ~50%, altered subcellular

localization (endocrine)

Significantly increased recurrence and

metastases, shorter OS (exocrine);

negative prognostic impact modulated by

PR and mTOR expression (endocrine)

(34, 80–82)

Phaeochromocytoma NR Mutations rare, LOH ~40% More frequent in malignant versus benign

lesions

(34, 83)

PHTS, PTEN hamartoma tumor syndromes; LR, lifetime risk; LOH, loss of heterozygosity; ATC, anaplastic thyroid carcinoma; ccRCC, clear cell renal cell carcinoma;

chRCC, chromophobe renal cell carcinoma; DSS, disease-specific survival; VEGFR-TKI, vascular endothelial growth factor receptor tyrosine kinase inhibitors; EGFR,

epidermal growth factor receptor; mAbs, monoclonal antibodies; XP, xeroderma pigmentosum; LD, Lhermitte–Duclos syndrome; miR, misro-RNA; OS, overall survival;

T-ALL,T-cell acute lymphoblastic leukemia; HBV, hepatitis B virus; HCV, hepatitis C virus; αFP, alpha fetoprotein; PR, progesterone receptor; mTOR, mammalian target

of rapamycin.
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Milella et al. Broad spectrum of PTEN biological functions

expression and activity (103). In both cases, PTEN’s ability to

counteract neo-angiogenesis appears to be related to its lipid

phosphatase activity and to suppression of signaling through

the PI3K/AKT/mTOR axis. Our group and others have indeed

demonstrated that the mTOR/eIF4E axis downstream of PI3K,

plays a crucial role in the regulation of vascular endothelial

growth factor (VEGF) production in breast cancer cells through

increased hypoxia inducible factor 1α (HIF1α) expression and

transcriptional activation. This suggests that the anti-tumor activ-

ity observed after PI3K (and especially mTOR) cascade inhibition

may be due, at least in part, to the anti-angiogenic effects observed

with mTORC1 inhibitors, such as temsirolimus (104). Along these

lines, recent studies from our group have shown that the anti-

angiogenic activity observed with MEK inhibitors in melanoma

models in vitro and in vivo (105) is due, at least in part, to MEK

inhibition-induced upregulation of PTEN expression. Indeed, in

cell lines in which PTEN function is offset by the expression

of a dominant negative PTEN mutant (DN-PTEN), the effects

observed on VEGF production after MEK inhibitor treatment are

partially blocked (106).

ROLE OF PTEN IN THE NUCLEUS

PTEN plays an important tumor suppressor role in the nucleus

(Figure 1B) and the absence of nuclear PTEN is associated with

more aggressive cancers (107–109). Recent findings have shown

that the PTEN protein is present in the nucleus of cell lines and

tissue cells, even if the mechanisms of PTEN nuclear localization

have yet to be fully elucidated (109–112). Given the absence of

a classical nuclear localization signal sequence (NLS) or nuclear

export sequences (NES), numerous molecular mechanisms have

been proposed, including simple diffusion, active shuttling by

the RAN GTPase, or phosphorylation-dependent shuttling and

monoubiquitylation-dependent import (6, 113). Trotman et al.

have demonstrated that PTEN nuclear import is mediated by its

ubiquitination by the E3 ligase, neural precursor cell expressed,

developmentally downregulated-4-1 (NEDD4-1) (114). Recently,

sumoylation has also been reported to mediate PTEN nuclear

retention (115). Within the nucleus, PTEN has been shown to

interact with the centromere specific binding protein C (CENP-C)

to modulate centrosome stability (22). Moreover,PTEN is involved

in DNA-damage responses through upregulation of the transcrip-

tion of Rad51, a key component of the homologous recombination

system, which repairs DNA double-strand breaks (22, 23). In addi-

tion, nuclear PTEN controls cell-cycle progression by decreasing

cyclin D1 levels in the nucleus and regulates cellular senescence

through anaphase promoting complex (APC)-CDH1-mediated

protein degradation (6, 24) (Figure 1B). Several reports suggest

that nuclear PTEN functions may be independent of its cat-

alytic activity and may be regulated by PTEN physical interaction

with nuclear target proteins, such as p53, microspherule protein 1

(MSP58; also known as MCRS1) or HIF1α (27, 116, 117). Recent

evidence also demonstrates that PTEN is involved in transcrip-

tional regulation through the control of chromatin remodeling.

