
PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator

Matt T. Yourst

Department of Computer Science
State University of New York at Binghamton

yourst@cs.binghamton.edu

Abstract

In this paper, we introduce PTLsim, a cycle accurate
full system x86-64 microprocessor simulator and virtual
machine. PTLsim models a modern superscalar out of
order x86-64 processor core at a configurable level of
detail ranging from RTL-level models of all key pipeline
structures, caches and devices up to full-speed native
execution on the host CPU. Unlike other microarchitectural
simulators, PTLsim targets the real commercially available
x86 ISA, rather than a discontinued architecture with
limited tools and an uncertain future. PTLsim supports
several flavors: a single threaded userspace version and
a full system version providing an SMT model and the
infrastructure for multi-core support. We first describe
what it takes to perform cycle accurate modeling of a
complete x86 machine at the uop (micro-operation) level,
along with the challenges and requirements for effective
full system multi-processor capable simulation. We then
describe the internal architecture of full system PTLsim
and how it interacts with the Xen hypervisor and PTLsim’s
native mode co-simulation technology. We experimentally
evaluate PTLsim’s real world accuracy by configuring
it like an AMD Athlon 64 machine before running a
demanding full system client-server networked benchmark
inside PTLsim. We compare the statistics generated by our
model with the actual numbers from the real processor to
demonstrate PTLsim is accurate to within 5% across all
major parameters. We provide a discussion of prior simu-
lation tools, along with their strengths and weaknesses. We
describe why PTLsim’s x86 focus is highly relevant, and
we use our full system simulation results to demonstrate the
pitfalls of userspace only simulation. Finally, we conclude
by detailing future work.

Keywords: simulation, x86-64, full system, SMP, SMT

1. Introduction

Microprocessor simulators have been around since the
dawn of computing to serve many roles, including hardware
development and debugging, providing binary compatibil-
ity and enabling performance studies. Microarchitects and

researchers are generally interested incycle accuratesim-
ulation tools, which construct a complete microprocessor
pipeline in software and simulate the flow of each instruc-
tion through this pipeline, so as to collect much more ac-
curate timing information down to individual cycles.Full
systemsimulators take accuracy a step further by simulat-
ing all instructions in both user applications and the ker-
nel, and may also support cycle accurate modeling of multi-
processor configurations and hardware devices inside a vir-
tual machine.

In this paper, we introducePTLsim, a cycle accurate full
system x86-64 microprocessor simulator and virtual ma-
chine. PTLsim models a modern superscalar out of order
x86-64 processor core at a configurable level of detail rang-
ing from RTL-level models of all key pipeline structures,
caches and devices up to full-speed native execution on the
host CPU. It provides a highly detailed and configurable
model of a microarchitecture similar to the Intel Pentium 4,
AMD K8 or Intel Core 2, including all pipelines, caches and
devices. When PTLsim was first released as open source
software in 2005, it supported 32-bit and 64-bit x86 Linux
applications in userspace only.

In addition to being the only open source cycle accurate
x86 microarchitectural simulator available to researchers,
PTLsim supports a number of unique features, including
co-simulation. PTLsim allows any virtual machine to be
seamlessly switched between the host machine’s physical
CPUs (callednative mode) and PTLsim’s cycle accurate
processor core models, all while maintaining strict timing
continuity. This unique co-simulation technology enables
rapid profiling of only the most relevant code segments, and
makes the simulator self-debugging, since it can be contin-
uously validated against a commercial x86 processor. PTL-
sim supports native mode co-simulation in both the classic
userspace-only version and the new full system version pre-
sented in this paper.

In this paper, we describe how we have extended PTL-
sim into a full system simulator, calledPTLsim/X, by inte-
grating it with the well known Xen hypervisor (virtual ma-
chine monitor) technology, and how we have added multi-
processor and multi-threading support to PTLsim. Our ap-
proach of integrating PTLsim with a hypervisor like Xen
has proved to be a very effective and elegant solution, since
it allows us to apply PTLsim’s native mode co-simulation
technology to an entire virtual machine, with automatic sup-



port for multiple processors and transparent cycle accurate
control of all timing parameters.

In Section 2, we first describe what it takes to perform
cycle accurate modeling of a complete x86 machine at the
uop (micro-operation) level, along with the challenges and
requirements for effective full system multi-processor ca-
pable simulation. We also disclose the PTLsim out of order
core’s microarchitecture and features, and we describe how
native mode co-simulation integrates with PTLsim’s core
models. Section 3 describes the internal architecture of full
system PTLsim and how it interacts with the Xen hyper-
visor. We first introduce the features of Xen and why it
is so attractive as the foundation of a simulation tool. We
then describe how we built PTLsim on this foundation, and
how various system-level aspects of the x86 architecture are
modeled. The challenges of accurately modeling the flow of
time in a simulation environment are also discussed.

We experimentally evaluate PTLsim’s real world accu-
racy in Section 5 by configuring its out of order core and
memory hierarchy as close as possible to a real AMD
Athlon 64 machine. We then ran a demanding full system
client-server networked benchmark (rsync with ssh and net-
working) inside PTLsim, and compared our results to the
Athlon 64 hardware performance counters across numerous
metrics. We use these data to prove that PTLsim can be used
to very accurately model commercial microprocessors. In
Section 6, we discuss a number of well known simulation
tools, along with their strengths and weaknesses. We de-
scribe why PTLsim offers a distinct advantage through its
focus on x86 (the most widely used ISA in the world) and
we use our data from Section 5 to back up our assertion
that userspace only simulation cannot deliver accurate re-
sults for many important workloads, particularly on multi-
threaded benchmarks. Finally, we conclude by detailing
what the future holds for PTLsim. For space reasons we
are not able to describe every PTLsim feature in this paper;
instead the reader is referred to the PTLsim User’s Guide
and Reference [1].

2. PTLsim Architecture and Features

2.1. Full System x86 Simulator Requirements

Designing a cycle accurate model of a modern x86-64
microarchitecture is fundamentally different than building
a simulator for a RISC architecture. The x86 instruction
set is based on the two-operand CISC concept of load-and-
compute and load-compute-store. However, all modern x86
processors (including PTLsim) do not directly execute com-
plex x86 instructions. Instead, these processors translate
each x86 instruction into a series of micro-operations (uops)
similar to classical load-store RISC instructions. The inter-
nal uop instruction set used by PTLsim has many key dif-
ferences from RISC instructions, since it is intended to ef-
ficiently support the nuances of x86 instructions while still
being implementable in hardware. The uops used by PTL-
sim are intended to be quite similar to the functionality and
encoding of uops in the Intel Pentium 4, Core 2 and AMD
K8 processors.

The PTLsim User’s Guide and Reference[1] describes
many of the general hardware requirements for efficient ex-
ecution of x86 code, which we summarize here. First, PTL-
sim provides a full x86-64 to uop decoder, and includes mi-
crocode for more complex instructions. All x86 instructions
areatomic: either all uops comprising a single x86 instruc-
tion complete without exceptions and update the architec-
tural state, or all uops are discarded. Many x86 instruc-
tions also update a subset of the processor condition code
flags, and the ALUs must handle per-instruction operand
size specifications. The x86 architecture stipulates that the
processor itself must transparently handle unaligned mem-
ory accesses; PTLsim therefore provides efficient unaligned
load and store uops. x87 floating point is still used by a great
deal of legacy software instead of the newer SSE floating
point instruction set introduced with the Pentium 4. There-
fore, PTLsim provides full support for x87, albeit with re-
duced performance compared to SSE. Rather than decod-
ing each x86 instruction every time it enters the simulated
pipeline, PTLsim uses abasic block cacheto store the uops
generated from entire basic blocks (instruction sequences
terminated by a branch). The basic block cache doesnotaf-
fect the architecturally visible performance of the processor
model; it simply exists to speed up the simulation.

