
PTM: A Pervasive Trust Management Model for Dynamic Open
Environments∗

Florina Almenárez, Andrés Maŕın, Celeste Campo, Carlos Garćıa R.
Dept. Telematic Engineering, Carlos III University of Madrid

Avda. Universidad 30, 28911 Leganés (Madrid), Spain
http://www.it.uc3m.es/pervasive

{florina, amarin, celeste, cgr}@it.uc3m.es

Abstract

Trust is considered as a fundamental aspect for inter-
domain relationships. We have reviewed existing trust
models and their drawbacks when they are applied to per-
vasive environments. We present PTM, a new decen-
tralised trust management model for pervasive comput-
ing environments. PTM overcomes the challenges posed
by dynamic open environments, making use of the au-
tonomy and cooperable behaviour of the entities. Our
model facilitates ad-hoc trust relationships, captures en-
tities dynamic behaviour along time, and allows trust in-
formation exchange through a recommendation protocol.

1. Introduction

Technological advances are bringing Weiser’s 1991
vision ([20]) closer to reality. Pervasive environments
comprising multiple devices with communication, com-
puting and storage capabilities (while size is getting
smaller) communicanting in open dynamic spaces. En-
hanced autonomy and mobility allow these devices to
engage in ad-hoc networks in order to cooperate among
them, called PerNets (pervasive ad-hoc networks). Per-
Nets must be secured for avoiding information disclo-
sure, modification, unsuitable use of resources, and/or
attacks.

Public Key Infrastructures (PKIs) are commonly
used for management of security in networks. Trust
models in PKI are generally hierarchical, leading in oc-
casions to mesh of hierarchies to distribute the load
among the authorities (CAs). In any case, the trusted
root being very sensitive point of the scheme, the trust

∗ Thanks to UBISEC (IST STREP 506926) and EVERYWARE
(MCyT No2003-08995-C02-01) projects.

relationships are often configured manually by admin-
istrators and require some kind of agreement between
CAs. Establishing trust models across inter-domains
with different root CAs becomes a problem of quite a
different degree.

In PerNets, the usability of such models is not so
clear, for instance, if an unknown device u intends to
join a PerNet N , would be neccesary that the CA is-
suer of u′s certificate is trustworthy and then to verify
the validity of u′s certificate. But, what would happen
if u’s CA is not preconfigured to be trustworthy, or if it
is not reachable from N?. Shall N prevent u from join-
ing? Is there any mechanism to get information about
u?. So, we propose a new decentralised trust model
based on public key which is independent of the secu-
rity infrastructure, allowing the constitution of ad-hoc
trust relationships, since interactions between highly
mobile devices are very frequent in pervasive comput-
ing. Our approach tries to model trust in the real world,
intending to translate these behaviours to PerNets, so
that entities can exhibit autonomous, dynamic, and co-
operable behaviours.

Section 2 gives a brief explanation of the different
approaches about trust models. In section 3, we present
our Pervasive Trust Management Model (PTM), its ar-
chitecture, a recommendation protocol and the equa-
tions for trust calculation, making an analysis of the
belief combination mechanisms. In section 4 we have
validated our model. Finally, we summarise and men-
tion our future research directions in section 5.

2. Related Work

In the last decades, trust models such as [17], [4],
[5], [2], and security models based on trust such as
[23] (Pretty Good Privacy, PGP), [12], and [15] have
been defined. A trust model for authorisation to cer-
tain services in unknown environments is shown in [6].

Finally, an European project, SECURE ([9]), presents
a trust and risk framework to secure collaboration be-
tween ubiquitous computer systems; the aim is to sup-
port collaborative tasks.

Marsh’s approach [17] is focused on situational trust
by using subjective variables to calculate the trust
value. Beth’s [4] proposes a formal method for the eval-
uation of trustworthiness which is used to authorisa-
tion on sensitive tasks; it is an extension of [21] and
has been the basis of [2]. Blaze et al. [5] propose a de-
centralised trust model to determine whether partic-
ular credentials satisfy certain policies; the language
used to specify trusted actions and trust relationships
is complicated and not easy to understand for non-
programmers ([15]). In the Abdul-Rahman’s approach
([1]), trust management is performed by a distributed
trust model and a recommendation protocol; just like
PGP, the chains of recommendation are too large; these
are used to measure the agent’s trustworthiness on a
specific category.