Chen et al. have shown that PTEN physically associates with his-

tone H1, through its C-terminal domain, to maintain a condensed

chromatin structure. Loss of PTEN or its C-terminal portion

promotes chromatin decondensation and gene activation (25).

ALTERNATIVE PTEN VARIANTS

Recent studies have led to the identification of new PTEN variants:

PTEN-Long and PTENα. Hopkins et al. identified an alterna-

tive initiation codon, as compared to the canonical start site on

the PTEN promoter, which predicts the expression of a longer

PTEN variant. PTEN-Long contains a 173-amino acid domain

at its N-terminus followed by the classical 403 amino acids of

PTEN. PTEN-Long is a translational variant of PTEN endowed

with lipid phosphatase activity and the additional amino acids

constitute a secretion sequence that allows the protein to exit,

exist, and function outside the cell (7, 118). Recent studies have

reported that PTEN-Long can be detected in human serum and

plasma and can act as a therapeutic factor involved in tumor regres-

sion (7, 119). Hopkins et al. have demonstrated that the purified

PTEN-Long protein injected in mice is taken up by several tis-

sues and antagonizes AKT signaling inducing an increase in blood

glucose levels. In addition, they found PTEN-Long has tumor-

suppressive function inducing tumor cell death in vitro and in vivo

(7). The molecular mechanisms involved in PTEN-Long regula-

tion have yet to be defined, but the long variant can be coexpressed

with the classical PTEN isoform. PTEN-Long is expressed in nor-

mal tissues such as the breast and brain, whereas its expression

levels are lower in human breast tumors and mouse models of

glioblastoma (7, 20, 118).

Recently, Liang et al. have identified another N-terminally

extended form of PTEN (PTENα) that localizes to the cytoplasm

and the mitochondria and is involved in the regulation of mito-

chondrial metabolism through the induction of cytochrome c

oxidase activity and ATP production. Moreover, PTENα promotes

energy production and interacts with canonical PTEN to increase

PTEN-induced putative kinase 1 (PINK1) protein levels (120).

FINE TUNING OF PTEN ACTIVITY

PTEN dysfunction plays a crucial role in the pathogenesis of hered-

itary and sporadic tumors (34, 121). During tumor development,

mutations, and deletions of PTEN lead to the inactivation of

its enzymatic activity, with consequently increased cell prolifer-

ation and reduced cell death. In addition to genomic inactivation,

many other pathogenic mechanisms involved in the repression of

PTEN gene expression or in the aberrant subcellular compart-

mentalization of the protein are associated with tumorigenesis.

Several different mechanisms are known to fine tune PTEN expres-

sion and function, including transcriptional regulation, post-

transcriptional regulation by non-coding RNAs,post-translational

modifications, and protein–protein interactions.

TRANSCRIPTIONAL REGULATION

PTEN transcription is negatively and positively regulated by dif-

ferent transcription factors. p53 can upregulate PTEN, resulting in

a complex interplay between these two tumor suppressors (122).

EGR1 binds to the PTEN promoter and upregulates PTEN expres-

sion in response to insulin-like growth factor-2 (IGF-2) stimula-

tion or radiation (123, 124). PPARγ can also upregulate PTEN

gene expression (125).