Full system simulation entails far greater challenges than
userspace only simulation. For instance, the instruction de-
coder and basic block cache must be indexed by much more
than just the RIP (x86 instruction pointer) of an instruction.
Instead, x86 code is identified by its virtual address, the
physical machine page frame number (MFN) on which it
starts, optionally the MFN on which it ends (since x86 in-
structions are variable length and may cross pages), and a
variety of contextual information (e.g. kernel or user mode,
32-bit or 64-bit x86-64 mode, status of flags, segmentation
assumptions, etc). Self modifying code (SMC) must also be
handled correctly: if an instruction overwrites the bytes in
memory of another instruction already in the pipeline, the
processor must flush the pipeline and re-execute the over-
written instruction. Similarly, even code not currently in
the pipeline may need to be invalidated if it is still cached
as decoded uops in the basic block cache.

PTLsim must also differentiate between virtual and
physical addresses by modeling translation lookaside
buffers (TLBs). All loads and stores must be checked
for numerous possible exceptions, such as page faults, un-
aligned accesses that cross pages, non-cacheable pages,
memory mapped devices and so forth. If a virtual address
is not present in the TLB or is invalid, PTLsim must use a
hardware state machine to “walk” the tree of x86 page ta-
bles until a virtual address is produced. Whenever pages are
accessed or written for the first time, microcode must tra-
verse the page table tree and set tracking bits in each page
table entry (PTE); x86 operating systems expect the hard-
ware (or microcode) to transparently perform all of these
updates. All memory forwarding and alias checking (i.e. in
an out of order processor) must be done with physical ad-
dresses; this becomes significantly more complicated when
multiple threads are running on a single core using shared
caches. Finally, when running 32-bit code, the segmenta-



tion features (segment base, limit and access rights) of the
x86 architecture must be enforced.

Exceptions and interrupts must be properly and precisely
delivered to the running code. PTLsim uses its microcode to
build stack frames, access interrupt descriptor tables (IDT),
switch to kernel mode and redirect the processor to the ex-
ception handler entry point. Asynchronous interrupts from
devices and timers must also be delivered at the proper time
to the proper handler. PTLsim must provide virtual hard-
ware models of the real time clock, interrupt controller and
other devices, and these models all must be cycle accu-
rate and fully deterministic for debugging purposes. Exter-
nal devices (like disks and network interfaces) outside the
virtual machine may also need to deliver interrupts; PTL-
sim must ensure proper delivery and timing of these events.
Lazy context switching of floating point registers must also
be detected and handled.

PTLsim also supports modeling of multi-processor or si-
multaneous multithreading (SMT) machines. Interlocked
instructions (e.g. the x86 LOCK prefix, the atomic bit test
and set instructions, the xchg and xadd instructions, and
various memory fences) must be properly handled for a
modern multi-threaded kernel and applications to work cor-
rectly. This involves significant complexity, since multiple
CPUs or hardware threads may attempt an interlocked ac-
cess at the same time, and the simulator must arbitrate ac-
cess without deadlocks. If a multi-core or symmetric multi-
processor (SMP) configuration is used, the simulator must
model cache coherence transactions and the movement of
cache lines between cores.

These are just a few of the challenges PTLsim must ad-
dress to be an effective cycle accurate full system simulator
- the amount of complexity is significantly higher than the
typical RISC architectures modeled by earlier full system
simulation tools.

2.2. PTLsim Core Model

PTLsim includes a variety of core models, including the
main superscalar out of order core, an SMT (simultaneously
multi-threaded) version of that core, and an in-order sequen-
tial core used for rapid testing and microcode debugging.
Models can be added as plug-ins by simply registering a
C++ class with PTLsim and recompiling. To support multi-
processor machines with many VCPUs (virtual CPUs as-
signed to a domain, in contrast with the physical processors
managed by Xen), multiple core instances can operate in
parallel; the simulator control logic automatically advances
each core by one cycle in round robin order and provides
memory synchronization facilities shared by all cores.

The default core model is a modern superscalar out of
order design, based on a combination of features from the
Intel Pentium 4, AMD K8 and Intel Core 2, but also incor-
porates some ideas from IBM Power4/Power5 and Alpha
EV8. The following is a summary of the characteristics of
this processor model:

The simulator directly fetches pre-decoded micro-
operations from the basic block cache (described previ-
ously) but can simulate cache accesses as if x86 instruc-

tions were being decoded on fetch. The clustered microar-
chitecture is highly configurable, allowing multi-cycle la-
tencies between clusters and multiple issue queues within
the same logical cluster. Functional units, the mapping of
functional units to clusters, issue ports and issue queues and
uop latencies are all configurable. The number and type of
physical register files can also be configured. Issue queues
are based on a collapsing design and are modeled at the
RTL level with broadcast based matching to wake up uops.
Replay of loads and stores is supported for handling store
to load forwarding and store to store merging dependen-
cies, as well as arbitrary types of speculation. The com-
mit unit supports x86 specific semantics, including atomic
commits and exception handling and recovery. The data
cache hierarchy by default consists of an L1 D-cache, L1
I-cache, unified L2 cache and unified L3 cache, along with
a DTLB and ITLB. The sizes, associativity, latency, band-
width and numerous other parameters can be customized.
The movement of cache lines through miss buffers and
buses is based on a very detailed RTL-level model of key
structures. The processor provides a hardware TLB walk
engine. Branch prediction is also fully configurable; PTL-
sim currently includes various models including a hybrid g-
share based predictor, bimodal predictors, saturating coun-
ters, etc. Simultaneous multi-threading (SMT) model al-
lows up to 16 threads per core, with separate per-thread
fetch queue, ROB, LDQ, STQ, and other structures, but
shared caches, issue queues and functional units. Thread
synchronization hardware (for interlocked instructions)is
fully modeled. The SMT core provides configurable thread
priority policies and deadlock prevention schemes. The mi-
croarchitectural model is described in more detail in the
PTLsim User’s Guide and Reference[1].

2.3. Native Mode Co-Simulation

PTLsim includes a very powerful feature absent from
other cycle accurate simulators: it can dynamically switch
the target virtual machine (or in userspace PTLsim, the tar-
get process) between the host system’s real physical CPUs
and one of PTLsim’s simulated core models (such as the out
of order core, the SMT core or the sequential core).Native
mode means the domain is executing at full speed on the
host’s physical x86 processors, even though PTLsim is still
waiting in the background. The ability to selectively run
parts of the program at full speed presents several unique
advantages compared to previous simulation tools.

First, it is no longer necessary to emulate billions of in-
structions during the initialization phase of a benchmark
before starting cycle accurate simulation. With PTLsim,
the user can set atrigger point at the top of the bench-
mark’s main loop (or any other key point where cycle ac-
curate simulation should begin), then switch back to na-
tive mode and execute at full speed until the trigger point
is hit. PTLsim allows trigger points to be specified by RIP
(the x86 instruction pointer), specialptlcall x86 instruc-
tions within the benchmark itself that trigger when executed
(as described below), instruction counts, cycle counts and
a variety of other specifiers. In addition, while in simula-



tion mode, PTLsim’s snapshot facility allows the state of
all internal event counters to be checkpointed at any time.
By subtracting these snapshots using the included PTLstats
analysis tools, the “warmup” periods traditionally used to
exclude transient cache and branch predictor effects can be
greatly reduced.

Second, native mode effectively makes PTLsim self de-
bugging. It is possible, on an instruction by instruction ba-
sis, to determine where the architectural state produced by
PTLsim’s model begins to diverge from the state produced
by the native x86 host processor. This is done by repeat-
edly switching from simulation mode back to native mode
at different points (between specific instructions) and ob-
serving if the resultant behavior is correct. Using binary
search techniques, the problem can be rapidly isolated and
debugged. Full system PTLsim/X includes features to com-
pletely isolate the virtual machine from non-deterministic
outside events, thereby allowing this comparison feature to
work effectively.

