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PTESFinder: a computational method to
identify post-transcriptional exon shuffling
(PTES) events
Osagie G. Izuogu1* , Abd A. Alhasan1, Hani M. Alafghani2, Mauro Santibanez-Koref1, David J. Elliot1 and

Michael S. Jackson1

Abstract

Background: Transcripts, which have been subject to Post-transcriptional exon shuffling (PTES), have an exon order

inconsistent with the underlying genomic sequence. These have been identified in a wide variety of tissues and cell

types from many eukaryotes, and are now known to be mostly circular, cytoplasmic, and non-coding. Although

there is no uniformly ascribed function, several have been shown to be involved in gene regulation. Accurate

identification of these transcripts can, however, be difficult due to artefacts from a wide variety of sources.

Results: Here, we present a computational method, PTESFinder, to identify these transcripts from high throughput

RNAseq data. Uniquely, it systematically excludes potential artefacts emanating from pseudogenes, segmental

duplications, and template switching, and outputs both PTES and canonical exon junction counts to facilitate

comparative analyses. In comparison with four existing methods, PTESFinder achieves highest specificity and

comparable sensitivity at a variety of read depths. PTESFinder also identifies between 13 % and 41.6 % more

structures, compared to publicly available methods recently used to identify human circular RNAs.

Conclusions: With high sensitivity and specificity, user-adjustable filters that target known sources of false positives,

and tailored output to facilitate comparison of transcript levels, PTESFinder will facilitate the discovery and analysis

of these poorly understood transcripts.

Keywords: RNAseq, circRNA, PTES, Splicing, mRNA processing, Software

Background
Recently, there has been an increased interest in a novel

class of transcripts where the exon order differs from that

found in the genome [1–4]. Once considered cloning arte-

facts [5] or products of aberrant splicing [6], it is now

established that the majority of these molecules represent

circular RNA species (circRNAs) [2–4, 7], although some

linear transcripts have been reported [1, 8, 9]. Thousands

of these novel transcripts have now been identified in a

variety of eukaryotic cells [3, 10], many are conserved

across species [2, 11], suggesting functional relevance, and

two (from CDR1 and SRY) have been shown to harbour

numerous miRNA binding sites and act as miRNA

sponges to modulate gene expression [4, 12]. Recent re-

ports also implicate circRNAs in synaptic development

[11] and some have expression patterns that correlate with

diseases [13–15] and may act as biomarkers for ageing

[16]. Despite these reports, the function of the vast major-

ity of these transcripts has not been established.

The defining feature of these transcripts at the se-

quence level is the presence of a splice junction with

exons in an order inconsistent with their position in

the genome. As this feature alone does not enable in-

ference of structure or mechanistic origins, we use

the term Post-Transcriptional Exon Shuffled (PTES)

transcripts to collectively describe this population of

RNA molecules [1]. Recent reports have shown that

the vast majority of these transcripts emanate from

known genes [2, 17, 18], utilise known splice junc-

tions, and that their biogenesis competes with splicing
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of canonical transcripts [19]. Transcripts arising from

PTES specifically exclude chimeric RNAs without

known splice junctions, and a class of circular RNAs

comprised of spliced introns, ciRNAs [7, 20].

Many computational methods for identifying chimeric

RNA molecules from high-throughput RNA sequence

data have been described. The majority of these are de-

signed to detect heterotypic trans-splicing and fused

genes, so are not suitable for PTES detection [21–27], or

require post processing steps to analyse reads supporting

different types of splicing events [28, 29]. Recently, how-

ever, a number of programs for PTES discovery have been

described and used primarily for circRNA characterisation

[2–4, 16, 17, 30–32]. Most analyse reads which fail to fully

align to a reference sequence, and split these into two or

more segments which are then independently aligned to

define rearrangements. Some make use of gene annotation

to guide discovery [3, 32], while others adopt an unbiased

genome-wide approach to capture structures which do

not utilise known splice junctions or are non-genic [4, 16,

17, 30, 31]. In addition, the occurrence of PTES can be in-

ferred when two paired end reads map to the transcrip-

tome in a configuration that is not consistent with a linear

transcript [3, 16, 30, 32].