On the contrary,SNAIL,c-Jun,and nuclear factor kappa-B (NF-

kB) have been reported to negatively regulate PTEN transcription

(106, 126, 127). Active NOTCH1 has been reported to act as both
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Milella et al. Broad spectrum of PTEN biological functions

a negative and a positive regulator of PTEN transcription through

interacting with MYC and CBF-1, respectively (128, 129). Our

group and others have shown that c-Jun is involved in the regula-

tion of PTEN expression (106, 130, 131). In particular, our group

has demonstrated that PTEN is a target of a re-wired MEK–ERK–

c-Jun survival pathway, occurring in BRAF-mutant melanoma,

but also in other malignant tumors, as well as in normal fibrob-

lasts. Indeed, upon genetic and/or pharmacologic modulation of

ERK activity, c-Jun and PTEN are counter-regulated with strict

time/dose dependency. Moreover, ERK-independent genetic mod-

ulation of c-Jun expression exerts the same effects on PTEN reg-

ulation and expression of a constitutively active MEK/ERK fusion

protein in non-transformed fibroblasts concomitantly upregulat-

ing c-Jun and downregulating PTEN expression. These data reveal

that ERK-dependent regulation of PTEN expression, occurring at

least in part through c-Jun-mediated transcriptional repression, is

a physiological regulatory mechanism, which takes place in both

normal and cancer cells of different histological origin (106).

POST-TRANSCRIPTIONAL REGULATION

micro-RNA contribute to the regulation of PTEN expression in

many tumors. In fact, it has been demonstrated that the onco-

genic miR-21, one of the most frequently upregulated miRs in

cancer, directly targets and downregulates PTEN in specific can-

cers, including hepatocellular, ovarian, and lung cancer (132, 133).

Recently, it has been shown that miR-25 controls PTEN levels

in human tumors and contributes to experimental tumorigene-

sis (106, 134). As it has been discussed above for the involvement

of c-Jun, miR-25 provides another interesting link between the

MEK/ERK and PI3K/PTEN/AKT/mTOR pathways. Our group has

recently shown that miR-25 expression levels are controlled by

ERK activation status, which in turn regulates PTEN protein levels

in melanoma cells. The MYC oncogene also may downregulate

PTEN through increased expression of miR-19 (135).

In recent years, new findings have lead to hypothesize that both

non-coding and protein-coding genes possess a novel mRNA-

dependent non-coding function that enables them to act as a decoy

to block the effect of specific miR on other RNA in a model termed

the competing endogenous RNA (ceRNA) hypothesis (17, 134).

This appears to be the case for the PTEN pseudogene 1 (PTENP1)

that shares significant sequence identity with PTEN mRNA in

regions that harbor miR target sites. PTENP1 was found to regulate

PTEN expression through sequestration of PTEN-targeting miR,

thereby increasing the half-life of PTEN mRNA and increasing

PTEN protein levels (17, 134).

EPIGENETIC SILENCING

Epigenetic silencing of PTEN expression through aberrant methy-

lation of the gene promoter or of histone modifications has

been observed in many types of cancers (17, 34). Several stud-

ies have shown that silencing of PTEN transcription is often due

to the presence of hypermethylated CpG islands in the PTEN

promoter. Hypermethylation has been observed in colorectal,

endometrial, breast, gastric, prostate, melanoma, and lung cancer

(19, 50, 71, 136, 137). Lu et al. have demonstrated that the zinc-

finger transcription factor sal-like protein 4 (SALL4) represses

PTEN transcription by recruiting an epigenetic repressor complex

(Mi-2/NuRD) (138). Histone deacetylase inhibitors, on the other

hand, are able to increase PTEN transcription in fibroblasts (139).

POST-TRANSLATIONAL MODIFICATIONS

PTEN function is also regulated by post-translational modifi-

cations, including phosphorylation, acetylation, oxidation, and

ubiquitination. PTEN has six phosphorylation sites, which have

been implicated in the modulation of its tumor suppressor

functions, stability, and subcellular compartmentalization (140).

Caseine kinase 2 (CK2) is a protein kinase that phosphorylates

PTEN on Thr366, Ser370, Ser380, Thr382, Thr383, and Ser385.

CK2-mediated phosphorylation stabilizes PTEN, but creates a

closer conformation that decreases interactions with binding part-

ners and reduces its plasma membrane localization (111, 141).