Third, statistical sampled simulation can be used very ef-
fectively: for instance, using PTLsim’s scripting language,
the user can request that the out of order simulation core
be used for 100 million instruction spans out of every bil-
lion real instructions, with the majority of the time spent
in native mode. PTLsim’s statistical snapshot facility can
be used to present a continuous picture of the benchmark’s
performance characteristics; Section 5 shows this featurein
action.

3. Full System PTLsim/X and Xen

Xen [14] is an open source x86 virtual machine mon-
itor, also known as ahypervisor. Each virtual machine
is called a “domain”, where domain 0 is privileged, runs
Linux, and accesses all hardware devices using unmodified
drivers; it can also create and directly manipulate other do-
mains. Guest domains typically use Xen-specific virtual de-
vice drivers, and makehypercallsinto the hypervisor to re-
quest certain services that cannot be easily or quickly virtu-
alized. Each guest can have up to 32 VCPUs (virtual CPUs).
Xen has essentially zero overhead [15] due to its unique and
well planned design; it’s possible to run a normal worksta-
tion or server under Xen with full native performance.

Under Xen’s “paravirtualized” mode, the guest OS runs
on an architecture nearly identical to x86 or x86-64, but a
few small changes critical to preserving native performance
levels. First, the domain can read its own page tables, but
must ask Xen to perform any updates (this ensures isola-
tion). Xen assigns arbitrary non-contiguous physical mem-
ory physical memory pages (called “machine frame num-
bers”, or MFNs) to the domain, rather than a linear span of
pages starting at physical address zero. Interrupts are de-
livered using anevent channelmechanism, which is func-
tionally similar to the IO-APIC hardware on the bare CPU
(essentially it’s a “Xen APIC” instead of the Intel and AMD
models already supported by the guest kernel). Events can
be mapped to virtual interrupts, physical device interrupts
or inter-domain ports. Finally, Xen provides the guest with
additional timers, so it can be aware of both “wall clock”

time as well as execution time (since there may be gaps in
the latter as other domains use the CPU).

All other features of the paravirtualized architecture per-
fectly match x86. This makes it possible to run a normal
Linux distribution, with totally unmodified drivers and soft-
ware except for a small part of the kernel and boot code, at
nearly full native speed. All major Linux distributions now
fully support Xen, along with Solaris and FreeBSD.

Xen also supports “HVM” (hardware virtual machine)
mode, which provides nearly perfect emulation of the x86
architecture and some standard peripherals. The advantage
is that an “uncooperative” guest OS (namely, Windows) can
be run inside the virtual machine on newer x86 processors
supporting hardware virtualization extensions (Intel VT and
AMD SVM), however this mode offers lower performance
than para-virtualization since more emulation (particularly
for legacy devices) is required.

Xen is very attractive as the foundation of a full system
version of PTLsim for several reasons. First, its simplified
view of the x86 architecture (while still preserving binary
compatibility) makes constructing a full system simulator
significantly easier than having to deal with legacy x86 ar-
tifacts like 16-bit boot code as well as the need for device
models for chipsets, PCI buses, DRAM controllers and nu-
merous other details handled internally by Xen itself. More
importantly, the Xen timing model allows the simulator to
completely virtualize the passage of real time, even while
running in native mode. This enables the user to easily
experiment with parameters normally fixed by the x86 ar-
chitecture, such as the simulated processor core frequency,
timer interrupt frequency, artificial delays in interrupt and
DMA delivery, and so forth. Xen is also integral to being
able to seamlessly switch between native mode and simu-
lation mode. It is always possible to implement a purely
userspace full system simulator with no kernel or hypervi-
sor support, but performance and flexibility would suffer
greatly without the availability of native mode. Finally, the
majority of the PTLsim code can be isolated inside the tar-
get domain (where it can be easily debugged), with only a
small number of hooks present in the modified Xen hyper-
visor itself or in the privileged portion of PTLsim running
in domain 0.

The use of Xen does have some disadvantages. First,
setting up a dedicated machine to run PTLsim/X is of-
ten required: the PTLsim-enhanced Xen hypervisor itself
must run underneath all other software, a Xen-enabled ker-
nel must be run on the machine, and the Linux distribu-
tion used in domain 0 must support the Xen virtual de-
vice drivers and domain management tools. Fortunately,
all major Linux distributions now support Xen, as do So-
laris and FreeBSD. PTLsim’s dependence on Xen’s para-
virtualized drivers, rather than simulating true bare-metal
x86, means that it cannot currently run “uncooperative” op-
erating systems like Windows, since these systems expect
to find real x86-standard hardware rather than Xen’s virtual
devices. Fortunately, HVM support will be appearing in
PTLsim later this year.



Figure 1. PTLsim and Xen: Interactions between
PTLsim, the Xen hypervisor, and the PTLsim monitor

4. Running PTLsim/X on Xen

The basic architecture of full system PTLsim/X, and its
interactions with Xen, are shown in Figure 1.

When a domain is first created but before it begins exe-
cuting, PTLsim is instantiated in the domain using the PTL-
sim monitor program (PTLmon), which is responsible for
booting PTLsim inside the target domain and coordinating
its communication with the outside world. PTLmon is a
normal Linux program that runs in domain 0 with root priv-
ileges and a special connection to the enhanced Xen hyper-
visor. PTLmon increases the domain’s memory reservation
so as to reserve a range of physical pages for PTLsim (by
default, 32 MB of physical memory), loads the real PTL-
sim core code into these pages and sets up initial page ta-
bles mapping the PTLsim image. Finally, PTLmon uses
a specialcontextswap hypercall added to the Xen hyper-
visor. This hypercall atomically exchanges the state (reg-
isters, page tables and so on) of all VCPUs in the target
domain with PTLsim’s initial bootup state. The guest do-
main’s x86 state for each VCPU is saved inside PTLsim for
when simulation actually begins.

At this point, PTLsim is executing in virtualized kernel
mode on the bare x86 hardware as its own mini operating
system, but is still isolated by Xen, since it can only map
its own pages and all pages allocated to the guest. This
isolation makes PTLsim significantly easier to debug, since
very little code runs inside the hypervisor itself; the major-
ity of PTLsim’s code is locked up within the target domain.
PTLsim initializes and establishes a shared memory region
and associated virtual interrupts used to communicate with
the PTLsim monitor process still running in domain 0. In
effect, PTLsim can still use a subset of the regular Linux
system calls, but these requests are forwarded back to do-
main 0, where PTLmon acts as the core simulator’s proxy to
write output to the console, open log files, and so forth. This
is the only means by which PTLsim communicates with the
outside world. PTLsim maps into its virtual address space
all physical memory belonging to the target domain. All
operations in PTLsim are performed on physical addresses,
since the PTLsim out of order core only tracks physical ad-
dresses in the pipeline after TLB lookups have completed.

Whenever the guest kernel executes privileged instruc-
tions or makes Xen hypercalls under simulation, PTLsim’s
x86 microcode routines map these operations to either real
Xen hypercalls or simple updates to PTLsim’s simulated
state. For instance, when the kernel attempts to reload the
CR3 control register (specifying the page table base), ei-
ther through amov cr3,xxx instruction or via an equivalent
MMUEXT_NEW_BASEPTRhypercall, PTLsim simply updates its
internal simulated copy of CR3 in the active VCPU’s con-
text structure and flushes all simulated TLBs. Other op-
erations, such as sending virtual interrupts to outside de-
vices like network adapters or hard disks, are simply passed
straight through PTLsim and on to the hypervisor for pro-
cessing.

