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Abstract
This study examines the effects of puberty and sex on the intrinsic functional connectivity (iFC) of brain networks, with
a focus on the default-mode network (DMN). Consistently implicated in depressive disorders, the DMN’s function may
interact with puberty and sex in the development of these disorders, whose onsets peak in adolescence, and which
show strong sex disproportionality (females > males). The main question concerns how the DMN evolves with puberty
as a function of sex. These effects are expected to involve within- and between-network iFC, particularly, the salience
and the central-executive networks, consistent with the Triple-Network Model. Resting-state scans of an adolescent
community sample (n= 304, male/female: 157/147; mean/std age: 14.6/0.41 years), from the IMAGEN database, were
analyzed using the AFNI software suite and a data reduction strategy for the effects of puberty and sex. Three midline
regions (medial prefrontal, pregenual anterior cingulate, and posterior cingulate), within the DMN and consistently
implicated in mood disorders, were selected as seeds. Within- and between-network clusters of the DMN iFC changed
with pubertal maturation differently in boys and girls (puberty-X-sex). Specifically, pubertal maturation predicted
weaker iFC in girls and stronger iFC in boys. Finally, iFC was stronger in boys than girls independently of puberty.
Brain–behavior associations indicated that lower connectivity of the anterior cingulate seed predicted higher
internalizing symptoms at 2-year follow-up. In conclusion, weaker iFC of the anterior DMN may signal disconnections
among circuits supporting mood regulation, conferring risk for internalizing disorders.

Introduction
Puberty and sex critically influence brain maturation in

adolescence (for review, see ref. 1,2). The pubertal rise in

sex steroids is thought to further refine the organizational
sex differences that are established early in life (for review,
see ref. 3,4. These puberty-related effects are expected to
contribute to brain development and to promote sex
differences in neural circuits. Consistent with this notion,
puberty-related changes in brain functional organization
would be predicted to reveal different trajectory patterns
between girls and boys. The influence of puberty on brain
function may also have a role in the emergence of
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psychiatric disorders, for two reasons. First, incidence
rates of psychiatric disorders peak in adolescence5, and,
second, they exhibit striking sex differences6, such as
female preponderance for depressive and anxiety dis-
orders. In addition, a specific role of sex steroids, such as
high levels of dehydroepi–androsterone in children, has
been associated with mental health problems (e.g., ref. 7).
In contrast to the abundant neurodevelopmental

research probing neural changes with age and sex (e.g.,
ref. 8–18), neuroimaging studies that query the effects of
puberty on neural development, are relatively sparse19–26

(for review, see ref. 27). A primary focus of these neuro-
developmental studies have targeted structural measures
of the brain (e.g., ref. 28–31 and task-based functional
magnetic resonance imaging (fMRI)20–24). Relatively few
resting-state fMRI studies have investigated the effects of
age and sex in adolescence. Across the relative sparsity of
these studies, many different methods and targets have
been used, which make the identification of consistent
patterns too soon to draw. Some studies focus on specific
structures. For example, Alarcon et al.23 examined iFC of
subregions of the amygdala (seeds) in 122 healthy youths
(10–16 years). Their findings show opposite age-related
changes in connectivity in girls vs. boys, but these changes
are not always in the same direction depending on the
amygdala subregions. Others have conducted studies of
whole-brain organization, using methods such as graph
theory (for review ref. 32). For example, Satterthwaite et al.
examined sex differences in 9–22-year-old youths33. They
reported sex differences in the organization of whole-
brain connectivity (i.e., greater between-networks con-
nectivity in boys, and greater within-networks con-
nectivity in girls). This type of data underscore the
presence of sex differences in brain connectivity in youths,
but does not speak specifically to the direction of sex
differences in specific networks. Unfortunately, an ana-
logous situation characterizes this type of research in
adults (e.g., 34–36). Of note, a recent study using a large
adult sample from the human connectome (n= 820, 336
females, 22–37 yo) identified the default-mode network
(DMN) as being the best predictor of sex status, parti-
cularly for couplings involving the fusiform gyrus and
ventromedial prefrontal cortex37. The direction of effects
was not detailed. Taken together, this brief survey of the
literature does not permit to integrate existing findings
into specific hypotheses that could guide the present
work. Finally, to our knowledge, no studies have yet
investigated puberty-related changes in resting-state
functional connectivity (referred to as “intrinsic Func-
tional Connectivity” or iFC), particularly with respect to
the DMN, which is shown to have a central role in the
development of psychopathology38, and seems to be
highly sensitive to sex status37. Of note, one reason for the