PTEN can be also phosphorylated by LKB1 on Ser385, resulting in

its inactivation (142). Glycogen Synthase Kinase 3β (GSK3β) phos-

phorylates PTEN at Ser362 and Thr366, decreasing its phosphatase

activity (143). PTEN phosphorylation can also be mediated by the

kinases RAK, ROCK, JNK, JNKK, and SRC (141, 143–145).

Another mechanism involved in PTEN regulation is through

the ubiquitin/proteasome pathway. NEDD4-1 is an E3 ubiquitin–

protein ligase involved in promoting PTEN ubiquitin-mediated

degradation (146). Recent evidence has identified WWP2

as an additional E3 ubiquitin ligase, which mediates PTEN

ubiquitination-dependent degradation. Amodio et al. have shown

that in some tumors, such as non-small-cell lung cancer (NSCLC),

PTEN downregulation via ubiquitin-mediated degradation is an

important mechanism leading to loss of PTEN activity (147). Pre-

vious studies have suggested that PTEN functions can be regulated

by acetylation. The acetyltransferase P300/CBP-associated factor

(PCAF) has been demonstrated to acetylate PTEN at Lys125 and

Lys128 sites, which, in turn, negatively regulate PTEN catalytic

activity (148). Catalytic PTEN activity is also controlled by reac-

tive oxygen species (ROS). In particular, recent studies have shown

that ROS regulate PTEN activity by oxidative-stress-induced for-

mation of a disulfide bond between the active site Cys124 and

Cys7 (149).

PROTEIN-PROTEIN INTERACTIONS

Some cellular proteins, including phosphatases, can affect PTEN

functions either directly or indirectly via protein–protein inter-

actions. Such protein–protein interactions may influence PTEN

activity by modifying its conformation, stability, subcellular com-

partmentalization, and lipid membrane binding. For example,

membrane-associated guanylate kinase inverted 2 (MAGI2) bind-

ing to PTEN increases its activity (150). Conversely, DJ1 (also

known as PARK7: Parkinson protein 7) binds PTEN under oxida-

tive conditions, thereby inhibiting its activity. DJ1 expression is

associated with increased AKT activity and poor prognosis in

different tumor types (151, 152). Some proteins that interact

with PTEN are involved in its translocation across the cytoplasm

and subcellular localization (21). Microtubule-associated Ser/Thr

kinase 2 (MAST2) is another PTEN regulator. Terrien et al. have

recently demonstrated that when MAST2 and PTEN form a com-

plex, the phosphorylation of PTEN by MAST2 drastically increases

and destabilization of this interaction promotes neuronal cell sur-

vival, through the alteration of PTEN intracellular trafficking
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(153). Zmajkovicova et al., have demonstrated that interaction

between PTEN, MEK1, and MAGI1 is necessary for PTEN mem-

brane recruitment and PIP3 turnover and AKT signaling (154).

MEK1 and MAGI1 are both essential for complex formation. In

fact, MEK1 binding to MAGI1 promotes both complex formation

and PTEN translocation onto the membrane.

PTEN LOSS IN HUMAN CANCER

Germline mutations of PTEN are the underlying genetic causes of

related disorders clinically referred to as PTEN hamartoma syn-

dromes (PHTS) including: Cowden syndrome, Bannayan–Zonana

syndrome, Lhermitte–Duclos syndrome, Proteus syndrome, and

Proteus-like syndrome. Mutations responsible for these syn-

dromes result in a non-functional or absent protein, which causes

uncontrolled cell growth, leading to tumor (either benign or

malignant) growth (34, 155–157). Cowden syndrome is the best-

described syndrome within PHTS, with approximately 80% of

patients having germline PTEN mutations. Patients with Cowden

syndrome have a high risk for benign and malignant tumors of the

breast (lifetime risk – LR-85%), thyroid (LR 35%), kidney (renal

cell carcinoma – RCC-, LR 33%), and endometrium (LR 28%),

which correspond to sporadic tumor types that commonly exhibit

somatic PTEN inactivation (155, 157, 158) (Table 2). In addition,

increased risk for colorectal cancer (9%) and melanoma (6%), pre-

viously not believed to be part of PHTS, have also been described

(35). In addition to the well-characterized role of PTEN mutations

in PHTS syndromes, new evidence shows that PTEN mutation is

one of the most validated causes of autism spectrum disorders,

intellectual disability, and extreme macrocephaly (159, 160).

