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Abstract. Applying iterative phase retrieval schemes to ptychographic data,
i.e. diffraction patterns collected with a localized illumination probe from
overlapping regions of a specimen, has enabled the investigation of extended
specimens previously inaccessible by other coherent x-ray diffractive imaging
methods. While the technique had initially been limited by the requirement of
precise knowledge of the illumination function, recent algorithmic developments
allow now the simultaneous reconstruction of both the probe and the object.
However, these new approaches suffer from an inherent ambiguity, which affects
especially the case of weakly scattering specimens. We present new schemes to
circumvent this problem and introduce new tools for obtaining information about
the scattering behaviour of weak phase objects already during data collection.
The new techniques are experimentally demonstrated for a data set taken on
Magnetospirillum gryphiswaldense.
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1. Introduction

X-ray microscopy, featuring high penetration power with the possibility to obtain elemental or
magnetic contrast, has found various applications in life and materials science. The technique
depends on the availability of high-quality, high-resolution x-ray focusing optics, which are,
despite continuous progress [1]–[5], still very challenging to manufacture. To circumvent these
limitations, lens-less x-ray microscopy schemes exploiting the coherence properties of modern
synchrotrons or x-ray free electron lasers have been developed. In this case the image forming
system is replaced by a—usually iterative—phase retrieval algorithm that reconstructs the
specimen’s complex transmission function from coherent diffraction patterns recorded with a
two-dimensional pixelated detector. Generally referred to as coherent diffractive imaging (CDI),
the technique has progressed significantly since its first experimental demonstration in 1999 [6]
and has been successfully applied to cells [7, 8], nano-crystals [9, 10] or nano-particles [11]
(see also the review [12]). For phase retrieval to be possible, the intensity patterns have to be
sampled on a fine enough grid. For plane-wave illumination, the sampling condition requires an
isolated, compact object in real space, which limits the technique to certain types of samples or
requires specially adapted preparation protocols.

The compact specimen requirement, implemented as a ‘support constraint’ in the
most widely used reconstruction schemes [13], can be overcome by creating a constrained
illumination, either by an aperture or by focusing the beam. Yet treating such data with support
constraint approaches is difficult or may even be impossible [14] since the illuminated region of
the sample usually has smooth edges. In certain cases, where the incident illumination both has
a significant wave front curvature [15] and can be well characterized, it is possible to robustly
reconstruct images from individual diffraction patterns and combine them afterwards to cover
portions of extended objects [16, 17].

Another approach to image non-isolated specimens is based on the application of iterative
phase retrieval to data sets recorded according to a scheme called ‘ptychography’. First
proposed for electron diffraction in the 1970s [18], ptychography creates redundancy in the
data by taking diffraction patterns at multiple different, but overlapping illumination regions.
While an analytic solution via Wigner distribution deconvolution is possible if the step size

New Journal of Physics 12 (2010) 035017 (http://www.njp.org/)

http://www.njp.org/


3

corresponds to the imaging resolution [19, 20], a new iterative algorithm for ptychographic
data sets [21, 22] marked a significant improvement by allowing for larger step sizes. The
strength of the algorithm has been experimentally demonstrated with laser light [23] and
x-rays [24]. The method does not require a special type or shape of the localized beam incident
on the sample; however, a very accurate, independently obtained a priori knowledge of the
illumination function (the probe) is mandatory in this early reconstruction scheme.

In an experiment with hard x-rays it has been recently demonstrated that both the
probe and the specimen’s transmission function can be reconstructed simultaneously from one
ptychographic data set [25]. The reconstruction method employed in this case was based on
a general algorithm called the ‘difference map’ [26], yet probe retrieval can also be achieved
with other algorithms [27, 28]. Probe retrieval has not only shown to significantly improve
the reconstruction quality but also allows for new applications, e.g. in the field of wave front
sensing.

While the first demonstrations featured strong scatterers, it remained unclear how
weakly scattering specimens like biological material can be reliably treated within this new
ptychographic scheme. Furthermore, it had been observed that reconstructions from weak
signals are more prone to the previously reported ‘raster grid pathology’ [29], which is
inherent to the problem and independent of the reconstruction method. Investigation of
biological specimens with hard x-rays is of special relevance because the validity of the Born
approximation for such weakly interacting objects opens a clear path to three-dimensional
imaging.