The identification of PTES exon junctions within

RNAseq data is, however, confounded by known arte-

facts. False positives can arise from template switching

during cDNA synthesis [1, 5, 9, 33, 34], from genes with

duplicated exons [35], from transcription read-through

between genes in close proximity due to weak termin-

ation signals [36, 37], and from closely related genes

within duplicons or tandem arrays [4]. Although experi-

mental enrichment has been combined with informatic

approaches to define bona-fide circRNAs [2–4], many

classes of false positive structures are not directly ex-

cluded by existing identification methods. For example,

reads defining 7 of the 20 most abundant human cir-

cRNAs reported by Memczak et al. [14] map with high

sequence identity to the reference sequence and include

4 which are indistinguishable from linear RefSeq entries

(Fig. 1). Furthermore, a recent experimental analysis of

previously identified PTES trancripts concluded that

many are template switching artefacts [38], and template

switching predominantly leads to rearragements where

the breaks do not occur at splice junctions [5].

Here we present a method, PTESFinder, that identifies

putative PTES structures by mapping RNAseq reads to

sequence models generated using existing transcript an-

notation. It then applies a series of mapping and align-

ment filters to systematically remove known classes of

false positives. It does not make use of paired end (PE)

mapping information as the lack of intervening sequence

precludes such filtering and may affect specificity. We

first describe the implementation of this method, and
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Fig. 1 Examples of Intragenic False Positives. Schematic diagrams showing inferred structure and key sequence relationships for 4 of the 20 most

abundant circRNAs reported in [3]. In each case, the inferred structure shares 100 % identity to a linear transcript spanning the defining exon-exon junction.

Within the top 20, hsa_circ_002174, 002165 and 002164 show similar patterns of identity to multiple genomic locations. Blue – Inferred Donor Exon,

Red – Inferred Acceptor Exon, Black – upstream or downstream RefSeq exon sharing 100 % identity to donor or acceptor exon at junction. Approximate

chromosomal locations (HG19) are shown
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then investigate the effects of different filtering criteria.

The program requires certain user adjustable parame-

ters; we therefore also explore systematically the choice

of these parameters. Finally, through analysis of real and

simulated data, we compare PTESFinder to other pub-

licly available methods [4, 16, 30, 31] which have been

used to identify circRNA transcripts in both cell lines

and tissues.

Implementation
Pipeline for PTES discovery

PTESFinder requires as input files: RNAseq data in

FASTQ format [39], genomic reference in FASTA for-

mat, and an annotated transcriptome reference in BED

format [40]. The pipeline is split into three phases

(Fig. 2): A discovery phase to identify putative PTES

structures within RNAseq data and define PTES tran-

script models, an evaluation phase to assess these PTES

models, and a filtering phase to exclude potential false

positives.

Discovery phase

Short sequences from both ends of each FASTQ read

(anchors, default length: 20 bp) are aligned to the tran-

scriptome reference using Bowtie [41] with tolerance for

a single mismatch. Pairs of anchors from the same read

that map to the same gene and in the same orientation,

but which map in inverted order with respect to their

order in the sequencing read, are then identified. This

excludes reads emanating from fused genes and sense-

antisense template switching artefacts. Retained anchor

pairs are then used to determine the exon junctions

which define putative PTES events and create sequence

models (constructs) of the inferred products. These con-

structs are generated by concatenating the last 65 bp of

the 5′ exon and the first 65 bp of the 3′ exon. The seg-

ment size of 65 is used by default, with the full exon se-

quence used if an exon is smaller than 65 bp. This

parameter is adjustable to accommodate various RNA-

seq read lengths, and we recommend that it be at least

10 bp shorter than the read length to ensure that only

reads mapping across PTES defining junctions are

Fig. 2 Overview of PTES Discovery Pipeline. The workflow includes three major phases: Discovery phase, Evaluation phase and Filtering phase.

Putative PTES structures discovered using 20 bp anchor reads are evaluated by aligning full FASTQ reads to the models. The filtering phase

includes stringent criteria designed to systematically exclude all known classes of false positive structures
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processed in subsequent filtering steps (although as de-

scribed below these filters would eliminate such reads).

Evaluation phase

All the original reads are then re-mapped to PTES con-

structs generated in the discovery phase. This serves two

purposes. First, as RNAseq reads can be short, this en-

ables reads with putative PTES exon junctions close to

their termini to be accurately mapped. Second, it enables

read mapping scores obtained using the PTES constructs

to be directly compared to scores obtained from gen-

omic and transcriptomic alignments for filtering pur-

poses (see below). Optionally, evaluation can also be

‘guided’ by supplying constructs of previously discovered

PTES structures, effectively bypassing the discovery

phase.