sparsity of research on puberty stems from the difficulty
of dissociating the effects of age from puberty.
The present study takes advantage of a large community

cohort of adolescents, all ~14-year old39, to examine how
puberty and sex influence the iFC of three specific nodes.
These three nodes have been selected for two reasons.
First, their structural parameters have been associated
with adolescent mood dysregulation40,41. Second, they
belong to the DMN42,43. As mentioned above, the DMN
has been consistently implicated in internalizing disorders
(e.g., ref. 44–48 and it comprises midline cortical regions
that systematically emerge in studies of mood disorders
(see reviews and meta-analyses45,49–54). Therefore,
understanding the effects of puberty and sex on the
development of the DMN function might shed light on
the neural mechanisms conferring vulnerability to mood
dysregulation in adolescence.
Highly relevant to this question is the Triple-Network

Model55. This model proposes that dysfunction or
imbalance among three core canonical networks of
resting-state fMRI might contribute to a number of psy-
chiatric disorders. These networks consist of the DMN,
the central-executive network and the salience network
(SN). The DMN serves self-referential-related functions
and comprises regions in the anterior medial prefrontal
cortex (PFC), posterior cingulate cortex, middle temporal
cortex, and hippocampus47,48. The central-executive net-
work supports working memory, decision-making, and
cognitive control. This latter network is particularly
important for the regulation of emotion processing, which
itself depends largely on subcortical regions (e.g., amyg-
dala). The central-executive network encompasses the
dorsolateral PFC and dorsomedial PFC56–58. Finally, the
SN supports the integration of internal and external sti-
muli into emotional and behavioral responses. The core
nodes of the SN include the insula and dorsal anterior
cingulate cortex59. The framework of the Triple-Network
Model is used as a heuristic tool in the present work. This
approach emulates the widely use of neural systems
models to explain typical adolescent behaviors, such as
increased risk-taking, emotional lability, or social trans-
formation60–64.
The present work focuses on how puberty and sex affect

the DMN iFC, including couplings within and between
networks, especially the salience and central-executive
networks of the Triple-Network Model. We hypothesize
sex differences in the pubertal maturation effects on
the brain’s iFC. We also anticipate sex differences that are
independent of pubertal maturation1. However, we do not
predict pubertal maturation to influence brain con-
nectivity similarly in males and females, because puberty
is by essence sexually dimorphic. Specific directional
hypotheses are difficult to predict, based on the lack of
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prior work of typical changes of resting-state networks
with puberty. Finally, exploiting the 2-year behavioral
follow-up (16 yo) of this cohort, exploratory
brain–behavior analyses are expected to reveal associa-
tions between the DMN iFC of the 14-year old and
behavioral dimensions of internalizing, externalizing, or
social problems when these adolescents reach 16 years of
age.

Participants and methods
Participants
The IMAGEN consortium recruited over 2000 youths.

Only five sites opted to collect resting-state scans. IMAGEN
data are available from a dedicated database: https://
imagen2.cea.fr. Adolescents (n= 381) from the IMAGEN
sample39 underwent fMRI scanning in a resting state. A
sample size of n= 381 subjects was expected to provide
sufficient power to detect reliable interaction effects of
puberty by sex on iFC measures. Indeed, previous studies
have reported significant clinical group effects on measures
of intrinsic connectivity in pediatric samples smaller than n
= 60 (e.g., ref. 65–67). Recruitment and assessment proce-
dures, and exclusion and inclusion criteria are described
elsewhere in detail39. In brief, participants and their parents
were recruited via middle-schools in five European sites.
Inclusion criterion was age between 13 and 15 years.
Exclusion criteria were birth weight < 800 g, severe medical
conditions, bipolar disorder, treatment for schizophrenia,
and major neuro-developmental disorders. All participants
were assessed for intelligence quotient (IQ) using the
Wechsler Abbreviated Scale of Intelligence68.
Written informed assent and consent were obtained,

respectively, from all adolescents and their parents in

accordance with the ethics committees of the participating
institutions39 and the Declaration of Helsinki. Seventy-
seven participants were excluded from the analysis owing
to excessive head motion (i.e., > 30% of acquired Repeti-
tion Time (TRs) with a frame-to-frame Euclidean norm
motion derivative > 0.25mm; n= 72, 53 boys and 19 girls),
poor spatial normalization by visual inspection (n= 2), or
corrupted data (n= 1). Two participants lacked pubertal
scores. The excluded group (n= 77), compared to inclu-
ded participants (n= 304), had more boys (T= 3.58, p <
0.001), but was similar in age, puberty status, and IQ (all
p’s > 0.1). Characteristics of the sample are presented in
Table 1. Of note, participants overlapped slightly with
those of our previous structural studies (i.e., n= 21 in
common with40, n= 31 in common with Vulser et al.41,
and n= 5 in common to all three samples).
Behavioral data were collected again in this sample

2 years later, at age 16 years. The attrition rate was 17%
(53 subjects were not tested at follow-up), leaving a
sample of 251 16-yo adolescents.