In this paper, we address the possible threats to unique reconstructions and discuss ways
to circumvent the difficulties inherent to weakly scattering samples. We demonstrate our new
approach via ptychographic CDI (PCDI) of an extended biological specimen with hard x-rays.
We also present a new way to disentangle the scattering signals of the probe and the object in
cases where the probe’s contribution is dominating the diffraction patterns. This allows direct
and quantitative monitoring of the specimen’s scattering contribution.

2. Reconstruction method

In earlier publications, details of the theory of ptychography in general [19, 30] and also the
details of the algorithm used here [29] have been reported. A ptychographic data set is recorded
with a setup as shown in figure 1 by scanning the probe and the specimen relative to each other
with known displacements. The wave exiting the specimen propagates to the far-field where the
intensity is recorded with a pixelated array detector. At the j th scan point, one measures the
diffraction pattern

I j(q)= |F[P(r − r j)O(r)]|
2, (1)

where F is the Fourier transform operation with the two-dimensional reciprocal space
coordinate q, P is the probe function, rj the scan position and O the specimen’s complex
transmission function (the object). The validity of the factorization of the specimen’s exit wave
as the probe and the object has been discussed in detail in [19] and the Supporting Online
Material of [25]. Reconstruction entails numerically finding a function O that satisfies (1) for
all j . The problem can be trivially reformulated by introducing the exit waves (or ‘views’)
ψ j , which allows us to define the two constraints of the phase retrieval problem: the Fourier
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constraint enforces consistency with the measured intensities

I j(q)= |F[ψ j(r)]|
2, (2)

while the overlap constraint states that each view can be factorized as the probe and object
function

ψ j(r)= P(r − r j)O(r). (3)

The new problem of finding the ψ j that satisfies both constraints at all positions j can
be addressed with different methods. While we use the difference map [26], gradient-based
approaches have been shown to give good results as well [27].

For experimental data, the two constraint sets will never be perfectly compatible due to
the effects of noise. In this case, most iterative algorithms such as the difference map and the
hybrid input–output algorithm [13] will not converge to a single solution but only reach a steady-
state regime quasi-ergodically covering the space of allowed solutions. Although some simpler
algorithms like e.g. error reduction [31] will converge to an arbitrary one of these allowed
solutions, this is generally not a sign of uniqueness since it ignores the inherent experimental
uncertainties. A unique reconstruction is therefore usually obtained by averaging the allowed
solutions from the steady-state regime of the more advanced algorithms.

Another threat to uniqueness, which is independent of the reconstruction method, is the
existence of unconstrained degrees of freedom like those coming from missing regions in the
diffraction data. One such additional degree of freedom is inherent in the ptychographic phase
retrieval problem with probe retrieval: if P and O are solutions to the problem, so are the two
functions O ′(r)= f (r)O(r) and P ′(r)= [ f (r)]−1 P(r), if and only if

f (r)= f (r − r j) ∀ j. (4)

This system of equations has only the trivial solution f = constant unless the positions r j lie
in a regular two-dimensional lattice. This special case is very common in practice, where raster
scans are frequently used—this is the earlier mentioned raster grid pathology.

The problem is, of course, not present if either the probe or the object are fixed to a
predefined function, as it was the case in the first iterative scheme for ptychographic data [22].
While the raster grid pathology is hardly ever observed if the diffraction patterns are dominated
by scattering from the sample, it constitutes a serious problem in cases of weakly scattering
specimens, which only slightly modify the probe wave field and its diffraction pattern. One
approach to suppress the grid artefacts is to keep fixed certain regions of the reconstructed
object, such as flat areas in the sample. To circumvent the need to provide or obtain this
additional information, or especially in cases where the imaged object does not contain any flat
regions, an additional empty area can be created artificially. For this region only the diffraction
pattern of the probe alone is used as input data. So, the resulting reconstruction should show no
absorption and no phase shift. By enforcing these conditions in a reconstruction together with
the actual data, raster grid artefacts are suppressed globally.

This additional constraint of flat or otherwise known object areas is useful in cases
where one is bound to scan on regular grids due to experimental constraints. However, it is
more convenient to directly address the underlying problem by breaking the symmetry of the
scan pattern. If a rectangular grid is required, this can be to some extent achieved by using
incommensurate grid spacing for the two scan directions.