4.1. Native Mode in PTLsim/X

PTLsim’s unique native mode switching feature requires
a fairly sophisticated infrastructure at the hypervisor level
so as to guarantee the guest operating system is unable to
detect the transition even if it occurs between arbitrary x86
instructions. It must properly hide gaps in execution time
down to the nanosecond, and it must support the atomic
switching of many VCPUs (in an SMP domain) back into
and out of PTLsim. PTLsim always boots into simula-
tion mode to perform initialization tasks, but immediately
switches back to native mode to start the guest kernel’s boot
process.

PTLsim defines the specialptlcall x86 opcode0x0f37

as a breakout opcode. It is undefined in the normal x86 in-
struction set, but when executed by any domain running un-
der the PTLsim-enhanced Xen hypervisor in native mode,
it causes the entire domain to be de-scheduled from the
host machine’s physical CPUs and execution seamlessly re-
sumes on PTLsim’s simulated CPU. In native mode, Xen
intercepts the invalid opcode fault, freezes the domain and
notifies the PTLsim monitor process, via a virtual interrupt,
that it should switch the domain back to simulation mode.

Theptlcall instruction may specify one of several op-
erations via registers, and may atomically enqueue a com-
mand list for PTLsim to process. For instance, a command
list (specified as a text string) may consist of“-core smt

-run -stopinsns 10m : -native ”. This command tells
PTLsim to switch back to simulation mode, execute 10
million x86 instructions under PTLsim’s SMT core, then
switch back to native mode. PTLsim comes with a special
program, calledptlctl (PTLsim control) that is installed
and executedwithin the target domain. This program is
simply a wrapper around theptlcall instruction, and al-
lows the user (or a shell script running within the domain)
to interactively submit command lists to PTLsim.

Because PTLsim’s cycle accurate simulation mode is
much slower than native execution, wall clock time (and the
physical processor’s timestamp counter, accessible through
the rdtsc instruction) will have advanced far past its
last simulated value when switching back to native mode.
Therefore, PTLsim uses another feature added to Xen to
virtualize the timestamp counter and other clocks while in
native mode. Xen will transparently emulaterdtsc and any



realtime values it passes to guests at timer interrupts, and
will subtract a delta such that the transition back to native
mode is seamless, ideally without missing a single nanosec-
ond.

4.2. The Nature of Time

Full system simulation poses some difficult philosoph-
ical questions about the nature of time itself and the phe-
nomenon of “time dilation”. Specifically, if a simulator runs
X times slower than the native CPU, both external inter-
rupts and timer interrupts should theoretically be generated
X times slower than in the real world. PTLsim always inter-
nally generates timer interrupts for the domain at the correct
rate, but time dilation of other events is critical for obtain-
ing accurate simulation results on I/O intensive workloads:
for events like network traffic, if a real network device fed
interrupts into the domain in realtime, and the simulator in-
jected these interrupts into the simulation at the same rate,
they would appear to arrive thousands of times faster than
any physical network interface could deliver them. This can
easily result in a livelock situation not possible in a real
machine; at the very least it will deliver misleading perfor-
mance results.

On the other hand, interacting with a domain running
at the “correct” rate according to its own simulated clock
can be unpleasant for users. For instance, if the “sleep

1” command is run in a Linux domain under PTLsim, in-
stead of sleeping for 1 second of wall clock time (as per-
ceived by the user), the domain will wait until 1 billion cy-
cles have been fully simulated (assuming the simulated pro-
cessor frequency is 1 GHz). This is because PTLsim keys
interrupt delivery and all timers to the simulated cycle num-
ber in which the interrupt should arrive (based on the user-
specified core clock frequency). In addition to being annoy-
ing, this behavior will massively confuse network applica-
tions that rely on precise timing information: a TCP/IP end-
point outside the domain will not expect packets to arrive
thousands of times slower than its own realtime clock ex-
pects, resulting in retransmissions and timeouts that would
never occur if both endpoints were inside the same “time
dilated” domain.

Interrupt and DMA trace recording and injection is a
popular method of precisely synchronizing the apparent ar-
rival times of interrupts and external DMA transactions with
the simulated core’s cycle counter. In this scheme, a check-
point of the target machine’s physical memory and register
state is captured and saved to a file (this is done under the
control of a hypervisor such as Xen). The hardware device
drivers (or the PCI bus of a real machine, if a logic analyzer
is used) are then instrumented to attach a timestamp (i.e.
core cycle counter) to every incoming interrupt and DMA
write. These event records (comprising a timestamp, inter-
rupt type, any memory overwritten by the DMA transaction
and any relevant device register states the simulated CPU
may attempt to read) are written to a trace file. The simula-
tor then starts execution at the checkpoint, and reads the in-
terrupt and DMA trace file as if it were a queue: the event at
the head of the queue is injected into the simulated proces-

sor if and when the simulation reaches the cycle number the
event was timestamped with. This technique is used Intel’s
own internal Pentium 4 based simulation toolsuite [12], and
is preferred by commercial microprocessor designers since
it guarantees deterministic and infinitely repeatable simula-
tion of real external bus transactions.

PTLsim will soon be adding this capability based on
Xen’s built-in checkpoint infrastructure and virtual device
driver architecture. Xen virtual virtual device drivers are di-
vided into two separate modules: thebackenddriver runs
in domain 0 as a Linux kernel module, and it may commu-
nicate with a real physical device, while the frontend driver
runs in each user domain’s kernel and only communicates
with the backend driver using a standardized interface. Af-
ter checkpointing the target domain, the backend drivers for
network and disk I/O can be instrumented to record all fu-
ture events (interrupts) sent to the target domain, as well
as any DMA operations into specific pages destined for the
target domain. The target domain is then restarted from the
checkpoint, and event tracing continues for some finite pe-
riod while the domain runs at full speed in native mode. Fi-
nally, the domain is again restarted from the checkpoint, but
this time PTLsim runs in simulation mode, where it reads
the event trace file to directly inject events and DMAs into
the domain under simulation according to the time dilated
simulated cycle counter, rather than in real time.

4.3. Physical Address Translation and TLBs

In full system PTLsim, actual physical addresses are
used for tracking and executing all cache and memory op-
erations; virtual addresses are used only up to the point at
which each load or store issues. PTLsim uses a simulated
TLB (translation lookaside buffer) to map virtual addresses
to physical pages, as described in Section 2.1. The delay
involved in servicing a TLB miss (on x86 at least) is propor-
tional to the time it takes to execute a chain of four depen-
dent loads (one per level of the 4-level x86-64 page table
tree). Modern x86 processors, including the one modeled
by PTLsim, use a dedicated state machine to inject loads
into the pipeline until the page table tree has been traversed.
Each of these loads may hit or miss in the cache, and page
tables will compete with user data for cache lines and load
unit bandwidth. All of these effects are very complex to
model unless the actual physical pages comprising the page
table are available. Furthermore, the caches of real micro-
processors are tagged by physical addresses, not virtual ad-
dresses as in userspace-only simulators. Therefore, two ad-
dresses that would not normally cause a conflict miss in the
data cache based solely on their virtual addresses may ac-
tually conflict when mapped to physical pages with non-
sequential physical addresses.

4.4. Multi-Threading and Multi-Processor Support

PTLsim was designed from the ground up to support
multiple VCPUs per domain, thereby allowing efficient
SMP, multi-core and multi-threaded core models. As de-
scribed in Section 2.2, the active core model decides how



to distribute the VCPUs in a domain onto individual cores
and threads within cores. TheContext structure in PTL-
sim is central to multi-processor support. Each VCPU has
oneContext structure encapsulating all information about
that VCPU, including its architectural registers, x86 ma-
chine state registers (MSRs), page tables and internal PTL-
sim state. As the simulator commits instructions from a
given hardware thread or core, it updates the architectural
state in that core’s Context structure. Similarly, theContext

structure is available to all microcode functions and other
PTLsim subsystems.