Behavioral assessments
Every participant completed a psychiatric assessment

via the Development and Well-Being Assessment
(DAWBA, www.dawba.com). The DAWBA is a self-
administered questionnaire consisting of open- and close-
ended questions completed by the participants and their
parents that generates computerized probability levels of
meeting DSM-IV and ICD-10 diagnoses, called “DAWBA
bands” that are subsequently validated by experienced
clinicians69. As part of the DAWBA, participants also
completed a self-report inventory behavioral screening
questionnaire, the Strengths and Difficulties questionnaire

Table 1 Demographic information

All participants Male participants Female participants

Demographics no. of participants N= 304 N= 157 (51.6%) N= 147 (48.4%)

Mean (±1 SD) Mean (±1 SD) Mean (±1 SD)

Age (days) 5279 ± 151 5265 ± 149 5294 ± 152

Puberty (PDS)a 2.86 ± 0.57 2.56 ± 0.55 3.18 ± 0.38

IQb 107 ± 12 107 ± 12 108 ± 12

Scanner site 1 (Dublin) N= 26 N= 8 N= 18

Scanner site 2 (London) N= 42 N= 42 N= 0

Scanner site 3 (Dresden) N= 116 N= 57 N= 59

Scanner site 4 (Mannheim) N= 54 N= 19 N= 35

Scanner site 5 (Paris) N= 66 N= 31 N= 35

PDS Pubertal Development Scale, IQ intelligent quotient. Demographic information for the whole sample, male participants, and female participants
a(females > males, p < 0.05)
bIQ measured using the Wechsler Abbreviated Scale of Intelligence (WASI)
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(SDQ70), which gives a measure of severity of problems
within internalizing, externalizing, and social behavioral
domains. Although the resting-state fMRI scanning only
occurred at age 14 years, the behavioral assessments were
repeated 2 years later, at age 16 years.

Pubertal status
Pubertal status was assessed via self-report using the

Pubertal Development Scale (PDS)71. Previous research
has demonstrated that the PDS exhibits good internal
consistency (median α= 0.77) and is highly correlated
with physician ratings (Pearson’s R= 0.61)71,72.

BOLD fMRI data acquisition, preprocessing, and analysis
MRI data were acquired at five sites using 3 T scanners:

Phillips (Dublin), General Electrics (London), and Sie-
mens (Paris, Dresden, Mannheim). BOLD fMRI signal
was acquired across 40 interleaved slices using the fol-
lowing parameters: TR= 2,200 ms; TE= 30 ms; flip angle
= 75°; acquisition matrix= 64 × 64 × 40 with 2.4 mm slice
thickness and 1mm slice gap yielding an acquisition
resolution 3.4 mm isotropic; 187 volumes collected over
6.5 minutes. High-resolution anatomical images were
obtained using parameters based on the ADNI protocol,
yielding a final voxel size of 1.1 × 1.1 × 1.1 mm.
Preprocessing and analyses of BOLD fMRI data were

conducted using AFNI73. FreeSurfer version 5.374 was
employed to segment the T1-weighted anatomical images.
The i

first four volumes of the functional run were dis-
carded to allow for steady-state equilibrium. Functional
volumes were slice-time corrected, aligned, and co-
registered to the participants’ corresponding anatomical
image. Functional volumes were then normalized to the
Colin 27 Average Brain standardized template using
3dQwarp, which is a nonlinear transformation, and spa-
tially smoothed with a 6 mm Full-Width Half-Maximum
(FWHM) Gaussian kernel. All coordinates are reported in
the Talairach and Tournoux system75.
Acknowledging the debate as to whether global signal

should be regressed out of resting-state data sets, we
decided not to adopt this strategy. This decision was
based on Saad et al.76 who suggest that global signal
regression can introduce spurious correlations into
resting-state data sets, and advise against its use in pre-
processing. In addition, we employed several strategies to
minimize motion- and physiological-related variance,
thus mitigating the need to apply additional measures, like
global signal regression, to minimize variance related to
motion and cardiac/respiratory processes (Power et al.77).
The following nuisance signals were regressed from the

functional volumes: (1) six head motion parameters and
their derivatives, (2) average time-series extracted from the
ventricles, (3) time-series from local white matter within a
25-mm radius sphere surrounding each voxel using the