In our experiment, we have abandoned the rectangular scanning geometry in favour of a
pattern based on concentric circles, which does not show translation symmetry but is still easy
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Figure 1. Schematic of a setup for PCDI: A coherent portion of the x-ray
beam (X), preconditioned by slits, is selected with the pinhole (P). The sample
(S), consisting of a biological specimen and a nano-structured object used for
characterization of the incident beam, is placed directly behind the pinhole and
is scanned in the plane perpendicular to the optical axis. The diffraction patterns
are collected with a pixel-array detector (D) placed in the far field.

to describe analytically (see figure 2). Since the central and usually most interesting part of a
scan is measured first, it is also less subject to drift effects than in a usual raster scan. We will
refer to this kind of scan as ‘round scan’. The round scan is determined by three parameters:
radial step size 1r , number of shells Nr and number of points in the first shell Nθ (to ensure
uniform density of scan points, the number of points in the kth shell is fixed to k · Nθ ). For the
mth point in the kth shell, one obtains for the Cartesian coordinates (relative to the centre of
the scan):

x =1r · k · cos

(

(m − 1)
2π

Nθ · k

)

, (5)

y =1r · k · sin

(

(m − 1)
2π

Nθ · k

)

. (6)

3. Experiment description

It has been demonstrated in [25] that PCDI can be very naturally implemented with a scanning
transmission x-ray microscopy (STXM) instrument by using coherent illumination and a two-
dimensional detector. To emphasize the strong relation to STXM, the term ‘scanning diffraction
x-ray microscopy’ (SXDM) was introduced for this type of ptychographic experiment. Since
the resolution is no longer limited by the size of the focus of the x-ray optical system, larger
probes can be used. A very inexpensive and robust alternative to create a localized illumination
is the use of a simple opaque mask [24, 29], like in the pinhole-based setup shown in figure 1.
The maximum size of the illumination is given by the conditions for sufficient sampling of

New Journal of Physics 12 (2010) 035017 (http://www.njp.org/)

http://www.njp.org/


6

the diffraction intensities. The experiment was performed at the coherent small angle x-ray
scattering (cSAXS) beamline at the Swiss Light Source (Paul Scherrer Institute, Villigen,
Switzerland). Figure 1 shows a schematic view of the setup. The beamline’s double-crystal
monochromator (Si 111) together with a mirror (SiO2, to reject higher harmonics) was used
to set the energy of the incident beam to 6.2 keV, corresponding to a wavelength of about 2 Å.
The pinhole, which was used to both select a coherent portion of the beam and define the probe
incident on the specimen, had been milled into a 20µm thick tungsten foil by focused ion beam
and had a diameter of 2µm. The sample consisted of a biological specimen (Magnetospirillum

gryphiswaldense, see visible light micrograph in figure 2(a)) and a nano-fabricated Fresnel zone
plate structure mounted on the same holder to allow for some pre-characterization of the incident
probe. For the biological specimen, liquid cultures (50 ml) of wild-type Magnetospirillum

gryphiswaldense MSR-1 (DSM6361) were grown microaerobically (FSM medium in 250 ml
flasks), as described previously [32]. The cells were pelleted by centrifugation and stored as
glycerol stocks at −80 ◦C. Prior to deposition on the silicon nitride membranes (Silson Ltd,
1.5 × 1.5 mm2 window size with 1µm thickness), the cells were washed several times in 25 mM
ammonium acetate, pH 7.5. The sample was mounted on a two-dimensional piezoelectric
scanning stage (0.3 nm nominal resolution, <2 nm reproducibility, 100 × 100µm2 scan range),
which allowed precise positioning perpendicular to the beam. The diffraction patterns were
collected with a PILATUS 2M detector placed 7.18 m behind the sample plane. The PILATUS is
a single-photon counting hybrid pixel-array detector, with 1475 × 1679 pixels of 172 × 172µm2

size, 20 bit dynamic range and an adjustable counting threshold, resulting in no readout
noise [33]–[35]. An He-flushed tube was inserted in the path between the sample and the
detector to reduce air scattering and absorption. The scan positions used for collecting data
from the biological specimen are schematically depicted in figure 2(a): a round scan with a
diameter of 10µm was done with Nr = 11 shells (not counting the single point in the centre,
which was left out because the overlapping illuminations provided enough data for this region),
resulting in a radial step size 1r = 500 nm. The number of points in the first shell was set to
Nθ = 5. At each of the 330 scan points, two exposures of 0.7 and 7 s duration were combined to
increase the dynamic range of the diffraction data.