Filtering phase

To eliminate potential false positives originating from

the genome under investigation, all the original reads

are mapped to both genomic and transcriptomic ref-

erences. The number of edits required for alignment

(NM field in SAM format [42]), and the number of

perfectly aligned base pairs, are used to remove reads

which align as well or better to either of these refer-

ence sequences than to the PTES constructs. To re-

duce template switching artefacts, which have

heterogeneous junction points within short regions of

often imperfect sequence homology [5], reads which

do not align perfectly to the exon junctions which de-

fine PTES are also removed using junctional filters.

First, a user adjustable minimum junction span

(JSpan) parameter is applied to ensure that there are

no mismatches or indels within ‘n’ nucleotides either

side of the junction position, where n is an even inte-

ger. Second, to eliminate reads with regions of low

quality alignment, a user adjustable segment percent

identity (PID) parameter is also applied independently

to the segments on either side of the PTES junction,

such that for a read to be retained both must meet

or exceed the specified PID when aligned to the

PTES construct. These user adjustable filters rely on

alignment summaries provided by the NM field, MD

field and Cigar in the SAM files [42]. The output in-

cludes the coordinates of the exon end involved in

the junctions, a descriptor of the PTES (see Add-

itional file 1 for details) and the number of reads sup-

porting the structure. This is presented in BED

format [40]. A second file contains additional infor-

mation, read counts of all canonical exon junctions

from transcripts where a PTES structure has been

identified, to facilitate comparison with PTES counts.

Assessment of pipeline and comparisons to other

methods

RNAseq data from Jeck et al. [2] were analysed at

various combinations of JSpan and PID (JSpan range:

4–14; PID range: 60–100 %). All analyses were per-

formed with and without genomic and transcrip-

tomic filters applied to enable reads discarded by

each filtering criterion to be identified. The numbers

of PTES structures identified and supporting reads

were also recorded. To assess sensitivity and specifi-

city, simulated datasets were generated using all

published PTES structures within circbase.org [43].

For each dataset, 5000 PTES junctions were ran-

domly selected along with 5000 canonical junctions,

and constructs were generated for each junction by

concatenating the full sequence of both exons in-

volved in each case. 100 bp simulated reads with

random start positions within each construct were

then generated. Scripts published by Memczak et al.

[14] (default parameter values), CIRI v. 1.2 [30] (de-

fault parameter values), circRNA_finder [16] (default

parameter values), and MapSplice v. 2.1.5 [31] used

in [2] (parameters: −-fusion –non-canonical -p16),

were compared to PTESFinder by analysing leuko-

cytes cell line RNAseq data (described in [3, 4]), fi-

broblasts RNAseq data (described in [2]), and

simulated data. For each simulation, transcripts cor-

rectly identified by each method were determined by

comparing genomic coordinates of identified tran-

scripts with the genomic coordinates of transcripts

expected to be recovered from within each dataset.

The numbers of correctly identified PTES transcripts

(true positives – TP), incorrectly identified PTES

transcripts (false positives – FP), PTES transcripts

incorrectly excluded (false negatives – FN), and ca-

nonical junctions correctly excluded (true negatives

– TN), were used to estimate sensitivity: TP / (TP +

FN), specificity: TN / (TN + FP), and false discovery

rate (FDR): FP / (TP + FP).

Results and discussion
PTESFinder uses established RNAseq tools (Bowtie

[41], Bowtie2 [44] and Bedtools [45]) to identify puta-

tive PTES structures, and then systematically excludes

known classes of false positive structures by applying

genomic, transcriptomic and junctional (JSpan & PID)

filters (see methods). As an initial assessment of

PTESFinder function, RNAseq data from human

fibroblast total RNA which has previously been mined

for circRNAs (sample SRR44975A in [2]), were ana-

lysed both with and without the application of the

genomic and transcriptomic alignment filters. Reads

recovered during analysis, together with alignment
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edit distances of reads identified by each filter applied

seperately, are shown in Fig. 3a.