PGP [23] is used mainly to encrypt local files; key
authenticity is provided through a distributed trust
model based on key public cryptograpic. Although
PGP was designed to work in fixed networks and ro-
bust devices, it has desirable characteristics to be used
in PerNets. Jøsang ([11], [14], [12]) describes a method
for computing authenticity based on certificates, on key
binding, and on trust relationships. It uses an opinion
model and evidence model to represent the trust; it is a
powerful model, but it could be too complex to be im-
plemented in constrained devices. Kagal et al. give a
security approach based on trust for pervasive com-
puting; a security agent (fixed device) in each domain
is responsible for the trust management, authentica-
tion, and authorisation.

The above mentioned approaches present drawbacks
for open pervasive environments. We have defined a
pervasive trust model between autonomous entities
without central servers. It minimises user intervention
as much as possible. It captures the human’s behaviour
in order to predict potential attacks. It is simple enough
to implement in the very constrained devices which
have strict resource constraints. It is the basis for au-
thentication and authorisation.

3. PTM: Pervasive Trust Management
Model

Trust relationships are established between entities.
We assume that all entities are autonomous and some
of them are mobile. Entities can be persons, organiza-
tions, departments, etc., and its devices as we can see
in the Fig. 1. Each entity manages its own security like

Figure 1. PTM Scenario

PGP. If there are established trust relationships among
CAs these would be used; but an entity can also cre-
ate its own trust relationships. So, each entity handles
a protected list of trustworthy and untrustworthy en-
tities, the trust value (degree) associated, behaviour’s
information, the public key and the public key’s valid-
ity. It is important to store information about untrust-
worthy entities because distrust is different from not to
have any trust.

3.1. Definition of Trust

Several trust definitions have been given at psychol-
ogy, economy, sociology, mathematics, etc. We have
based our definition on Jøsang as the belief that an en-
tity has about other entity, from past experiences, knowl-
edge about the entity’s nature and/or recommendations
from trusted entities. This belief express an expectation
on the entity’s behaviour, which implies a risk.

From the definition above, trust is founded on par-
ticular beliefs, and this fact together with the dynamic
PerNets motivates us to define PTM. We define a “gen-
eral trust” (according to Marsh) because of the simplic-
ity required since for storing trust values by each task
would not be scaleable in constrained devices.

3.2. Properties of Trust

Trust relationships are required to fulfil certain
properties. Let us define three entities A, B and C
within PerNet N . We define R(A,B) as a function
of trust relationship between A and B (A → B). R
is a continuous function ranging from 0 to 1, being
these values the extreme cases of complete distrust
and complete trust respectively; in addition, we in-
clude intermediate states between the extremes, for in-
stance, 0.5 would be used as ignorance value. We rely
on fuzzy logic because it enables us more granularity
than boolean logic. The fuzzy values are represented
by α, β and γ (i.e. any value between 0 and 1). We de-
fine a trust path P (A,B, C) as a trust relationship be-
tween A and C through B. In addition, we use tem-

Figure 2. PTM Architecture

poral logic with the symbols Gx (always x), Fx (some-
times x) and xUy (is true until y is true), representing
future time. Finally, we define positive actions as a+

and negative actions as a−. Then, the properties sup-
ported by PTM are:

• Reflexive. Every entity trusts itself: ∀A|G(R(A, A) = 1).

• Non-symmetrical. If A trusts B, not necessarily B
trusts A: ∃A, B|(∃R(A, B) ; ∃R(B, A))

If A trusts B and B trusts A, then, B’s
trust is not necessarily equal to A’s trust:
∃R(A, B), R(B, A)|R(A, B) = α ∧ R(B, A) = β → F(α = β)

• Conditionally transitive. It is only applied between
unknown entities that can become known through a
trust path P . If A trusts B and B trusts C, then A con-
ditionally trusts C:

∃R(A, B), R(B, C) ∧ @R(A, C)U∃P(A, B, C)
If A trusts B and B trusts C, B could recom-

mend to C, therefore, A will trust C. The C’s trust
value calculated by A is less or equal than the rec-
ommended value multiplied by the B’s trust value:
∃R(A, B), R(B, C), P(A, B, C)|R(A, B) = α ∧ R(B, C) = γ
⇒ F(R(A, C) ≤ α.γ) for each P(A, B, C)