VCPUs may choose to block by executing an appropri-
ate operation (i.e. the x86hlt instruction or an equivalent
hypercall), suspending execution until an interrupt arrives.
PTLsim cores can simulate this by checking therunning

field in a VCPU’s context structure; if zero, the correspond-
ing VCPU is blocked and no instructions should be pro-
cessed until therunning flag becomes set, such as when
a virtual interrupt arrives. When virtual interrupts arrive,
PTLsim’s microcode will automatically build an interrupt
stack frame and redirect simulated execution into the kernel,
just as a real x86 processor does. If a domain has multiple
VCPUs, PTLsim runs the simulation entirely on the first
VCPU, while putting the other VCPUs into an idle loop at
boot time; their sole purpose is to receive events for injec-
tion into the simulation.

The x86 architecture allows memory instructions to be
modified by adding a specialLOCK prefix to the opcode.
The lock prefix instructs the current VCPU (or hardware
thread) to block all other VCPUs from executing loads or
stores on the memory touched by the instruction until the
instruction completes. PTLsim implements these semantics
by allowing each load uop in the interlocked instruction to
acquire a lock on a given physical memory location by send-
ing its physical address to an interlock controller shared by
all SMT threads within a given core (in the SMT model),
and/or by using a user-defined cache coherency mechanism
to lock a cache line. If future load or store uops attempt to
access this same physical address, they will be replayed in
the out of order core until they can acquire the lock them-
selves. Locks are released when the x86 instruction con-
taining the locked load commits.

It should be noted that PTLsim’s multi-core abilities are
currently limited in that each core has a dedicated cache
hierarchy (L1/L2/L3); the cycle accurate interconnect net-
work and cache coherence logic are up to each user to pro-
vide. By default, PTLsim models an “instant visibility”
cache coherence model: there are no delays on line move-
ments between cores. However, the infrastructure is in place
for MOESI-compatible cache coherence models to be easily
plugged into the PTLsim code.

5. Experimental Evaluation

To experimentally evaluate PTLsim’s real world accu-
racy, we configured its out of order core and memory hier-
archy as close as possible to a real 2.2 GHz AMD Athlon 64

(K8 microarchitecture) based machine, described in more
detail below. We then selected a representative full system
client-server benchmark (rsync with ssh and networking),
and we ran two trials: native mode (on the real Athlon 64
reference machine), and full system PTLsim/X, configured
like a K8 processor. For each benchmark and trial envi-
ronment, several key statistics were analyzed, including to-
tal number of cycles, total number of x86 instructions, L1
cache miss rate, branch mispredict rate and DTLB miss rate.

Our choice of benchmark is somewhat nontraditional
and ad hoc, since our goal is highlight the fidelity differ-
ences between native execution on real K8 silicon and PTL-
sim’s full system model (including all kernel and user code,
TLB misses, page faults, physical address caching effects
and device overhead). We have intentionally omitted SPEC
CPU results, since this benchmark suite is single threaded
and has essentially no interaction with the operating system,
making it inappropriate for our purposes. We have selected
the well knownrsync [18] program found on every Linux
system. Rsync is a client server file transfer system used to
maintain two large sets of files by finding and transferring
only the differences between files, even within potentially
large files.

Rsync is useful as a benchmark for several reasons. First,
it makes intensive use of kernel level code for directory
searching and I/O (to build file lists, read and write files
and communicate with a receiver rsync process via pipes or
TCP/IP). It also performs a CPU-intensive userspace com-
putation to process file lists, execute the rsync delta algo-
rithm [18] and compress data via the gzip algorithm. It is
divided into several easily identified phases, such as build-
ing the server-side file list, building the client-side file list,
isolating differences between files, and actually sending the
compressed delta data. Finally, it has the ability to pipe
rsync data over an additional transport layer, such as ssh,
via interprocess pipes.

In our test configuration, we are usingssh(secure shell)
as the network transport for rsync, since this is a typical
usage. This meansrsync starts the ssh client as a sepa-
rate process, which connects (via public key authentication)
to the sshd server process. All subsequent rsync traffic is
compressed and then piped through the client ssh process,
across the encrypted ssh tunnel via TCP/IP, into the server
sshd process (where it is decrypted), and on to a server-
side rsync process (hence four total processes are involved).
To ensure deterministic timing, we ran both the client and
server on the same virtual machine, all packets still traverse
the Linux TCP/IP stack even though they are going through
the local host only. Our file set consists of 6186 text files
all under 300 Kbytes, for a total of 48 Mbytes. The files are
divided into two roughly equal groups; the test consists of
running rsync to synchronize the second group with the first
group.

To create the target domain, we installed unmodified
SuSE Linux 10.1 (64-bit edition) onto an ext2 format disk
image, and we allocated 384 MB of physical memory to
the virtual machine. The disk image was loaded into RAM
and mounted read/write inside the target domain, and ex-
ternal interrupts were emulated using the-maskints PTL-



sim option; this guarantees deterministic cycle level timing.
We replaced the normal Linuxinit program with a script
that performs four tasks as soon as the system has booted:
sshd (the ssh server process) is started and the local network
interface is configured, “ptlctl -run ” begins the simula-
tion (or native profiling run), thersync process is run, then
“ptlctl -kill ” is run after rsync exists, thereby terminat-
ing the domain and recording the statistics. The entire trial
takes approximately 0.7 seconds of real time (i.e. ~1.5 bil-
lion cycles at 2.2 GHz) when run on the native CPU. The
Xen disk image and settings used to conduct this test are
available from [20]. Our test machine was an AMD Athlon
64 X2 4400+ (2.2 GHz) with 1 MB L2 cache per core. Us-
ing the usual Xen facilities, we intentionally bound the do-
main under test to the second core only: this ensures that our
activities in domain 0 (bound to the first core only) would
not disturb the cache contents or performance counters of
the second core; in effect, the virtual machine was run in a
hard realtime isolated environment.

For the native mode trial, we utilized the Athlon 64’s
built in performance monitoring counters. All AMD K8
processors allow the operating system (or in our case, the
PTLsim/X hypervisor) to configure up to four event coun-
ters, each of which monitors one of roughly a hundred dif-
ferent microarchitectural events. The counters can be read
out using therdpmc(read performance monitoring counter)
x86 instruction. We used the special-perfctr PTLsim
option (e.g.-perfctr L1D-miss-rate -force-native ) to
force PTLsim to flush all CPU caches and activate the hard-
ware event counters before immediately switching back to
native mode. The counters are read out again when the
benchmark has completed (i.e. when the “ptlctl -kill ”
command is executed by our simulation script). Since only
four counters are provided by K8 CPUs, we ran each bench-
mark four times (to separately measure each of the statistics
above); the number of cycles and number of x86 instruc-
tions was counted every time to ensure the exact same code
was executed. These results are tabulated in Table 1.

For the simulation trial, we attempted to configure PTL-
sim as close as possible to AMD’s K8 microarchitecture
[16, 17]. We modifiedsmtcore.h to declare a 72-entry
ROB, 44-entry load/store queue, three 8-entry issue queues
(for the K8 integer cluster’s three “lanes”) and a 36-entry
issue queue in a separate cluster two cycles away (for float-
ing point). Unlike most processors, K8 does not use any
physical register files: instead, it uses a clever future file
design and value capturing issue queue entries. Since PTL-
sim is based around physical register files, we had to esti-
mate and made each register file 128 entries, so as to make
the ROB the bottleneck. We disabled PTLsim’s load hoist-
ing (in which loads are speculatively issued before unre-
solved stores), since K8 does not perform load hoisting in
this manner. We also enabled enforcement of cache bank-
ing, since the K8 data cache is pseudo dual ported: it is di-
vided into 8 banks along 64-bit boundaries; each bank has
one read/write port. Bank conflicts result in a 1-cycle re-
play of the colliding load or store; typically this happens
for less than 2% of all accesses. We also reconfigured the
uop latency and functional unit table to match the K8 mi-

Table 1. Accuracy of PTLsim on multiple metrics compared

to reference silicon (AMD Athlon 64 @ 2.2 GHz). Figures

are in thousands.