Filters target overlapping populations of reads but none

is redundant

From a total of over 200 million reads analysed, approxi-

mately 0.17 % (359837) have shuffled coordinates with

respect to exon position (Fig. 3c and Additional file 2:

Table S1). However, of these only 44620 (~12.5 %) map

to PTES sequence constructs generated during the dis-

covery phase, indicating that most of the reads with

rearranged anchor pairs do not map to single genes and/

or known exon junctions. Approximately 85 % (37854)

of the reads which map to PTES constructs are subse-

quently removed by the genomic, transcriptomic and

junctional (JSpan and PID) filters, with the majority be-

ing identified by more than one filter. For instance, over

98 % of reads excluded by the genomic filter are also ex-

cluded by the transcriptomic filter, and 60 % (22692) of

all filtered reads are identified by all three. Most of these

have high edit distances (>10) indicative of low quality

alignment. Despite this, the genomic, transcriptomic and

junctional filters (at lowest stringency) uniquely exclude

~0.25 % (110), ~3.2 %% (1421) and 15.8 % (7036) of

reads mapping to PTES models respectively (Fig. 3a), in-

dicating that none is wholly redundant.

The subset of reads identified specifically by the

junctional and transcriptomic filters are defined by

low edit distances of between 1 and 10 (Fig. 3a), al-

though a small number of reads excluded by the tran-

scriptome filter (228) map perfectly to putative PTES

constructs with NM = 0 (inset). Fig. 3a also reveals a

bimodal distribution of mapping qualities for reads

excluded by all three filters with peaks at NM = 16

and NM = 24. Upon manual analysis, most of the ex-

cluded reads with NM = 16 were found to support a

false positive structure from 5.8 s rRNA

(NR_003285.1.1). Comparable rRNA derived struc-

tures have been identified previously and filtered

manually [4]. In Fig. 3b, reads supporting this

Fig. 3 Summary of Reads Excluded by Filters. a Edit distance distribution of reads filtered out by genomic, transcriptomic and junctional (JSpan/

PID) filters. Inset: Seven structures are supported by 228 reads with 100 % alignment but are excluded by the transcriptomic filter. b 30 % of

reads filtered out support a false positive structure from 5.8 s rRNA and are excluded in this plot. c Venn diagram showing number of reads

excluded by filters. Majority of false positive reads are excluded by all three filters. Each filter also excludes a distinct population of false

positive reads
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structure have been removed to show the underlying

distribution of mapping quality scores.

Reads excluded by specific filters have different origins

To investigate the activity of specific filters further, the

mapping co-ordinates of reads removed by the genomic

filter were first compared to the co-ordinates of anno-

tated pseudogenes and segmental duplications. This

established that ~74 % of reads excluded by the genomic

filter had superior alignments to segmental duplications,

and ~12 % had superior alignments to pseudogenes. The

417 reads identified by the genomic filter but not by the

transcriptomic filter were also found to be enriched for

reads derived from segmental duplications and pseudo-

genes (e.g. Additional file 3: Figure S1A).

We next used BLAT [46] to manually investigate the

228 reads excluded specifically by the transcriptome fil-

ter which mapped perfectly to putative PTES constructs

(NM = 0, Fig. 3b). These support 7 putative PTES struc-

tures from 4 genes (Inset, Fig. 3a). However, BLAT ana-

lysis established that they all also mapped contiguously

with ~100 % identity to the transcriptome due to high

sequence identity between neighbouring exons. For ex-

ample, 126 reads which support a putative single exon

PTES structure (exon 10 of HNRNPH1 circularized)

map with ~100 % identity to exons 10 and 11 of the ca-

nonical HNRNPH1 transcript (Additional file 3: Figure

S1B) due to high sequence identity between these neigh-

bouring exons. As a result, these reads cannot be taken

as supporting evidence for PTES. It is noteworthy that

such structures will pass any qualitative filter criterion

requiring only unambiguous mapping to PTES con-

structs, illustrating the value of the transcriptome filter.

Finally, manual analysis of a subset of the 7036 reads

identified only by the junctional filters established that

these support structures with distinct patterns of sub-

optimal mapping, such as low alignment quality specific

to only one of the two exons in the structure (e.g. Add-

itional file 3: Figure S1C top 2 panels), and low sequence

identity specifically at the junction (e.g. Additional file 3:

Figure S1C lower 2 panels), the latter being consistent

with the expected pattern of alignment for template

switching artefacts [5].