• Dynamic. Trust changes (increase or decrease) along
the time according to the actions:

∃R(A, B) = α|G(a+ → R(A, B) ≥ α) ∧ G(a− → R(A, B) < α)

3.3. Trust Management Model Architec-
ture

In accordance with our architecture (Fig. 2), in a
specific context, the trust can be established in a di-
rect or an indirect way (Trust Formation). Once the
trust is formed, we obtain an initial trust value; this
value is our Belief Space. However, the trust changes
according to the entity’s behaviour by providing feed-
back about entity’s performance during the interaction,
Evidence Space. This process is called Trust Evolution,
which is constantly changing. Both trust formation and

trust evolution allow to create trust relationships be-
tween entities; these relationships are supported by the
trustworthiness of the system and the communication.
It is very important the trustworthiness of the entities
as well as the trustworthiness of the communication
means. Our architecture includes the phases of trust
relationships similar to real world as is shown in the
next sections.

3.4. How is the trust formed?

Entities joining a PerNet for the first time do not
have evidence of past experiences to establish a trust
value. In order to establish an initial value, we have
two information sources: previous knowledge (direct)
or recommendation (indirect).

3.4.1. Direct The direct trust formation is given by
the knowledge of the entity’s nature or past interac-
tions in the physical world, without requesting infor-
mation to a trusted third party (TTP). Nevertheless,
although the entities are unknown at the beginning,
a trust relationship can be established (depending on
the security policies). In both cases, we assign an ini-
tial value by default, which is increased by the user
or with additional information when the entities are
known.

3.4.2. Indirect When two unknown entities to each
other are willing to interact, can exist a TTP by both
of them. In that case, the TTP (B) may be able to rec-
ommend another entity (C) to (A) through either a
recommended trust value or a certificate. Both mecha-
nism are called “recommendations” and require a trust
value to calculate the C’s trust degree, so:

• When A is provided with the recommended trust
value given by B (RB), RB would be the trust
value.

• When the recommendation is given by a certifi-
cate issued by B, we assume RB as 1, because the
traditional PKI is boolean. A certificate is only is-
sued when the entity is trustworhty, otherwise the
certificate is denied.

3.5. Trust Calculation

A calculates the C ′s trust degree, weighing RB by
our trust degree on B, so that R(A,C) = RB .R(A,B).
This result can be derived from the third property (Sec-
tion 3.2). However, we will often have more than one
recommendation, then we will compute the trust degree
as the average of all recommendations (RBi) weighted
by the trust degree of the recommender (R(A,Bi)):

R(A,C) =
1
n

n∑

i=1

RBi
.R(A,Bi) (1)

Eq. (1) will not fulfil the conditionally transitive
property for “ALL” recommendation paths n, but only
for some of them. The only possibility to fulfil this
property is to choose the minimum among the weighted
recommendations. Nevertheless, this function would be
extremely conservative, and often it would be the case
that we end up trusting on the opinion of the less
trusted recommender.

We use the weighted average operator (WAO) be-
cause: the recommender’s trust degree is important for
evaluating the reliability of the sources; unlike the be-
lief combination model of Dempster-Shafer ([19]) and
the consensus operator (CO) by Jøsang [10] which as-
sume equally reliable sources. We believe in the rec-
ommendations as long as we trust the entity. In dy-
namic environments, it is very useful since we could
find both trusted entities and malicious ones. In addi-
tion, WAO is simpler than others to calculate the trust
value as being suitable for pervasive devices.

Dempster-Shafer belief model is a framework for up-
per and lower probability bounds. It defines a set of
possible situations (states of a system) which is called
the frame of discernment. Each state has assigned a be-
lief mass and are called atomic because they do not
contain substates, in order to calculate probabilities.
The consensus operator is based on statistical infer-
ence of subjective uncertain beliefs. This work is built
on Dempster-Shafer theory.

We have compared our results with the Dempster’s
Rule (DR), the Smet’s non-normalised version of DR
(NDR), and the CO, using the well known example that
[22] used for criticising DR. This example is explained
in [10]: Suppose that we have a murder case with three
suspects (Peter, Paul, Mary) and two witnesses (W1,
W2) who give highly conflicting testimonies. Table 1
gives the witnesses’s belief masses and the resulting be-
lief masses after applying DR, NDR, CO and WAO. Θ
is the uncertainty value which is introduced by allocat-
ing some belief. For WAO, we assign 1 as the trust de-
gree to both witnesses.