Trial Native K8 PTLsim %Diff

Cycles 1,482,035K 1,545,810K +4.30%

x86 Insns Committed 990,360K 1,005,795K +1.55%

uops 1,097,012K 1,436,979K +30.99%

L1 D-cache Misses 6,118K 6,564K +7.28%

L1 D-cache Accesses 414,285K 418,072K +0.91%

L1 Misses as % 1.48% 1.57% +0.9%

Total Branches 138,062K 135,857K -1.60%

Mispredicted Branches 5,727K 5,392K -5.84%

Mispredicted % 4.15% 3.97% -0.18%

DTLB Misses 1,593K 3,895K 144%

DTLB Miss Rate % 0.38% 0.93% 245%

croarchitecture, and we added a branch predictor equivalent
to the K8’s 16K gshare-like global history based predictor.
Finally, we configured the processor with a 64 KB 2-way
D-cache and I-cache, a 1 MB 16-way L2 cache and a 32-
entry DTLB and ITLB. The L2 was placed 10 cycles away
and the main memory was 112 cycles away; these laten-
cies were experimentally measured on our reference sys-
tem, and roughly match the numbers in AMD’s specifica-
tions [16, 17] for a 2.2 GHz chip.

Several other studies have also attempted to configure a
simulator to match a specific commercial microprocessor.
In [19], the authors start with the Alpha version of Sim-
pleScalar and tune its parameters to closely match a real
Alpha 21264. The authors of [19] used a set of micro-
benchmarks to evaluate their model’s accuracy against the
on-chip hardware performance counters; the study claims
an average IPC difference of around 2% from the actual Al-
pha processor. In contrast, our study of PTLsim evaluates
a complex real world client-server benchmark across both
user and kernel code, on a much more complicated instruc-
tion set architecture (x86-64), and across many more statis-
tics besides IPC (including cache performance, branch pre-
diction, TLB efficiency and user vs kernel activity). These
results are detailed in Table 1 and Figures 2 and 3.

To conduct the actual simulation, we booted the target
virtual machine under PTLsim. This created a statistics
snapshot every 2.2 million cycles; at 2.2 GHz, this is 1000
snapshots per second. The run took approximately 62 min-
utes on our reference hardware (the 2.2 GHz Athlon 64).
We simulated 1.55 billion simulation cycles, for a simula-
tion throughput of 415540 cycles per second.
Table 1 gives a comprehensive comparison between a real

AMD K8 microprocessor and the PTLsim model
configured in accordance with the K8 microarchitecture.
The native comparison results were obtained using the

Athlon 64’s built-in performance counter registers, whereas
the PTLsim numbers were taken from the PTLstats output.

From these data, it is clear that given an appropriate con-
figuration, PTLsim is able to accurately model the perfor-



mance of real commercial microprocessors with very high
fidelity in almost all key statistics. First, the major architec-
turally visible statistics (x86 instructions committed, total
branches, total loads and stores) are all within 2% of each
other, indicating that both PTLsim and the K8 core are ex-
ecuting almost exactly the same span of code. PTLsim and
its microcode do execute many more uops than K8, but this
is to be expected: the K8 microarchitecture always operates
on “uop triads” (groups of three operations), rather than in-
dividual uops like PTLsim counts. Both the K8 and PTLsim
have similar L1 cache miss rates, but it is likely the K8’s
more sophisticated prefetch unit is able to lower the miss
rate more effectively. The branch misprediction rate is also
very similar; even though the PTLsim predictor was config-
ured in accordance with published documentation on the K8
microarchitecture [16, 17], the actual hardware has slightly
lower predictor accuracy than our model. The DTLB miss
rate is higher for PTLsim than for the real hardware, in large
part because K8 includes a very sophisticated two level TLB
(with 32 L1 entries and 1024 L2 entries in a 4-way array),
along with 24-entry page directory entry (PDE) cache and
other optimizations for accelerating page table walks; in
contrast, PTLsim only includes the 32-entry L1 TLB. The
rest of the performance difference, roughly 5% on average,
can be attributed to the fact that the microarchitectures of
PTLsim and K8 are obviously still different in many small
ways, despite our attempts to match the configurations as
closely as possible.

It’s important to remember that the native execution
numbers in Table 1 were obtained by real world measure-
ments. Therefore, even though we took every precaution
to ensure isolation, a small amount of non-determinism
still exists because of occasional hardware interrupts and
DRAM bandwidth contention on the test system. Further-
more, since the K8 only has 4 performance counters (two of
which were kept constant to count cycles and x86 instruc-
tions), the same benchmark had to be run multiple times
with different counter configurations so as to obtain all the
required data. Fortunately, the average variance between
runs (in terms of total cycle count and x86 instruction count)
was less less than 1% in every case.

Figure 2 is a time lapse plot (automatically generated
by PTLstats) of the percentage of all cycles spent in ker-
nel mode, user mode, and idle, obtained from PTLsim’s
external.cycles_in_mode statistics node. The various
phases of thersyncbenchmark can be clearly seen in this
diagram. This diagram clearly illustrates how full system
cycle accurate simulation is critical to obtaining accurate
performance numbers on real world code: a substantial
amount of time is spent within the kernel (in this case, 15%
of all cycles), or idle while waiting for I/O (27%). In a
userspace only simulator (or if PTLsim’s full system mode
is disabled), this time would not be accounted for - resulting
in erroneously fast performance results compared to a real
machine. Even if a given benchmark does little to no I/O,
userspace only simulation still cannot model the effects of
TLB misses, the interaction of physical addresses with the
cache subsystem and similar low level but important details.

Figure 3 shows a time lapse plot (also automatically gen-

erated by PTLstats) of several key microarchitectural statis-
tics, sampled every 2.2 million cycles. In particular, the
branch misprediction rate, L1 miss rate and DTLB miss
rate are readily visible in this diagram as the benchmark
moves through various stages. These data can be very use-
ful for optimizing programs at a level not generally possi-
ble when limited by the constraints of the hardware perfor-
mance counters in commercial silicon microprocessors.

6. Related Work

Simulation tools can be divided into roughly two cate-
gories. Functional simulators precisely emulate each in-
struction in the target instruction set, but do not provide any
cycle accurate timing information; they are simply inter-
preters.Cycle Accuratesimulators, on the other hand, con-
struct a complete microprocessor pipeline in software and
simulate the flow of each instruction through this pipeline,
so as to collect much more accurate timing information
down to individual cycles. Even more detailed than cycle
accurate simulators are the ad-hoc simulators used by com-
mercial microprocessor designers, including RTL models
and circuit level models; these are not covered in this paper.

For the x86 platform, numerous functional simulators
have been developed.Bochs [3] is a well known open
source x86 simulator, with support for nearly all x86 fea-
tures. However, Bochs is very slow (around 5-10 MHz
equivalent) and is not useful for implementing cycle ac-
curate models of modern uop-based out of order x86 pro-
cessors (i.e. it does not model caches, branch prediction,
etc). QEMU [4] supports multiple CPU host and guest
architectures (PowerPC, SPARC, ARM, etc) and uses dy-
namic compilation to achieve significantly faster simulation
speeds than pure interpretation.Simics[5] is a commercial
functional simulation suite for various processors (includ-
ing x86) as well as user-designed plug-in models of real
hardware devices. Like QEMU, Simics uses x86-to-x86
binary translation to achieve good performance. However,
Simics does not include cycle accurate simulation features
below the x86 instruction level. All of these tools share one
common disadvantage: they are unable to model execution
at a level below the granularity of x86 instructions, mak-
ing them unsuitable to microarchitects interested in detailed
cycle-by-cycle performance data.