The PTEN tumor suppressor is frequently lost, either partially

or fully, from many sporadic tumor types. Somatic inactivation

of PTEN occurs in a wide range of neoplastic diseases, including

melanoma, glioblastoma, colon, and endometrial cancers (161,

162) (Table 2). More than a decade of research has expanded our

knowledge on PTEN’s role in cancer. Experiments performed in

transgenic mice have demonstrated that loss of both copies of

the PTEN gene results in embryonic lethality, whereas PTEN het-

erozygous mutants develop a diverse range of dysplasias in a wide

spectrum of tissues with high incidence of prostate and colon

cancer (163, 164). Interestingly, recent studies highlighted a cru-

cial, dose-dependent role of PTEN in cancer, showing that subtle

reductions in active PTEN levels dictate cancer susceptibility in a

dose-dependent manner (31, 165). However, PTEN loss alone is

sufficient to cause tumorigenesis in some tissues but not in oth-

ers, making the role of PTEN more ambiguous (34). Accordingly,

these data strongly support the hypothesis that PTEN is haploin-

sufficient tumor suppressor and, although PTEN deletion alone

has minimal effects, it frequently contributes to tumorigenesis in

the context of other genetic alterations (31, 166, 167).

PTEN ROLE IN THE REGULATION OF STEM CELL BIOLOGY

Recent data have begun to shed light on the critical role of PTEN in

stem cell maintenance and cancer-initiating cell biology (11, 168).

The effects of PTEN loss in stem cells may be tissue-dependent.

PTEN deletion in neuronal stem cells increases proliferation and

maintains their self-renewing capacity. Similarly, PTEN loss causes

increased proliferation, de-differentiation, and progression toward

prostatic intraepithelial neoplasia in prostate stem cells (30, 59,

168, 169). On the contrary, in both melanocytes and hematopoi-

etic cells, deletion of PTEN leads to normal stem cell exhaustion

(170, 171). PTEN loss has been shown to enhance the number

of tumor initiating cells in a mouse model of leukemia and in

solid tumors, such as breast cancer (172, 173). The role of PTEN

expression and function in the maintenance of lung and colorectal

cancer stem cells (CSC) has not been extensively studied. How-

ever, it is worthy to note that PTEN expression is usually very

low in both lung and colon CSC. Moreover, in colon CSC, PTEN

expression is also strikingly upregulated during differentiation

and by stimuli that inhibit CSC growth and tumorigenic activ-

ity, such as such as BMP4 treatment or thymosin β4 targeting

(11, 174, 175).

PTEN IN MELANOMA

Loss of PTEN plays an important role in the development of 30–

60% of melanomas, however, the mechanisms by which loss of this

gene leads to tumor formation remain uncertain. Recent evidence

has shown that decreased PTEN transcript levels were associated

with PTEN promoter methylation in melanoma (34, 50). Wang

et al. showed that more than 50% of the melanomas from patients

with xeroderma pigmentosum display PTEN mutations, typically

related to ultraviolet radiation exposure, highlighting the link

between DNA-damage and PTEN mutations in this disease (51).

Dankort et al. have demonstrated the ability of PTEN silencing to

cooperate with BRAFV600E mutations in the genesis of metastatic

melanoma (52). Several research groups have recently demon-

strated that MEK blockade may induce compensatory signaling

through PI3K pathway in melanoma, inducing its own resistance

factors and explaining the highly variable clinical responses to

MEK inhibition in different cellular contexts (106, 131, 176–178).