ANATICOR approach78, and (4) individual regressors
corresponding with a frame-to-frame Euclidean norm
motion derivative ≥ 0.25mm, or volumes where ≥ 10% of
voxels were determined to be outliers. This strategy fol-
lowed the recommendations of Power et al.79.
Three cortical regions of interest (ROIs) from the

DMN80 were selected as seeds. These three seeds were
retained because of their previously demonstrated asso-
ciation with subthreshold elevated40, as well as depres-
sed41 mood symptoms in two independent subsets of the
community cohort of 14 yo from the IMAGEN con-
sortium (https://imagen.cea.fr39). MNI coordinates were
all converted to Talairach coordinates using the Yale
mni2tal GUI (“MNI- Yale University” 2017). Specifically,
cubic ROIs (3 mm × 3mm× 3mm) were created within
the left pregenual ACC (lpgACC; Talairach: x=−12, y=
36, z= 12), left medial PFC (lmPFC; Talairach: x=−2,
y= 45, z= 16), and the left PCC (Talairach: x=−1, y=
−47, z= 3481). The left side was selected because the
regions identified in previous studies were on the left side.
Generically, these cortical regions have been implicated in
the processing of salience and emotion encoding, parti-
cularly in the context of social and self-referential infor-
mation (mPFC)82, visual stimuli (PCC)83, and autonomic
visceral signals (pgACC)84.
Subsequently, average time-series from seed ROIs were

extracted from the residualized functional images and
were used to calculate Pearson correlations between the
time-series from the seed ROIs and every voxel in the
brain. Resulting statistical images were Fisher-
transformed for group analyses.
ANCOVA models (3dMVM) were used to determine

the interaction of puberty-X-sex and the main effects of
each factor85. All group-level ANCOVA analyses statisti-
cally controlled for the effects of scanner site (Dublin,
Dresden, London, Mannheim, and Paris), as well as age.
Group-level analyses were limited to all gray matter
regions as determined by the parcellation of the Colin 27
Average Brain (i.e., CA_N27_ML atlas). Statistical
thresholding was calculated using 3dClustSim’s Monte
Carlo simulation via updated versions of 3dFWHMx and
3dClustSim to address the concerns of inflated false
positive rates identified by Eklund86. These updates
incorporate a mixed autocorrelation function that better
models non-Gaussian noise structure87. The resulting
maps were thresholded to p < 0.005 two-tailed, k= 37,
which represents a global cluster correction at p < 0.05.
Finally, to examine more stringently potential effects of
group motion, we conducted an additional analysis
including the additional covariate of individual average
motion per TR. This analysis is presented in supplemental
material (Table S1).
Average iFC values from clusters exhibiting a puberty-

X-sex interaction, or main effects of sex or puberty, were
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extracted using 3dmaskave. Post hoc comparisons were
conducted within SPSS v24 and interactions were pro-
bed using the PROCESS v21688 macro by calculating the
beta value for the relationship between puberty and iFC
for male and female participants, while controlling for
age and scanner site. Levene’s test for equality of var-
iances, and measures of skew and kurtosis are reported
in Supplemental Table S2. Importantly, all clusters
exhibiting an interaction between puberty and sex are
normally distributed. Furthermore, although variance is
not equal between groups for all identified clusters,
multiple regression analyses, which do not entail
equality of variance assumptions, demonstrate that
identified interactions remain significant within a mul-
tiple regression framework (Supplemental
Tables S3–S4).

Brain–behavior analyses based on factorial approach
To reduce the number of variables, two sets of principal

components using SAS-9.4 program were extracted from
the neural data at baseline (14 years old), and the beha-
vioral data collected at 2-year follow-up (16 years old). All
the iFC clusters significantly modulated by puberty and/or
sex were entered into one factor analysis, and 15 items of
the SDQ into a separate factor analysis. These factor
analyses used ones as prior communality estimates. The
principal axis method was employed to extract the com-
ponents, and this was followed by a varimax (orthogonal)
rotation.
Only two DAWBA bands were retained for this analysis,