4. Results

4.1. Scattering power evaluation

The reconstruction of data from weakly scattering specimens is known to be more difficult
because of the obvious reduction of the signal-to-noise ratio. In traditional CDI, lower count
rates at larger scattering angles require longer exposure times, which in turn increase the
sensitivity to all systematic sources of error that scale with time, e.g. dark current noise in
charge-coupled devices (CCD). The problem persists if local probes are used, like in PCDI.
The signal from the specimen is not only just as weak, but the data are also dominated by the
diffraction of the probe. The specimen’s scattering contribution can be evaluated quantitatively
from measured diffraction patterns as follows:

In the weak phase object approximation, the exit waves can be written as

ψ(r)≈ P(r)(1 + i8(r))=: P(r)+ iQ(r), (7)

where Q contains the small effects of the object’s phase shift 8 on the probe wave field. Since
the relations presented here are independent of the scan point, the position index j has been

New Journal of Physics 12 (2010) 035017 (http://www.njp.org/)

http://www.njp.org/


7

Figure 2. Data collection and online scattering analysis. (a) Visible light
micrograph of the biological specimen overlaid with the scan positions of the
ptychographic data set. The positions are located on concentric circles with
a fivefold radial symmetry (see text for details). The approximate size of the
probe is indicated by the circle on the right edge of the scan. (b) Diffraction
pattern (logarithmic scale) at empty areas of the sample (average of 39 individual
frames) and (c) at the location of a bacterium, showing little evidence of
scattering contribution from the specimen. The prominent darker stripe running
from the top to the bottom is due to a slight tilt of the pinhole with respect to
the optical axis. (d) Signal distribution4 of the specimen scattering (logarithmic
scale) calculated from the diffraction patterns in (b) and (c) (see text for details).
(e) Number Ns of photons scattered by the sample and ratio of Ns versus N0 (the
total number of photons incident upon the sample) calculated for each diffraction
pattern of the ptychographic scan using equation (12). This image can also be
used for STXM-like low-resolution inspection of the data, giving an immediate
online feedback on the location and scattering behaviour of the specimen.
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omitted. The far-field intensity is obtained by Fourier transformation

I (q)≈

∣

∣

∣
P̃(q)

∣

∣

∣

2
+ 2 Im

[

P̃∗(q)Q̃(q)
]

, (8)

where P̃ and Q̃ are the Fourier transforms of P and Q and a third term, quadratic in 8, can
be neglected. Including the Poisson noise, the deviation from the probe diffraction intensity
becomes

I (q)− I0(q)≈ 2 Im
[

P̃∗(q)Q̃(q)
]

+ δ I (q). (9)

Because there is no limit due to radiation damage, the intensity pattern of the probe I0 = |P̃(q)|2

can be measured with much higher precision than I (q). We therefore consider that δ I (q)

represents only the measurement error in I (q). A ‘local resolution’ for each scan position can
be defined from the value qmax such that I − I0 is larger than the expected noise level. Since one
obtains for the variance of the intensity var I (q)= I (q)≈ I0(q), the condition is just4(q) > 1,
with the ‘signal distribution’

4(q)=
[I (q)− I0(q)]2

I0(q)
. (10)

Figure 2(d) shows the result of this calculation for one particular diffraction pattern (figure 2(c)),
using the (averaged) probe diffraction pattern in figure 2(b) as I0. Since the condition 4(q) > 1
implies that the excess of variance in I (relative to Poisson noise) is attributed to the scattering
from the object, an expression for calculating the number of photons scattered by the sample
can be derived: by inserting (9) into the definition (10) and summation over all q, one obtains
(see appendix for details)

∑

q

4(q)≈ Npix + 2
∑

q

∣

∣

∣
Q̃(q)

∣

∣

∣

2
, (11)

where Npix is the number of pixels of the investigated diffraction pattern. This can be rewritten as