Without a doubt, PTEN status is critical in determining the func-

tional outcome of pharmacologic MEK inhibition in melanoma

and in cellular contexts in which PTEN is genetically unaltered,

MEK blockade induces a cross-talk mechanism that leads to PTEN

protein induction, playing an important, albeit not exclusive, role

in the anti-tumor and anti-angiogenic activities of MEK inhibitors

(106). Consistently, PTEN loss impairs the anti-tumor activity of

MEK inhibitors in preclinical models (106, 179, 180) and correlates

with decreased efficacy of BRAF-targeted treatments in metastatic

melanoma patients (53).

PTEN IN PANCREATIC CANCER

Mouse genetic studies, supported a potential role for PTEN as

a haploinsufficient tumor suppressor. Indeed, homozygous dele-

tion of PTEN in the pancreas leads to metaplasia that may progress

toward frank carcinoma in approximately 20% of cases in trans-

genic mice. Decreased PTEN expression has been demonstrated

in pancreatic tumor cell lines, although deletion or mutations that

cause PTEN loss of activity have not been detected with significant

frequency in human pancreatic ductal adenocarcinoma (PDAC)

(80). In particular, Perren and collaborators have shown that,

although PTEN is not mutated in pancreatic cancers, its subcellular

localization may decrease its function (81). Ying et al. have recently

documented a strong cooperative interaction between KRASG12D

and PTEN loss in promoting metastatic PDAC (82).
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PTEN IN COLORECTAL CANCER

PTEN mutations are relatively prevalent in colorectal cancer and

constitute potential markers of response to EGFR and MAPK

inhibitor-based therapies. In fact, PTEN loss or inactivating muta-

tions are found in a variable proportion (5–30%) of sporadic

colorectal cancers (46, 47, 181). Interestingly, studies performed

in in vivo model systems show that PTEN reactivation in a col-

orectal cancer (CRC) cell line exhibiting PTEN loss reduces its

metastatic capability without affecting primary tumor formation.

Moreover, PTEN reactivation also changed the organotropic hom-

ing from liver and lung metastasis to liver-only metastasis (182).

Importantly, Razis et al. have shown that PTEN levels are predic-

tive of cetuximab efficacy in CRC models with activated EGFR

signaling and wild type KRAS/BRAF status and in the presence of

an intact PI3K/AKT pathway (48).

PTEN IN LUNG CANCER

PTEN mutations occur at a low frequency in NSCLC and in small-

cell lung cancer (SCLC), with the notable exception of squamous

cell carcinoma of the lung, in which PTEN is mutated in 6–9%

of the cases and significantly altered in up to 15% of cases, tak-

ing into account loss of expression as well (72). However, when

detected, PTEN mutations appear to exert an effect on the ther-

apeutic response to EGFR/PI3K pathway inhibitors (73). Since

loss of PTEN protein expression is found in 24–44% of NSCLC

(74), other mechanisms to decrease PTEN expression and function

could be relevant in lung cancer. For example, epigenetic silencing

may partially explain PTEN loss in cases when PTEN mutations

or homozygous deletions are absent (71, 75). Soria et al. have

suggested that 24% of early NSCLC samples lack PTEN expres-

sion, which correlated with PTEN promoter methylation (71).

In addition, Zhang et al. have shown that levels of miR-21 were

upregulated in lung cancer compared with normal lung tissue and

correlate with a reduction in PTEN mRNA levels in advanced

tumor stage (133).

PTEN IN BREAST CANCER

Germline PTEN mutation in Cowden syndrome has a predisposi-

tion to breast cancer, where female CS patients have up to 85% LR

of developing breast cancer (155, 157, 158). In sporadic breast car-

cinomas, the frequency of PTEN loss is 30–40% (36). Epigenetic

aberrations also may cause a decrease in PTEN levels, strongly cor-

relating with tumor stage and grade with complete loss occurring

more frequently in metastatic than in primary tumors (76, 163,

167, 183). In addition, PTEN mutations may overlap with other

mutations including human epidermal growth factor receptor 2

(HER2) and loss of a single PTEN allele has been shown to accel-

erate tumorigenesis in HER2-overexpressing breast tumors (184).