As one further assessment of the filters, we analysed

RNAseq data derived from fibroblast RNA which had

been pre-digested with RNase R. This selectively

removes linear RNAs, and enriches for circRNAs [7, 47],

and has been shown to significanty increase the recovery

of PTES reads. However, we would anticipate that this

would also selectively remove false positives derived

from pseudogenes and segmental duplications which

mimic PTES structures, without necessarily reducing re-

verse transcription artefacts such as template switching.

Only ~12 % of reads from the RNAseR digested sample

which map to PTES sequence constructs are identified

by the genomic and transcriptomic filters (Additional

file 2: Table S1), compared to 69 % in the undigested

sample. Furthermore, only 17 % of these map to seg-

mental duplications, compared to 74 % in the undigested

sample. In contrast, the proportion of reads excluded by

the junctional filters is considerably higher after RNAseR

digestion, consistent with expectation.

PID Has greater impact than JSpan

To investigate the impact of varying the user defined

JSpan and PID parameters which comprise the junctional

filter, the same data was re-analysed using 54 different

combinations of these parameters, both with and without

the genomic and transcriptome filters applied (Fig. 3c).

This established that varying the PID has a greater impact

than varying the JSpan, with 5691 reads filtered with

maximal PID (100 %) and lowest JSpan (4) compared

to only 1235 reads filtered with the maximal JSpan

(14) at lowest PID (60 %). Furthermore, varying the

PID between 60 % and 75 % has little impact at any

JSpan value, but above 75 % there is a linear relation-

ship with the number of reads filtered. As the default

junctional filter parameters failed to identify some

reads excluded by the other filters (110 and 1421,

Fig. 4a), this analysis was repeated using only these

reads to establish the JSpan and PID parameters re-

quired to identify them. Over 99 % of these reads are

excluded with the most stringent junctional filter pa-

rameters (Fig. 4b). Furthermore, the vast majority are

filtered with a PID of 85 %, suggesting this is a lo-

gical setting for this parameter. The JSpan setting

only has a major impact at low PIDs (60–75 %).

Specificity, sensitivity and comparison with other

methods

To assess the sensitivity and specificity of the pipeline

and compare it to other methods, simulated reads were

generated from previously identified PTES and associ-

ated canonical transcripts, and analysed at various read

depths of coverage using default parameters. In addition

to assessing PTESFinder for de novo PTES discovery, the

use of constructs of previously reported structures for

guided discovery was also assessed (see methods), as

were four publicly available methods which have previ-

ously been employed to identify circRNA transcripts:

MapSplice v 2.1.5 [31] used in [2], CIRI v. 1.2 [30],

circRNA_finder [16] and the method used by Memczak

et al. [4].

Results from 100 simulated datasets are presented in

Fig. 5a-c, and illustrate that sensitivity varies consider-

ably with coverage, and between methods. At read

coverage of 2, the sensitivity of PTESFinder is below 0.6.

This can be attributed to PTES junctions occurring
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within the terminal 20 bp of reads, as the low tolerance

for mismatches during anchor mapping will result in

their elimination. However, sensitivity reaches >90 % at

coverage of 10 or higher for both guided and unguided

analyses, with guided PTESFinder being equally or more

sensitive than all other methods at all read depths. Strik-

ingly, the sensitivity of MapSplice is low, remaining

below 0.5 at all read depths. In contrast, specificity is

over 0.97 for all methods at all read depths (Fig. 5b),

although PTESFinder achieves the highest specificities

averaged across all depths (over 0.999) for both de

novo and guided PTES discovery, with all canonical

junction reads being correctly identified as such within

the simulated data. Only the Memczak method has

similar specificity when averaged across all read depths

(Fig. 5c).

To compare performance using real data we first rea-

nalysed data from Jeck et al. [2] using all 5 methods

(Table 1). To allow direct comparison to PTESFinder,

the number of putative circRNA structures identified

which utilise 2 RefSeq splice sites was recorded for all

other methods (bracketed), as the total numbers include

structures from intergenic and intronic regions of the

genome. For all 4 samples analysed, CIRI consumed

>90Gb of memory, resulting in incomplete analyses. It

was therefore not analysed further. Of the remaining 4

methods, PTESFinder identified on average 15 % more

structures than the Memczak method and ~70 % more

than MapSplice. The latter is consistent with our finding

that MapSplice, which was used in their analysis [2], has

low sensitivity at all depths of sequence coverage

(Fig. 5a). However, circRNA_finder reported the highest

number of putative circRNA transcripts from both ex-

onic and non-exonic regions of the genome, reporting

approximately 31–42 % more structures with RefSeq co-

ordinates than PTESfinder (Table 1).