Table 1 shows that DR, CO, and WAO corresponds
well with intuitive human judgement. NDR however in-
dicates that new suspects must be found. In our model,
uncertainty is a negative factor representing incom-
plete knowledge about the entity. In [13] is shown that
when Θ is 0, WAO and CO produce equal results and is
stated that WAO is not associative, but we argue that
it can be computed by an algorithm that ensures its as-
sociativiness. The algorithm stores: i as the number of

W1 W2 DR NDR CO WAO

Peter 0.98 0.00 0.490 0.0098 0.492 0.490

Paul 0.01 0.01 0.015 0.0003 0.010 0.010

Mary 0.00 0.98 0.490 0.0098 0.492 0.490

Θ 0.01 0.01 0.005 0.0001 0.006 0.010

Table 1. Comparison of operators in Zadeh’s ex-
ample

opinions that have been computed, and Ri−1(A, C) as
the latest result.

Ri(A,C) =
(i− 1)Ri−1(A,C) + RBi

.R(A,Bi)
i

(2)

Now, a question turns up: How do you exchange rec-
ommended trust values? Well, we define a recommen-
dation protocol that it can be invoked by any entity to
improve its trust knowledge.

3.6. Pervasive Recommendation Protocol
(PRP)

Recommendation process includes at least three en-
tities: 1) Requester (A), who requests a recommenda-
tion. 2) Target peer (C), unknown entity on which rec-
ommendation is requested. 3) Recommender(s) (B),
who sends a recommendation.

Unlike other recommendation mechanisms, we only
accept recommendations from TTPs avoiding large rec-
ommendation chains. In addition, this protocol allows
us to exchange trust values instead of requesting in-
formation about a specific service. To exchange trust
values, PRP defines three messages whose implemen-
tation (Fig. 3, 4, 5) shows the protocol flow.

3.6.1. Recommendation Request (RRQST) It
allows the request of trust information about an un-
known entity. For instance, C wants to interact with
A, but C is unknown to A, then A requests recommen-
dations (sending a RRQST) to close entities. A would
wait some time x to receive recommendations. A only
considers as recommendations those from trusted en-
tities. When the time expires, the trust value is calcu-
lated using the eq. 1 (Fig. 3).

The RRQST message format is the following:

RRQST ::= {Rqst ID, Rquster ID, Target ID, TS}

Where, Rqst ID is the unique Request Identifier, this
field allows the requester to know what message is be-
ing replied after. Rquster ID is the Requester Identi-

fier; it could be formed by a unique name, or a certifi-
cate. Target ID is the Target Peer Identifier. TS is the
request time in order to avoid replay attacks and to dis-
card any old RRQST that may still be floating around
in the system.

From recommendations, we assign trust values ac-
cording to external information, but an extreme case is
when nobody has information about C, then A should
decide whether granting access to C or not. For that,
A takes into account internal information ([16]), that
is, how much are we endangering? Could we overcome
a deceit? Do we have protetion mechanisms against
threats?. So, the initial trust value would be assigned
from a trust policy instead of a default value. To eval-
uate internal information is an implicit way to value
the risk. Future experiences will help us to maintain or
change this decision.

request recommendation() {
broadcast(RRQST(Rqust ID, Rquster ID, Target ID, TS));
Totalrec = 0;
timeout (x, EXPIRED);
loop {
R = listen(RRPLY(Rqust ID, Rcder ID, TS, TValue));
if trusted(RcderID) {

Trust += TValue*Trecommender;
Totalrec + +;

}
}
EXPIRED:
if (Totalrec == 0) Trust = ignorance value;
else Trust = 1

Totalrec
*Trust;

return Trust;
}

Figure 3. RRQST Message Implementation

3.6.2. Recommendation Reply (RRPLY) It is
used to reply a RRQST message. The response is uni-
casted to the requester by those entities that know C:

RRPLY ::= {Rqust ID, Rcder ID, TS, Trust Value}

Where, Rcder ID is the Recommender Identifier. TS
is the timestamp of the reply, and Trust value is the de-
gree of trust associated with the target peer.