Ns ≈
1

2

[

∑

q

4(q)− Npix

]

, (12)

i.e. from the data only, one can evaluate the total number Ns of photons scattered by the
specimen. Since the calculations presented here are not computationally demanding, they can
also be done online during data collection. This allows us to obtain a scattering map as shown in
figure 2(e), which provides a direct feedback on large features of the specimen and the scattering
signal produced by it. A comparison with the total number of photons incident on the specimen
N0 gives information about the local scattering cross-section (the second axis on the colour bar).
If one additionally uses the local resolution from the condition 4(q) > 1 for |q|< qmax, it is
possible to estimate the potential resolution and thus to adapt scan parameters such as exposure
times accordingly. However, the local resolution determined this way does not consider dose
fractionation effects in PCDI, where the resolution of the final reconstruction can be higher
than that derived from a single diffraction pattern due to the presence of data from the regions
illuminated by overlapping probes in different data sets.
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4.2. Reference reconstructions

The nature of the phase problem in two-dimensional CDI implies that low-order phase
aberrations can be difficult to reconstruct faithfully [36]. The lowest problematic order,
a quadratic phase factor in Fourier space, corresponds physically to the location of the
reconstruction plane along the propagation axis. In traditional CDI this ‘defocus ambiguity’ is
addressed with a tight support. Fortunately, PCDI is not subject to such aberrations because
the multiplicative relation (3) is formally only valid in the sample plane. However, as a
weakly scattering specimen modifies only slightly the probe diffraction pattern (as illustrated by
figures 2(b) and (c)), stagnation at a wrong focal plane is more likely to occur. The convergence
rate can be improved if one does not start with an arbitrary initial probe, but instead uses a
very good starting guess. This results already during the first iterations in a retrieved object
much closer to the real solution. Further refinement of the probe and thus the final defocus
plane are then much easier performed by the algorithm due to the greatly reduced search
space. In principle, an accurate estimate of the initial probe can be modelled from a few key
experimental parameters [41]. More robust is a model-free approach, which reconstructs the
probe at high resolution by imaging a strongly scattering structure that is placed at roughly the
same defocus distance. Figure 3 shows the reference specimen used to obtain an initial probe
for the reconstruction of the biological specimen. It is a gold (Au) Fresnel zone plate structure
with two small irregularly shaped Au particles on the top. The ptychographic round scan (see
reconstruction in figure 3(c)) covers only a small part of the total zone plate and thus once
more demonstrates that arbitrary parts of an extended object can be imaged. A central area of
192 × 192 pixels was used from each of the 140 diffraction patterns, which were in each case
combined from a short 0.7 s and a long 5 s exposure. Since the Fresnel zones are barely resolved
for the resulting reconstruction pixel size of 43.5 × 43.5 nm2, it can be inferred that the main
information on the probe (see figure 3(d)) is provided by the two strongly scattering Au particles
visible in figure 3(c). The use of a reference therefore does not add substantial complications
to the experiment, since almost any strongly scattering object situated in the sample plane can
be used.

4.3. Ptychographic reconstruction of the biological specimen

For the biological sample, the scattering analysis (see figure 2) showed that the innermost
192 × 192 pixels of the diffraction pattern contained all signal from the specimen. The
reconstruction was started with a probe guess obtained from the reference specimen. However,
the probe was not kept fixed but further refined in the usual probe retrieval scheme to account
for any difference compared to the reference scan, especially concerning the exact plane of the
object. The final probe, retrieved together with the reconstruction of the biological specimen,
is shown in figure 4(a). Since the full complex wave field is obtained, it can be numerically
propagated along the beam direction, e.g. to the plane of the pinhole (see figure 4(b)). A cut
through the propagated wave field parallel to the beam (figure 4(c)) reveals that the distance
between the pinhole and the sample was around 1.5 mm. The reconstructed phase shift of the
object is displayed in figure 4(d). The result was obtained after 200 iterations of the algorithm
by averaging 20 reconstructions picked between the 100th and the 200th iteration from the
earlier mentioned steady-state regime of the difference map, which had already been reached
after about 75 iterations. The weak phase object assumption is verified by the fact that the
bacteria cannot be seen in the reconstructed absorption image even though this property was
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500 nm