To investigate the origins of the RefSeq related struc-

tures identified exclusively by circRNA_finder, reads de-

fining these structures from 1 sample (SRR444975) were

re-analysed using PTESFinder (Fig. 6a). Of 9287 reads

re-analysed, approximately 20 % (1840) are defined as

mutilocus or sense-antisense fusions, and a further 19 %

(1775) are eliminated by the junctional, genomic, and

transcriptomic filters indicating likely false positives

(Fig. 6b). The remaining 61 % (5672) are not aligned, in-

dicating that their anchors map suboptimally to RefSeq.

Furthermore, plotting the distribution of the number of

reads supporting each structure identified by circRNA_-

finder only, by PTESFinder only, and by both methods

(Fig. 6c), revealed that the vast majority of structures

identified by circRNA_finder alone are supported by a

single read. This is in sharp contrast to structures identi-

fied by both methods, or by PTESFinder alone. While

these single-read structures may include bona fide low

frequency circRNAs, they are also likely to contain false

positives caused by suboptimal mapping, consistent with

the lower specificity of circRNA_finder with our simu-

lated data.

Fig. 4 Effect of varying junctional filter parameters. a Number of reads passing filter at different combinations of JSpan and PID. b Percentage of

reads only excluded by transcriptome and genomic filters at default settings, which are filtered at different combinations of JSpan and PID
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Fig. 5 Sensitivity and Specificity in Comparisons to Other Methods. a Sensitivity and (b) Specificity of PTESFinder and 4 other publicly available

methods (CIRI, circRNA_finder, MapSplice and Memczak) analysed using simulated data (see methods). c Mean false discovery rate % (FDR) of all

methods averaged across all read depths analysed
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Runtimes for PTESFinder were also 25–35 % lower

than for the Memczak method, and 50–82 % lower than

for MapSplice (Table 1), but by far the best runtimes

were achieved by circRNA_finder which utilises the

STAR aligner [48]. These were, however, achieved at

higher computing memory cost (~30GB).

We then used PTESFinder to analyse RNAseq reads

previously mined in two further studies [3, 4]. Consistent

with the above, it identified 13 % more distinct struc-

tures from leukocyte and HEK293 data than were re-

ported by Memczak et al. [4] (2217 as opposed to 1950

Fig. 6d), and 41.6 % more structures than reported by

Salzman et al. [3] from leukocyte data (1875 as opposed

to 1324, (data not shown)). As both structures and sup-

porting reads were reported by [4], it was possible to re-

analyse the 898 structures identified exclusively by their

method using PTESFinder. This established that none

correspond to structures which PTESFinder is designed

to identify (Fig. 6e): 503 (56 %) are derived from in-

tronic, and intergenic regions, and of the 1420 reads

supporting the remaining 395 genic structures, 492 were

excluded by PTESFinder due to low map quality (200)

or multiple map locations (292), 89 reads were excluded

by PTESFinder filters, and the remaining 839 possessed

at least 1 exon boundary which did not map to known

splice junctions (Fig. 6f ). Again, while some of these

Table 1 Number of PTES transcripts identified from Human Fibroblast samples using four methods

Method SRR444974 SRR445016 SRR444975 SRR444655

Memczaka Identified 22663 (17752) 22351 (17231) 3733 (2956) 1667 (873)

Run Time 1993 m 2479 m 2602 m 2061 m

MapSplicea Identified 9701 (7087) 7380 (4891) 2231 (986) 1479 (307)

Run Time 6167 m 16356 m 7412 m 2605 m

PTESFinder Identified 25116 24489 5383 2316

Run Time 1355 m 1963 m 1530 m 1369 m

circRNA_findera Identified 49901 (32856) 54154 (32186) 11069 (7309) 3130 (2131)