3.6.3. Recommendation Alert (RALRT) It
warns close entities about a harmful entity hav-
ing performed a malicious action. The Fig. 5 shows
the sending of a RALRT message and the process-
ing of this message in case of receiving it.

RALRT ::= {Sender ID, Target ID, TS}

send reply recommendation() {
A = listen(RRQST(Rqust ID, Rquster ID, Trgt ID, TS));
if known(Target ID) {

Trust Value = search trust value(Target ID);
unicast(RRPLY(Rqust ID, Rcder ID, TS, Trust Value));

}
}

Figure 4. RRPLY Message Implementation

send alert() {
broadcast(RALRT(Sender ID, Target ID, TS));
}

receive alert() {
A = listen(RALRT(Sender ID, Target ID, TS));
if unknown(Sender ID) ignore(message);
else if Tsender < Ttarget peer ignore(message);

else if Tsender ≥ Ttarget peer decrease(Ttarget peer);
}

Figure 5. RALRT Message Implementation

To provide messages with integrity and confidential-
ity we can use secure sockets (SSL) or security proto-
cols implemented in lower layers.

3.7. How does trust evolve?

The initial trust value is not static since it changes
according to the entity’s behaviour (positive and nega-
tive experiences) along the time. We can see two spaces
separated, similar to the Jøsang’s model: the belief
space and the evidence space.

3.7.1. Belief Space Our belief space is formed from
either the previous knowledge or the evidences ob-
tained. The belief is described as a set of propositions
(fuzzy logic). These propositions express the owner-
ship degree of an entity to the set of trustworthy en-
tities through a quantitative adverb as shown in the
Fig. 6. For example, A believes that B is very trustwor-
thy. We use doxastic logic as a syntax for the propo-
sitions, where Ba

b means “a believes b”: Ba
b [complete |

high | medium | low][trust | distrust].

Figure 6. Trust Clasification

3.7.2. Evidence Space It is formed by past and cur-
rent experiences. Experiences represent behaviour pat-
terns of each entity. These patterns help us to evaluate
the new trust values in inverse proportion to the en-
tity’s negative actions. Actions can be positive or neg-
ative. However, we assume that all negative actions are
not the same that is the reason because we distinguish
between wrong actions and malicious actions: Positive,
i.e. right actions; Wrong, i.e. bad actions that do not
cause any damage or cause mild damages; and Mali-
cious, i.e. harmful actions such as attacks.

Accesses to authorised resources and suitable use
of them are considered right actions. An entity can
make wrong actions by mistake or intentionally, but
it is difficult to know. Then we consider as wrong ac-
tions those slightly incorrect actions like trying to ac-
cess to unauthorised resources, or overuse of local re-
sources. Depending on the context, these actions can
be interpreted as malicious. Malicious actions are at-
tacks such as sending the same request n at a high rate,
sending viruses, etc.

To calculate the action value Va, we take into ac-
count the performed action weight, but this value is pe-
nalised or rewarded by the past behaviour. This func-
tion increases or decreases according to the performed
positive and negative actions respectively, so:

Va = (1− AN

Totala
).Wa

(m) (3)

Where 1 − AN

Totala
means the past behaviour. This

value tends to zero (0) when the behaviour is nega-
tive, and it tends to 1 when the behaviour is positive.
AN is the number of negative actions and Totala is
the total number of performed actions. Wa is the ac-
tion’s weight according to its nature (positive, wrong,
and malicious). Wa for positive actions is 1, for wrong
actions is 0.5 and for malicious actions is 0. Finally, the
parameter m is the security level, where m ≥ 1. This se-
curity level affects the action weight, for this reason we
raise the action weight to the power of (m). The ex-
ponential really influences when the actions are wrong.
We will show later in Fig. 7 how the security level af-
fects the action values.

When a new action is performed, Va is recalculated,
reflecting the present behaviour of the entity. The new
trust value will take it into account and modify the cur-
rent trust value, for instance, R(A,C)act, according to
the equation 4:

R(A,C)new =
{

Va.β + R(A, C)act.(1− β) Va > 0
0 else (4)

Where β (in this case) is a configurable parameter
to give weight to the present with respect to the past.