Figure 3. Reference specimen—an Au Fresnel zone plate structure with
irregularly shaped Au particles on the top—for pre-characterization of the beam
incident on the sample. (a) Diffraction pattern (logarithmic scale). (b) Signal
distribution of the specimen scattering (logarithmic scale) calculated analogue
to figure 2(d) from the diffraction pattern in (a) for a qualitative comparison.
The quantitative relations do not hold for this strong scatterer. (c) Reconstructed
phase obtained from a ptychographic round scan. The Fresnel zones, which
are in this area of the zone plate around 50–60 nm wide, are barely resolved
with the pixel size 43.5 × 43.5 nm2, so that the main information for the
probe reconstruction is actually obtained from the two irregular Au particles.
(d) Reconstructed probe (colour-coded complex image, see colour wheel) used
as an initial starting guess in the reconstruction of the biological specimen.

not enforced in the PCDI reconstruction. The phase shift 8 was converted into a map of the
projected electron density ne (see the second scale on the colour bar in figure 4(d)) using the
relations δ1r = −8 · λ/(2π) and ne = 2π/(re · λ2δ1r)with δ1r being the real part of the object’s
complex refractive index integrated over the sample thickness 1r along the beam path, λ the
x-ray wavelength and re the classical electron radius. The observed phase shift is up to
two orders of magnitude smaller than that obtained for the reference object shown in
figure 3.

Evaluating the resolution of the reconstruction is not a straightforward task. In diffraction
microscopy, a method now commonly used compares the power spectrum of the average of
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Figure 4. Results of the ptychographic reconstruction of the weakly scattering
specimen. (a) Colour-coded complex probe reconstructed simultaneously with
the object from the same ptychographic data set. (b) The probe back-propagated
to the plane at which the pinhole was located (around 1.5 mm upstream from the
sample plane). (c) Cut parallel to the beam through the wave field obtained by
numerically propagating (a). (d) Phase part of the ptychographic reconstruction
of the biological specimen. The colour bar indicates both the phase shift and
the electron density ne (per Å2). The pixel size of reconstruction is again
43.5 × 43.5 nm2.

many reconstructions with the measured intensities [8, 11]. The ratio of the two quantities
typically decays as the spatial frequency increases, in a way reminding of a modulation transfer
function in traditional microscopy. Often called the ‘phase retrieval transfer function’ (PRTF),
it quantifies the contribution of the reconstruction algorithm to the resolution decrease. Its use is
based on the tacit assumption that the algorithm is unbiased, implying for instance that measured
intensities with signal-to-noise ratios much less than one should average out to zero. Artificially
high PRTF values can result from various interventions on the mixing dynamics of the algorithm
and on the ensemble average, e.g. strong real-space constraints or screening of initial conditions.
However, in PCDI a PRTF probably does not provide the most reliable assessment of the
reconstruction quality and resolution. The reconstruction algorithm based on the difference map
still uses averaging of the object to enforce the uniqueness of the solution, but the construction
of the PRTF from this average is not straightforward: the question remains whether the PRTF
is actually describing the probe or the object. The case of weakly scattering samples, where
the diffraction signal is overwhelmingly dominated by the probe contribution, is especially
problematic. In this situation, a PRTF computed on one of the diffraction patterns is more likely
to indicate the resolution of the probe rather than the object. As shown in figure 2(d), 4(q), the
approximate distribution of photons scattered by the object only, can drop to negligible signal-
to-noise ratios much faster than the probe signal. A reasonable estimate of the object resolution
can be done from the average of 4(q) over all the collected diffraction patterns. Following this
procedure, we find qmax ≃ 0.4µm−1, corresponding to a half-period real space resolution of
around 200 nm, about 10 times smaller than the diameter of the probe.
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A somewhat more robust evaluation of resolution can be obtained from the precise
knowledge of the total number of incident photons in the experiment. If N is the number
of incident photons within one pixel of the reconstructed area, then Poisson statistics gives a
variance of N−1 on the contrast in this pixel. This real space picture can be shown to hold even
if ptychographic measurements take place in Fourier space. Assuming that the imaged area is
illuminated roughly uniformly, the expected variance on the reconstructed phase8 is given by

var8 · Apix ≃
A

N0
, (13)