Early studies by Nagata et al. show that, in addition to antagonizing

HER2-driven tumorigenesis, PTEN also sensitizes breast cancer

to trastuzumab treatment (37). In fact, PTEN loss and PTEN-

independent activation of the PI3K pathway were identified as a

major determinant of trastuzumab resistance in preclinical models

and clinical samples as well (37–39, 185).

PTEN IN LEUKEMIA

Although mutations of the PTEN gene appear to be generally

rare in hematological tumors (59), its functional inactivation is

frequently observed in several hematopoietic neoplasms (60–62,

186). Experiments conducted in mice with inducible PTEN dele-

tions have demonstrated that loss of PTEN drives proliferation

of leukemia-initiating cells and promotes leukemogenesis. PI3K

pathway blockade prevents leukemogenesis and restores the nor-

mal self-renewing capacity of hematopoietic stem cells (63, 64).

Cheong et al. have shown that reduction of PTEN phosphoryla-

tion, associated with its inactivity, is observed in approximately

75% of acute myeloid leukemia (AML) patients (65). Another

study has shown that aberrant PTEN transcripts are present in 24%

of AML patients, 80% of cell lines, and 13% of normal controls

analyzed (66). In chronic myeloid leukemia (CML), the BCR–ABL

fusion protein mediates the exclusion of PTEN from the nucleus.

Such effect is reversed upon inactivation of BCR–ABL by imatinib

treatment, which restores PTEN physiological localization local-

ization (67). Recently, it has been shown that PTEN loss accelerates

T-cell acute lymphoblastic leukemia (T-ALL) onset, producing

multiclonal tumors (68, 69). NOTCH1 receptor may inhibit PTEN

expression through the HES-1 transcription factor and this may in

turn lead to AKT activation and resistance to glucocorticoids (70).

Indeed, T-ALL with PTEN loss are resistant to NOTCH1 inhibitors

while they are sensitive to AKT inhibitors (68).

DISCUSSION AND CONCLUSION

PTEN is an extremely powerful and multifaceted tumor suppres-

sor functionally involved in many different “hallmarks” of cancer.

The main mechanism by which PTEN activity restrains cancer

development and progression remains its ability to downmodulate

signaling through the PI3K pathway, thereby indirectly inhibiting

AKT downstream targets, such as GSK3, FOXO, B cell lymphoma 2

(BCL-2) antagonist of cell death (BAD), the E3 ubiquitin–protein

ligase MDM2 and p27, which control survival, cell proliferation,

angiogenesis, and cellular metabolism (187). On the other hand,

the mTORC1 arm of the PI3K/AKT/mTOR pathway is also acti-

vated in response to the loss of PTEN inhibitory activity, resulting

in the phosphorylation of p70 ribosomal protein S6 kinase (S6K;

also known as RPS6K) and inhibition of 4E-binding protein 1

(4EBP1; also known as eIF4EBP1) to activate protein translation

(188, 189) leading to the enhanced translation of specific mRNAs

that are crucial for cell growth and proliferation. Recently, 4EBP1

has indeed emerged as a key negative regulator of cell prolifera-

tion downstream of mTORC1, and its inactivation may directly

promote the growth of sporadic cancers (190, 191).

As discussed above, novel tumor-suppressive functions of

PTEN, independent of its lipid phosphatase activity and abil-

ity to keep the PI3K/AKT/mTOR pathway at bay, have recently

emerged. Among these, functions related to PTEN nuclear local-

ization appear to be particularly interesting (Figure 1B). Indeed,

PTEN cooperates in maintaining genomic integrity, repairing

DNA double-strand breaks, controlling homologous recombina-

tion, and promoting ubiquitin-dependent degradation of onco-

proteins such as polo-like kinase 1 (PLK1) and Aurora kinases

(AURK). This is particularly important, as loss of these PTEN

activities may actually crucially sensitize tumor cells to the cyto-

toxic action of inhibitors of the DNA repair enzyme poly (ADP-

ribose) polymerase (PARP) and have important implications in

tumor cell sensitivity to PLK and AURK inhibitors (24, 192–194).
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Similarly, the phosphatase-independent role played by PTEN in