generalized anxiety disorder and depression, based on our
main interest in these frequently comorbid diagnoses89,90.
The SDQ has 33 items. A total of 16 items were removed
a priori, because of no interest. These no-interest items
included nine positive items (e.g., “considerate”), seven
general items (e.g., “impact at home”). Two additional
items (“clingy”, “unhappy”) were removed because they
loaded on multiple factors. Accordingly, the final factor
analysis was conducted on 15 items of the SDQ and the
two DAWBA bands that probe generalized anxiety dis-
order and depression. These items and corresponding
factor loadings are presented in Table 2. A three-factor
resolution was found to be optimal. Combined, factors 1,
2, and 3 accounted for 30%, 29%, and 21% of the total
variance respectively. When interpreting the rotated fac-
tor pattern, an item was said to load on a given factor if
the factor loading was 0.40 or greater for that factor and <
0.40 for the others. Using these criteria, six items were
found to load on the first factor, which was subsequently
labeled “internalizing symptoms”. Five items were found
to load on the second factor, which was subsequently
labeled “externalizing symptoms”. Finally, three items
were found to load on the third factor, which was sub-
sequently labeled “social problems”.

A similar approach was adopted to reduce the number
of neural variables (iFC clusters). As reported below in the
results, 17 clusters were of interest. Four clusters were
removed because they loaded on more than one factor.
The final 13 clusters and corresponding factor loadings
are presented in Table 3. The optimal solution was a
three-factor model. Factors 1, 2, and 3 accounted for 49%,
30%, and 27% of the total variance, respectively. The
interpretation of the rotated factor pattern, used the same
threshold as above, i.e., 0.40. Using these criteria, eight
clusters were found to load on the first factor. These eight
clusters were iFC clusters of the lPCC seed (n= 5 clus-
ters) and of the lMPFC seed (n= 3 cluster), all of which
being modulated by Puberty-X-Sex. Therefore, factor-1
was labeled PCC/mPFC-pubXsex. Four clusters loaded on
the second factor. All these clusters belonged to the lPCC-
seed iFC, and were sensitive to Sex. Factor-2 was labeled

Table 2 Principal component analysis of behavioral
variables from the strengths and difficulties questionnaire
(SDQ59), and the development and well-being assessment
(DAWBA, www.dawba.com) at follow-up (16 yo) and
variance explained by each factor

Variance explained by each factor

Internalizing externalizing Social problems

2.9905752 2.9182511 2.1157313

Factor-1 Factor-2 Factor-3

Internalizing Externalizing Social

Somatic 52a 22 10

Worries 63a 8 16

Afraid 67a 13 9

Impact 72a 20 14

Depressionb 69a 18 −14

Generalized anxiety b 81a 13 8

Fidgety 16 75a −2

Restless 15 78a −1

Distractible 13 67a −10

Conduct problems 24 50a 16

Hyperactive 19 94a −6

Solitary −4 −3 79a

Relates better to adults 17 −3 70a

Peer problems 20 2 93a

Printed values are multiplied by 100 and rounded to the nearest integer. Values
> 0.4 are flagged by an ‘a’
The SDQ gives a measure of severity of problems within internalizing,
externalizing, and social behavioral domains
bDAWBA band: the DAWBA bands represent the probability levels of meeting
DSM-IV and ICD-10 diagnoses
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PCC-sex Four clusters loaded on the third factor that was
represented by clusters of the lACC seed. All these clus-
ters were modulated by Sex. Factor-3 was thus labeled
ACC-Sex.
Three multiple regression analyses were conducted to

assess associations between the baseline iFC neural factors
and each of the three follow-up (16 yo) behavioral factors.

Results
Puberty-X-sex interactions
All significant puberty-X-sex interactions indicated that

pubertal maturation was associated with increasingly
weaker connectivity in females, but increasingly stronger
connectivity in males. Slopes between puberty and iFC are
reported separately for boys and girls in Table 4, and a
representative pattern is illustrated in the scatterplot of
Fig. 1.
The anterior (lmPFC) and posterior (lPCC) midline

cortical seeds revealed a similar pattern of clusters affec-
ted by the puberty-X-sex interaction (Table 5). These
clusters were within the DMN and between the default-
mode and central-executive networks. The within-DMN
clusters included regions in the middle temporal gyrus
(BA37) for both seeds, and the inferior parietal lobule
(BA40) for the lPCC seed only. The between networks
(default-mode with central-executive) clusters were found
in the precentral gyrus for both seeds, the frontal eye field
(FEF, BA 8) for the lPCC seed, and the dorsolateral PFC
(BA 9) for the lmPFC seed (Fig. 2).
The lpgACC-iFC showed no significant clusters in

puberty-X-sex analyses.