Therefore, β equal 0 means we will never change our
opinion, and β equal 1 means that we do not have any
memories and we are only interested in the present.
Neither β equal 0 nor β equal 1 are good options, it
should exist an equilibrium between the past and the
present.

4. PTM Validation

We have validated our model according to the secu-
rity level (m) and the variable parameter (β) in or-
der to demonstrate as trust values correspond suit-
ably with intuitive human judgement. As scenario (as
shown Fig.1) we have used a smart laboraty (SL) which
has multiple embedded and fixed devices offering ser-
vices such as printers, photocopiers, fax, computers,
web cams, multimedia projectors, etc. These services
are used by different users, that is, known users (B)
such as researchers, professors, etc., and unknown users
(C) such as visiting, scholarship holders, etc. The visi-
tors can use the services offered in SL through the au-
tomatic configuration. When a visiting requires a spe-
cific service, then, the device (offering the service) sets
up automatically the trust relationship with the visit-
ing; without an administrator or connectivity with a
remote CA.

When a visiting Ci arrives, an entity detecting its
presence requests information about it. In our case,
nobody has information about Ci, then we grant ac-
cess to Ci by assigning an initial trust value 0.5. Let
β be 0.5. m is different for SL and B because SL re-
quires higher security level than B. B has a lower secu-
rity level because it is in a friendly environment (its job
place). Thus, the B′s security level is equal to 1; and in
SL′s security level is equal to 2. After the sixth action,
the C ′is trust value in B is 0.237, higher than 0.161 ob-
tained by SL.

The table in the Fig. 7 illustrates how trust changes
with the entity’s behaviour and the influence of m. The
table also shows how the action value is decreased as
the number of negative actions increases.

On the other hand, the trust values can change ac-
cording to the entity type, for instance, a conserva-
tive entity (β equal 0) would never change the initial
trust value 0.5, an entity without memories (β equal 1)
would always assign the last action value Va, or an en-
tity that maintains the equilibrium (β equal 0.5) would
have fair trust values as above values. Fig. 8 proves that
neither β equal 0 nor β equal 1 are good options (dot-
ted line), a better option is to maintain the equilib-
rium. Hence, the fact of having variable parameters in
our model does not affect the cooperation between en-
tities. Besides, it provides autonomy to each entity to

B SL
Action Va R(Ci) Va R(Ci)
Positive 1 0.750 1 0.750
Wrong 0.25 0.500 0.125 0.437
Wrong 0.166 0.333 0.083 0.260
Positive 0.5 0.416 0.5 0.380
Wrong 0.2 0.308 0.1 0.240
Wrong 0.166 0.237 0.083 0.161

Figure 7. Comparison of Trust Values according
to the Security Level

take decisions and to define policies. Finally, the stor-
age of the historical behaviour is light since it records
a summary, in this way it does not require high stor-
age capabilities.

Figure 8. Comparison of Trust Values according
to β

In general, the negative behaviour converges to 0
whereas the positive behaviour converges to 1. The con-
vergence can be slower or faster according to trust poli-
cies as we can see in the Fig. 9. With this information,
we could also make statistics about the risk. Besides,
the error could be calculated as the difference between
real behaviour and calculated behaviour.

Figure 9. Entity’s Behaviour

5. Conclusions and Future Work

Trust is the basis of the inter-domain relationships
in any community. In this paper, we have reviewed the
existing trust models and we have shown that they
present drawbacks to be applied to pervasive comput-
ing. We have presented PTM whose main contribu-
tion is the decentralised and automatic management of
trust relationships for PerNets. PTM presents a num-
ber of advantages: it is decentralised because it does not
require to establish hierarchical relationships between
CAs, but it is compatible with hierarchical PKIs; in
PTM trust changes dynamically, according to the en-
tity’s behaviour; it minimises the human intervention
since most security management functions can be per-
formed automatically; it is used as the basis for au-
thentication and authorisation; and finally, it is simple
to be executed on constrained devices.

Now, we are working in the PTM implementation
using J2ME Personal Profile for constrained devices, in
order to test the usefulness of our model in PerNets and
to get experimental results. We have defined and im-
plemented a trust based access control system, called
TrustAC (Trust-based Access Control), using and cus-
tomising XACML [18] Sun’s implementation in J2SE
for PC and Personal Java for constrained devices to be
integrated with PTM.