where Apix is the reconstruction pixel size and N0/A is the number of incident photons divided
by the illuminated area, called the fluence. This simple relation, whose left-hand side is akin to
Selwyn’s definition of photographic granularity [37, 38], makes explicit the trade-off between
spatial resolution and contrast resolution. Because it is derived from the fundamental photon
counting statistics, (13) effectively provides a rigorous upper bound on the achievable resolution
in an experiment. Numerical experimentation with the difference map suggests that averaging
many object estimates cancels the fluctuations caused by the algorithm dynamics and converges
to a unique solution that differs from the ‘ground truth’ solution only because of the noise. In this
picture, the remaining fluctuations in the reconstructed object reveal the actual value of var8,
from which one obtains an ‘effective pixel size’, giving the resolution of the reconstruction.
Evaluating var8 from the reconstruction can be difficult if the object is extended and has no
known uniform regions. Fortunately, the situation is greatly simplified with a weakly scattering
specimen, using the fact that the fluctuations of the complex-valued object are equally shared
by its real and imaginary parts. It suffices then to compute the variance of the absorption
part after normalizing to a mean 1. For the reconstruction presented in this paper, we find
var8≃ 2.56 × 105, which, with a fluence of 6.7 × 105 µm−2, results in

√

Apix ≃ 242 nm. Using
an empirical protein model (see [39], chemical formula H50C30N9O10S1, density 1.35 g cm−3,
optical constants obtained from [40]), the dose D is estimated to be D ≃ 1.7 × 103 Gy, which
is well below the feature-destroying limit.

5. Conclusion

In this report, we have presented an approach that enables PCDI of weakly scattering specimens
in a routine and self-consistent way. We have introduced tools for the evaluation of coherent
diffraction patterns that provide immediate feedback on the scattering behaviour of the specimen
and quantitative results on the number of scattered photons, the potential resolution and
the reconstruction error. We have proposed new schemes for avoiding difficulties with the
raster grid ambiguity inherent to the ptychographic CDI problem with simultaneous probe
reconstruction. The experimental demonstration has additionally displayed the usefulness of
a pre-characterization step with a strong reference scatterer. A biological specimen with an
up to two orders of magnitude smaller phase shift than the reference structure has been
successfully reconstructed with the new methods.

The methods presented here constitute an important step towards three-dimensional PCDI,
since they allow reliable reconstruction of weak objects from hard x-ray data, i.e. in the energy
regime where the Born approximation is easily satisfied. Together with additional knowledge
about the chemical composition, the quantitative determination of electron densities allows one
to obtain information about the specimen’s mass density distribution [41].
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Appendix. Derivation of the term for calculating the number of scattered photons

Inserting (9) into the definition (10) yields

4(q)=

(

2 Im
[

P̃∗(q)Q̃(q)
]

+ δ I (q)
)2

I0(q)

=
δ I 2(q)

〈δ I 2(q)〉
+

4
(

Im
[

P̃∗(q)Q̃(q)
])2

I0(q)
+

4δ I (q) Im
[

P̃∗(q)Q̃(q)
]

I0(q)
. (A.1)

Since by definition 〈δ I 2(q)〉 = I (q) and 〈δ I (q)〉 = 0, the first term on the right-hand side is
on average equal to 1 and the last term averages to 0. Summation over all q in the diffraction
pattern, i.e. over all pixels Npix, gives

∑

q

4(q)= Npix +
∑

q

4

(

Im

[

P̃(q)

|P̃(q)|
Q̃∗(q)

])2

. (A.2)

Writing P̃(q)= |P̃(q)| · exp(iχP̃) and Q̃(q)= |Q̃(q)| · exp(iχQ̃), one obtains
∑

q

4(q)= Npix +
∑

q

4
∣

∣

∣
Q̃(q)

∣

∣

∣

2
sin2

(

χP̃ −χQ̃

)

. (A.3)

Treating χP̃ and χQ̃ as uncorrelated quantities gives 〈sin2(χP̃ −χQ̃)〉 = 1
2 , and equation (A.3)

simplifies to
∑

q

4(q)= Npix + 2
∑

q

∣

∣

∣
Q̃(q)

∣

∣

∣

2
. (A.4)

Solving for the total number of photons scattered by the specimen Ns =
∑

q
|Q̃(q)|2 results in

the expression introduced in (12).
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