Run Time 75 m 90 m 80 m 88 m

acircRNAs utilizing two RefSeq annotated splice sites in brackets

Fig. 6 Comparisons with real RNAseq data & published results. a Approximately 64 % (4675) of PTES transcripts utilising 2 RefSeq (known) splice

sites were identified by both circRNA_finder and PTESFinder from SRR444975 (b) Read exclusion criteria for PTES transcripts identified by

circRNA_finder only, when analysed by PTESFinder (c) Distribution of read numbers supporting PTES transcripts identified by circRNA_finder only,

by PTESFinder only, and by both (raw counts reported by PTESFinder shown) (d) PTESFinder identified over 50 % (1052) of transcripts reported in

Memczak et al. [14]. e The majority of the 898 structures reported by Memczak et al. [14] but not identified by PTESFinder are intronic or

intergenic. f Exclusion criteria for reads presented as evidence for exonic structures in Memczak et al. [14] which were not reported by PTESFinder

(see text)
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latter reads will undoubtedly correspond to bona fide

PTES structures (as a number of genic PTES utilising

non-Refseq splice sites have been confirmed experimen-

tally (e.g. [1, 4]), further BLAT analysis established that

13 mapped in a linear fashion to 6 annotated pseudo-

genes (Additional file 4: Table S2).

Approaches to PTES discovery involve a compromise

between the ability to detect all potentially rearranged

transcripts, and the ability to identify artefacts generated

as a result of the sequence and structural complexity of

eukaryotic genomes, and of current library construction

methods. It is now clear that the majority of transcripts

with re-arranged exon order utilize known exon junc-

tions [2, 18] which are processed by the spliceosome [17,

19]. As a result, methods which utilise existing transcript

annotation from the genome under study, such as PTES-

Finder and those employed by [3, 32], benefit from the

reduced noise inherent in this approach and are suited

to quantitative analyses of PTES structures that can be

characterized using existing annotations.

The use of known/experimentally verified splice sites

does reduce the misidentification of template switching

artefacts or unspliced pseudogenes as bona fide PTES

transcripts. However, it does mean that not all rear-

ranged transcripts will be identified. Although a recent

analysis of human data unconstrained by existing anno-

tation suggests that circRNAs which function as miRNA

sponges are rare [17], discovery of transcripts which do

not utilise known splice sites (including any which are

not processed by the spliceosome) requires a genome-

wide approach unconstrained by existing annotations.

Such approaches are, however, inherently more suscep-

tible to artefacts. The analyses presented above illustrate

both the problem of false positive structures, the trade

off between sensitivity and specificity in all methods de-

signed to identify rearranged transcripts, and the utility

of multiple filters designed to target distinct populations

of known artefacts.

Conclusions
A major challenge in PTES identification is to discrimin-

ate between bona fide PTES structures and a wide variety

of false positives with distinct origins. Currently, no

method which has been used for PTES discovery explicitly

excludes all known classes of false positive reads. To that

end, we have developed PTESFinder to identify both linear

and circular PTES transcripts from high throughput RNA-

seq data. Compared to publicly available methods recently

used in circRNA discovery, PTESFinder achieves higher

specificity and sensitivity, and generates output tailored

for downstream comparative analyses of transcript abun-

dance, making it an appropriate tool to investigate these

RNAs within complex mammalian genomes.

Availability and requirements

� Project name: PTESFinder

� Project home page: http://ptesfinder-

v1.sourceforge.net/

� Operating system(s): Linux

� Programming language: Shell, Java 1.6

� Other requirements: Bowtie 1.1.1 & 2.2.4, BedTools

2.22.0

� License: OSI-Approved Open Source (Artistic Li-

cense 2.0)

� Any restrictions to use by non-academics: None

Additional files

Additional file 1: Distinct PTES structures identified from dataset

mined in Memczak et al. [4]. (XLSX 1443 kb)

Additional file 2: Table S1. Analyses of RNASEQ data from human

fibroblast cells. (PDF 19 kb)

Additional file 3: Figure S1. Example Reads Excluded By Filters.

A) Reads filtered out by genomic filter for mapping better to

pseudogenes & segment duplicated regions B) Reads excluded by the

transcriptomic filter for having 100 % alignment to a canonical splice

between exons 10 and 11 of HNRNPH1 C) Reads excluded by applying

the junctional filters, segment PID and JSpan (see text). (PDF 475 kb)

Additional file 4: Table S2. circRNA transcripts published by Memczak

et al. [4] with 100 % overlap to annotated pseudogenes and excluded by

PTESFinder. (XLSX 12 kb)
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