We are going to simulate PRP in order to measure
the time and the battery consumption required to es-
tablish a trust relationship with and without recom-
mendations, the correct relationships percentage, and
the use of wireless links among others. Finally, PTM
has been proposed to provide a secure service discov-
ery protocol (SPDP) [3].

References

[1] A. Abdul-Rahman and S. Hailes. Supporting trust in
virtual communities. In Proceedings 33th Hawaii Inter-
national Conference on System Sciences. IEEE Press,
January 2000.

[2] A. Abdul-Rahman and S. Hailes. A distributed trust
model. InProceedings of the ACM Workshop on New Se-

curity Paradigms, pages 48–60, Cumbria, United King-
dom, SEP 97.

[3] F. Almenárez and C. Campo. SPDP: a secure service
discovery protocol for ad-hoc networks. In Workshop on
Next Generation Networks - EUNICE 2003, September
2003.

[4] T. Beth, M. Borcherding, and B. Klein. Valuation of
trust in open networks. In Proceedings of the Euro-
peanSymposiumonResearch inComputer Security (ES-
ORICS ’94), number 875 in Lecture Notes in Computer
Science, pages 3–18, Heidelberg, Germany, NOV 94.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings of the IEEE Sympo-
sium on Research in Security and Privacy, number 96-
17, MAY 96.

[6] L. Bussard, Y. Roudier, R. Kilian-Kehr, and S. Crosta.
Trust and authorization in pervasive B2E scenarios. In
Fifth International Conference on Ubiquitous Comput-
ing 2003, October 2003.

[7] C. English, P. A. Nixon, S. Terzis, A. McGettrick, and
H. Lowe. Security models for trusting network appli-
ances. In In Proceedings of the 5th IEEE International
Workshop on Networked Appliances, 2002.

[8] D. Gambetta. Can we trust trust? In D. Gambetta, edi-
tor, Trust: Making and Breaking Cooperative Relations,
chapter 13, pages 213–237. Basil Blackwell, New York,
NY, 1988.

[9] E. Gray, P. O’Connell, C. Jensen, S. Weber, J.-M.
Seigneur, and C. Yong. Towards a framework for assess-
ing trust-basedadmission control in collaborativeadhoc
applications, 2002.

[10] A. Josang. The consensus operator for combinig beliefs.
InArtificial Intelligence Journal, number141/1-2, pages
157–170, 2002.

[11] A. Josang. The right type of trust for distributed sys-
tems. In New Security Paradigms´96 Workshop, 96.

[12] A. Josang. An algebra for assessing trust in certification
chains. In Proceedings of the Network and Distributed
Systems Security (NDSS’99), 99.

[13] A. Josang, M. Daniel, and P. Vannoorenberghe. Strate-
gies for combining conflicting dogmatic beliefs. In Pro-
ceedings of the 6th International Conference on Infor-
mation Fusion, July 2003.

[14] A. Josang and S. J. Knapskog. A metric for trusted sys-
tems. In Proceedings 21st NIST-NCSC National Infor-
mation Systems Security Conference, pages 16–29, 98.

[15] L. Kagal, T. Finin, and A. Joshi. Trust-based security in
pervasive computing environments. In IEEE Computer,
volume 34, pages pp. 154–157, December 2001.

[16] N. Luhmman. Trust. MITPress, Cambridge,MA,USA,
95.

[17] S.P.Marsh. FormalisingTrust as aComputational Con-
cept. PhD thesis, University of Stirling, APR 94.

[18] OASIS. extensible access control markup language
(XACML), 2003.

[19] G. Shafer. A mathematical Theory of Evidence. Prince-
ton University Press, 76.

[20] M. Weiser. The computer for the 21st century. Scientific
American, pages 94–104, September 91.

[21] R. Yahalom, B. Klein, and T. Beth. Trust relationships
in secure systems-A distributed authentication perspec-
tive. In Proceedings of the 1993 IEEE Computer Society
Symposium on Security and Privacy (SSP ’93), pages
150–164, Washington - Brussels - Tokyo, MAY 93.

[22] L. A. Zadeh. Review of shafer’s a mathematical theory
of evidence. AI Magazine, 5:81–83, 84.

[23] P. R. Zimmermann. The Official PGP User’s Guide.
MIT Press, Cambridge, MA, USA, 95.