6.1. Integrated, Trace Based and Split Phase Simu-
lators

Integratedsimulators, such as PTLsim and a few of the
tools described below, simultaneously model both the func-
tional aspects (i.e. to compute the correct result of each
instruction) and cycle accurate timing and scheduling struc-
tures in a single simulator. This approach has the distinct
advantage of guaranteeing both 100% correct operation and
very reliable timing data: any functional bugs in the simu-
lator are immediately apparent (since the system under sim-
ulation will crash or behave incorrectly), and most timing
bugs (such as incorrect bypassing, issuing an instruction



Figure 2. Time lapse graph of cycles spent in each CPU mode (user, kernel, idle). The X-axis indicates the snapshot ID; snapshots

were taken every 2.2 million cycles. The phases of the rsync benchmark are clearly visible: (a) startup and page in; (b) ssh connect

and network I/O; (c) build client file list; (d) build server file list; (e) compute rsync deltas; (f) transmit data; (g) shutdown wait for domain

to terminate. Item (t) shows small peaks in kernel mode for regular timer interrupts.

Figure 3. Time lapse graph of key microarchitectural statistics. The X-axis indicates the snapshot ID; snapshots were taken every

2.2 million cycles. Red lines indicate the percentage of all conditional branches that were mispredicted; green lines show the DTLB

miss rate as a percentage of all loads and stores; blue lines show the L1 data cache miss rate as a percentage of all loads.

too early or forwarding the wrong store to a load) will also
quickly result in easily debugable functional errors. Inte-
grated cycle accurate or RTL-level simulators are often pre-
ferred by commercial microprocessor designers since they
force rigorous design practices, but they can also be inflexi-
ble, since microarchitectural structures are often hard coded
with many fragile special cases to ensure correctness.

In contrast,trace based simulatorsfirst run the entire
benchmark on a fast functional simulator, with the result
of every instruction recorded into a trace file. A separate
timing simulator then reads in the trace file and passes each
instruction (and its pre-computed result) through the sim-
ulated pipeline. This has several benefits, including the
ability to guarantee deterministic behavior, experiment with
perfect branch prediction and perfect speculation accuracy
and still produce accurate performance data even if the tim-
ing simulator is not fully developed or has bugs. Unfortu-
nately, traditional trace based simulators have many disad-
vantages: they cannot model speculatively fetched (but not
committed) instructions, and complex interactions between
speculative instruction results and performance (such as in
load store queues) cannot be accurately modeled.

Split phasesimulators take a middle ground: each in-
struction is actually “executed” in program order on a fully
developed functional simulator immediately before it enters
the cycle accurate pipeline, so as to obtain its correct value;
in effect, a short trace of instructions and correct values is
continually formed in a circular buffer feeding the timing
simulator.

6.2. Instruction Set Support

The majority of all cycle accurate simulation tools avail-
able to researchers today target either the Alpha or MIPS
instruction sets, or artificial simulation-only instruction sets
like PISA [6]. We believe this is of great detriment to the
future of high fidelity microarchitectural simulation, since
most commercial silicon implementations of these architec-
tures have been discontinued (although MIPS is still used in
the embedded market, it is generally restricted to simple in-
order implementations). This lack of real hardware makes it
impossible to do co-simulation, verification or comparison
to actual silicon, very little relevant software (for servers
and workstations) is still compatible with either instruc-
tion set, and the specialized compiler toolchains required
to build benchmarks are no longer being maintained and
updated to modern compiler technology.

Currently,PTLsim is the only open source tool we are
aware of that models a modern x86-64 machine at the
micro-architectural uop level. The only other tools in this
class are locked up inside x86 vendors like Intel and AMD,
and even these internal tools lack configurability and other
desirable research-oriented features, since they are typically
intended to model a specific silicon revision.

Despite the current absence of x86-specific tools other
than PTLsim, there are numerous other cycle accurate su-
perscalar out of order simulators [13, 2] for the Alpha and
MIPS instruction sets, as well as a few for SPARC and



PowerPC. For completeness, we will still review several
these well known simulation frameworks for other instruc-
tion sets, and compare these tools with PTLsim. While the
following list is by no means complete, it represents the ma-
jority of the simulation tools in use by researchers today.

6.3. Overview of Simulation Tools

SimpleScalar[6] is one of the better known and old-
est simulators used in academia. It supports the Alpha in-
struction set, as well as PISA, a MIPS-like synthetic ISA
developed specifically for SimpleScalar. It models an out
of order processor using an RUU (an ROB-like structure)
to control instruction flow and approximate various perfor-
mance statistics. SimpleScalar is asplit phasesimulator,
as described in Section 6.1. Unfortunately, SimpleScalar
and its variants are beginning to show their age and suf-
fer from several key disadvantages. First, its instruction
set support excludes x86, the most widely used ISA in the
world. In addition, non-standard or outdated compiler ver-
sions (such as the default, gcc 2.7.2) must be used to com-
pile programs specifically for the PISA or Alpha ISA; there-
fore it is only useful for simple self-contained benchmarks
like SPEC CPU. Second, SimpleScalar is a userspace only
simulator, meaning it only simulates the microarchitecture
up to the point where system calls are made. This is not
necessarily a bad thing for CPU-intensive benchmarks, but
it obviously makes it impossible to accurately model TLBs
(and the difference in cache conflicts between virtual and
physical addresses) or account for time spent in the ker-
nel, waiting on multi-processor synchronization or access-
ing devices.

Fortunately, modern variants of the original Sim-
pleScalar code have addressed many of these weaknesses.
For instance,M-Sim[10] is a SimpleScalar 3.0 based Alpha
simulator focused simultaneous multithreading. M-Sim ex-
plicitly models issue queues, replay and so forth, and adds
pseudo-SMT support: several independent benchmark pro-
cesses (in different logical address spaces) can be run in
parallel on the SMT core. However, M-Sim still lacks sup-
port for simulating x86 code, and has no native mode co-
simulation support. Since M-Sim is a userspace only simu-
lator, it cannot run true shared memory multi-threaded pro-
grams involving lock contention, and cannot model kernel-
level interactions with the operating system scheduler, nor
can it model cache conflicts between threads based on real
physical addresses.

TheM5 Simulator System[7] for the Alpha ISA provides
an easy to adapt C++ implementation, plug-in cycle accu-
rate CPU models, full system support for booting Linux
(for Alpha) kernels and multi-processor support. Therefore,
M5 more closely matches the feature set of PTLsim, but
is unfortunately still tied to the Alpha ISA and hence has
no native mode co-simulation support nor the ability to run
unmodified x86 software. M5 does have the advantage of
more customizable cycle accurate device models typically
found on Alpha systems (for disks, network adapters, buses,
etc), whereas PTLsim currently supports only the Xen vir-
tual device models for these device types. Both M5 and

PTLsim support both full system and usermode-only oper-
ation, as well as full SMP and multi-threaded SMT opera-
tion.

SESC[8] is another well known simulator for the MIPS
ISA, but unlike M5, which focuses on microarchitectural
pipeline accuracy, SESC provides more extensive support
for a variety of multi-processor models and nontraditional
microarchitectures. SESC uses an event driven split phase
core model, with the MINT [9] MIPS emulator framework
as a functional backend.

TFSim (Timing First Simulation)[11] is a new twist on
thesplit phaseapproach. In TFSim, each instruction is exe-
cuted bybotha functional simulator (the Simics [5] SPARC
model) and a cycle accurate timing simulator. The tim-
ing simulator drives the functional simulator: when an in-
struction is fetched, the functional simulator also executes
that instruction, precomputing its result. The instruction
then passes through the cycle accurate pipeline where it
is executed again. The two results are compared at com-
mit, any mismatches result in a pipeline flush on roughly
0.003% of all cycles. PTLsim’s sequential uop-level func-
tional simulator provides the same functionality to PTL-
sim’s cycle accurate cores as Simics provides to TFSim’s
timing core, respectively, such that we could integrate the
TFSim concepts of self validation and approximate execu-
tion into PTLsim. Most importantly, unlike Simics, PTLsim
is fully open source - this allows the internal uop ISA shared
by both functional and timing accurate cores to be adjusted
for an optimal fit.