controlling non-canonical signaling pathways, such as the JNK

pathway (26), the eukaryotic translation initiation factor 2α kinase

2 (eIF2αK2; also known as PKR) – eIF2α phosphorylation cas-

cade (28) or MSP58-mediated cellular transformation (27), and its

ability to dephosphorylate protein substrates, such as FAK (195),

cAMP responsive-element-binding protein (CREB) (196), and the

non-receptor Tyr kinase SRC (29), may have important implica-

tions for the development of rational pharmacological combina-

tions simultaneously targeting the PI3K/AKT and other relevant

pathways.

Along these lines, another interesting indication toward the

possible therapeutic exploitation of PTEN loss in human can-

cer is the observation that PTEN critically lies at the intersec-

tion of two major survival/proliferation pathways, the canonical

PI3K/AKT/mTOR pathway (of which PTEN is an integral part),

and the RAS/MEK/ERK pathway (11). Our group has recently

shown that MEK inhibition restores PTEN expression in tumor

cells with an intact PTEN gene by inhibiting a re-wired MEK–

ERK–c-Jun/miR-25 survival pathway. Under these conditions,

combined MEK/mTOR blockade may exert frank antagonistic

effects in terms of inhibition of VEGF production and tumor cell

growth (106). Conversely, loss of PTEN activity marks a func-

tional state of relative resistance to the growth-inhibitory and

anti-angiogenic activity of MEK inhibitors (53, 106, 179, 180),

raising the interesting hypothesis that combined pharmacologi-

cal inhibition of the MEK/ERK and PI3K/AKT/mTOR may result

in highly synergistic anti-tumor activity selectively in PTEN-null

tumors (11, 106, 197).

Synthetic lethality-based and rational combinatorial strategies

highlighted above are two of the possible approaches to address

the problem that usually happens with loss-of-function “onco-

genic drivers,” restoring the oncosuppressive activity of a missing

PTEN gene/protein by pharmacological means may be difficult.

However, given the importance of non-genomic mechanisms reg-

ulating PTEN expression in those cases where the PTEN gene is

conserved, epigenetic therapy through pharmacological modula-

tion of histone acetylation status or promoter methylation, as well

as inhibition of signaling pathways that are known to regulate

PTEN expression, are particularly attractive, alone or in combina-

tion with inhibitors of other signaling pathways, whose activation

is known to cooperate with PTEN loss in driving the different

aspects of the neoplastic phenotype (198).

Finally, identification of clinical situations in which loss of

PTEN activity is a major driving force, and hence PTEN-based

therapeutics may be exquisitely effective, is cumbersome. The

exceptionally complex regulation of PTEN activity calls for a more

comprehensive assessment of PTEN status in human tumors.

This should encompass sequencing the entire PTEN gene, tran-

scriptional, and protein expression analysis, as well as assess-

ment of post-translational modifications and subcellular local-

ization. An alternative possibility could be to develop functional

(genomic, transcriptional, or proteomic) “signatures” of loss of

PTEN function. Although, such approach would require extensive

validation to identify reliable surrogate(s) for PTEN loss, prelim-

inary evidence suggests that “signatures” of PTEN loss may be

developed and may identify patients/tissues with loss of PTEN

function more efficiently than immunohistochemistry for the

PTEN protein (26, 76).

Loss of the many PTEN activities remains a crucial event in the

development and progression of a vast and ever increasing pro-

portion of human cancers. Even though little progress has been

made so far in developing agents to therapeutically enhance the

tumor-suppressive functions of PTEN, there is little doubt that

with the current rapid expansion of knowledge on PTEN func-

tions and regulation, its exploitation for therapeutic purposes will

soon become a reality for many cancer patients.
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