6.4. General Advantages and Disadvantages

In Section 5 and Figure 2, we illustrated how full sys-
tem simulation is critical to obtaining accurate performance
results when interaction with the kernel or virtual memory
is present. In multi-processor or multi-threaded environ-
ments, full system simulation becomes important toall ap-
plications, even if they are strictly compute-bound. Sev-
eral of the simulation tools reviewed in this section, in-
cluding SESC [8] as well as SimpleScalar-derived simula-
tors like M-Sim [10], support “pseudo” symmetric multi-
threading or multi-core models. In this arrangement, two or
more independent user-space programs in separate address
spaces are run in parallel on an SMT or CMP model. These
simulators typically cannot run true shared memory multi-
threaded programs involving lock contention, limiting their
usefulness to simple single process benchmarks.

It is also unclear how accurate results can be obtained
without simulating the kernel’s thread scheduler and inter-
rupt handling code, TLB pressure from multiple hardware
threads, and physical address based NUMA and cache co-
herence interactions. It should be noted that full system
simulators like PTLsim (and a few other tools such as M5
[7]) do not have this problem, since they model the bare
hardware and devices, allowing all kernel and user code
to be simulated. PTLsim also faithfully models all lock
contention in terms of real interlocked x86 instructions and
their uops using the same semantics as Pentium 4 hyper-
threading. However, it should be noted that we cannot fairly



compare PTLsim’s accuracy or performance with the other
simulators in this section, since all the other tools are for
non-x86 instruction sets.

None of the existing simulators reviewed so far support
native mode co-simulation, in which uninteresting portions
of the target code are executed directly on the host CPU at
full speed. With existing tools, users must slowly execute
through billions of cycles of initialization code in bench-
marks to get to the interesting parts, and since most other
tools are based on discontinued instruction sets, it is impos-
sible to compare the simulator’s output with a real machine
on an instruction-by-instruction basis using the x86 hard-
ware debug and single step facilities. In contrast, PTLsim’s
native mode technology eliminates both of these limitations,
as described in Section 2.3.

7. Conclusion

In this paper, we described how we extended PTLsim
into a full system simulator by integrating it with the Xen
hypervisor, and how we added multi-processor and multi-
threading support to PTLsim. We first first described what
it takes to perform cycle accurate modeling of a complete
x86 machine at the uop (micro-operation) level, along with
the challenges and requirements for effective full system
multi-processor capable simulation. We also disclosed the
PTLsim out of order core’s features, and we described how
native mode co-simulation integrates with PTLsim’s core
models. We detailed the internal architecture of full system
PTLsim and how it interacts with the Xen hypervisor, as
well as how we model the various system-level aspects of
the x86 architecture. The challenges of accurately model-
ing the flow of time in a simulation environment were also
discussed.

We experimentally evaluated PTLsim’s real world accu-
racy by configuring it as close as possible to a real AMD
Athlon 64 machine. We then ran a demanding full sys-
tem client-server networked benchmark (rsync with ssh and
TCP/IP) inside PTLsim. We compared numerous statistics
between PTLsim and the real K8-based core’s performance
counters, and we used these data to prove that PTLsim can
be used to very accurately model commercial microproces-
sors, in many cases within 5% of the real hardware. We
described why PTLsim offers a distinct advantage through
its focus on x86 (the most widely used ISA in the world),
allowing us to provide native mode execution for high speed
as well as co-simulation for validation and debugging. We
used our simulation data to show that userspace only sim-
ulation cannot deliver accurate results for many important
workloads.

Our future work with PTLsim will focus on two areas.
First, we will construct detailed multi-processor intercon-
nect models with full MOESI cache coherence and the as-

sociated overhead (instead of the current instant visibility
model). These models will be built upon the multi-core and
SMT infrastructure PTLsim already provides, and will au-
tomatically enhance the multi-processor fidelity of all sim-
ulation cores. Second, we will extend PTLsim to support
Xen’s HVM (hardware accelerated virtualization) technol-
ogy, allowing arbitrary operating systems to be modeled
even if they do not support the Xen virtual devices. We be-
lieve that PTLsim will be a major step forward in the field
of microprocessor simulation, powered by the widely used
x86 instruction set and the high fidelity full system multi-
processor modeling PTLsim delivers.

Acknowledgements.We would like to thank Hui Zeng (PTLsim
SMT core developer) and other members of the CAPS research
group at Binghamton for their technical contributions. We also
thank the reviewers for their invaluable suggestions. This
research was sponsored in part by NSF grantCNS0454298.

References

[1] M. Yourst. PTLsim User’s Guide and Reference.Technical report at
http://www.ptlsim.org

[2] D. Lilja, J. Ye. Simulation of Computer Architectures: Simulators,
Benchmarks, Methodologies, and Recommendations.IEEE Trans.
on Computers, Vol 55 N 3, p268, March 2006.

[3] Bochs IA-32 Emulator Project. http://bochs.sourceforge.net
[4] F. Bellard. QEMU Internals. Tech Report, 2006.

http://www.qemu.org/qemu-tech.html
[5] P. Magnusson et al.Simics: A Full System Simulation Platform.

IEEE Computer, Feb. 2002 (Vol 35 N 2), p50.
[6] T. Austin et al.SimpleScalar: An Infrastructure for Computer Sys-

tem Modeling.IEEE Computer, February 2002
[7] The M5. Simulator System. http://m5.eecs.umich.edu
[8] P. Ortego, P. Sack.SESC: SuperESCalar Simulator.Tech Report,

Dec. 2004. http://sesc.sourceforge.net/sescdoc.pdf
[9] J. Veenstra, R. Fowler.MINT: a front end for efficient simulation of

shared-memory multiprocessors.Proc. of Modeling, Analysis, and
Simulation of Comp and Telecom Systems, 1994, p201.

[10] J. Sharke.M-Sim: A Flexible, Multithreaded Architectural Sim-
ulation Environment. Tech Report CS-TR-05-DP01, Dept. of
C.S., State Univ of New York at Binghamton, Oct 2005.
http://www.cs.binghamton.edu/~jsharke/m-sim/

[11] C. Mauer et al.Full System Timing-First Simulation.Proc. ACM
SIGMETRICS 2002, p108

[12] O. Mutlu. Efficient Runahead Execution Processors.PhD Disserta-
tion (Univ. of Texas at Austin), Chapter 4, p69. August 2006.

[13] WWW Computer Architecture Page: Simulators.
http://www.cs.wisc.edu/~arch/www/tools.html

[14] Xen Community Overview. http://www.xensource.com/xen
[15] B. Clark et al. Xen and the Art of Repeated Research.Proc.

USENIX, 2004.
[16] Software Optimization Guide for AMD64 Processors, Appendix A.

AMD Pub. 25112, Rev 3.06, September 2005.
[17] H. de Vries.Understanding the Detailed Architecture of AMD’s 64-

bit Core.http://www.chip-architect.com
[18] A. Tridgell. Efficient Algorithms for Sorting and Synchroniza-

tion: The rsync Algorithm. PhD Dissertation (Feb 1999),
http://samba.org/~tridge/phd_thesis.pdf

[19] R. Desikan et al.Measuring Experimental Error in Microprocessor
Simulation.Proc. ISCA 2001.

[20] PTLsim model of AMD K8 Microarchitecture.
http://www.ptlsim.org/benchmarks.php