Sex main effect
All sex effects followed the same pattern, i.e., stronger

iFC in boys than girls.
The iFCs of both the lPCC and lpgACC seeds were

modulated by sex, but in quite distinct brain regions
(Table 5, Fig. 3). Both seeds showed within-DMN iFC
clusters. The within-DMN clusters were found in the

Table 3 Principal component analysis of the intrinsic
functional connectivity of the three seeds influenced by
sex and puberty-X sex(14 yo), and variance explained by
each factor

Variance explained by each factor

PCC/mPFC-pubXsex PCC-sex ACC-sex

4.8571200 2.9548272 2.7282190

Rotated factor pattern

Factor-1 Factor-2 Factor-3

PCC/mPFC-pubXsex PCC-sex ACC-sex

lpgACC-seed sex

L_dlPFC 28 31 69a

L_dmPFC 12 7 81a

L-thalamus 15 5 65a

R_PCC 9 21 77a

lPCC-seed sex

L_insula 22 84a 23

R_mTemporal 39 55a 31

R_sTemporal 33 72a 8

R_insula 35 85a 15

lmPFC/lPCC-seed pubertyXsex

L_dmPFC 67a 30 39

L_Temporal 71a 19 10

R_dlPFC 59a 26 30

L_infParietal 77a 16 5

L_precen 76a 34 16

R_mTemporal 81a 25 9

R_dmPFC 78a 17 28

R_precen 76a 38 17

Printed values are multiplied by 100 and rounded to the nearest integer. Values
> 0.4 are flagged by an ‘a’
Labels: l= left, r= right
pgACC: pregenual anterior cingulate cortex; dLPFC: dorsolateral prefrontal
cortex; dmPFC: dorsomedial; PCC: posterior cingulate cortex; mPFC: medial
prefrontal cortex; mTemporal: middle temporal cortex; sTemporal: superior
temporal cortex; rdmPFC: right dorsomedial prefrontal cortex; precen: precentral
cortex

Table 4 Decomposition of the Puberty by Sex significant
effects on iFC

Effect of Puberty on iFC Boys Girls

lmPFC seed β value P value β value P value

dmPFC 0.080 <0.0005 −0.073 <0.05

Middle temporal gyrus 0.062 <0.005 −0.084 <0.01

Dorsolateral PFC 0.038 =0.071 −0.100 <0.005

lPCC seed

Inferior parietal lobule 0.074 <0.005 −0.104 <0.005

Left precentral gyrus 0.046 <0.05 −0.108 <0.001

Right Precentral gyrus 0.040 =0.089 −0.114 <0.001

dmPFC 0.075 <0.005 −0.078 <0.05

Middle temporal gyrus 0.073 <0.005 −0.103 <0.01

Correlations between puberty and significant iFC clusters are shown separately
for boys and girls, for the lmPFC seed and the lPCC seed. Beta coefficients and p
values associated with the simple slopes between pubertal development and
iFC are presented separately for boys (middle column) and girls (right column).
All models presented in this table control for age and scanner site
mPFC: medial prefrontal cortex; dmPFC: dorsomedial prefrontal cortex; PCC:
posterior cingulate cortex
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right lateral temporal cortex (BA38, BA39) for the lPCC
seed, and in the right PCC for the lpgACC seed. Both
seeds also showed between-network clusters. For the
lPCC, these between-network clusters were located in the
right and left insula, which are key nodes of the SN.
Regarding the lpgACC, the between-network clusters
were found in the left mPFC (BA 10) and left dlPFC
(BA9), which are key nodes of the central-executive net-
work. In addition, sex modulated an lpgACC-thalamus
(pulvinar) cluster.
Finally, the third seed, the lmPFC-iFC revealed a main

effect of sex in one cluster located within the right occi-
pital cortex (BA 19) (Table 5).

Puberty main effect
Other than a main effect of puberty on lmPFC-iFC with

the cerebellum (x=−13.5, y=−79.5, z=−33.5; F=
20.32; 46 voxels) no clusters were found in cortical or
subcortical regions.

Post-hoc analyses
Based on previous literature, which suggests that small

differences in motion during resting-state scans can
impact between-group differences in measures of resting-
state connectivity91, we included average motion per
functional volume as a covariate in our analysis of cov-
ariance (ANCOVA) models. Controlling for average
motion per functional volume did not meaningfully

impact the pattern of results reported above (supple-
mental material, Table S1).
Girls had a significantly higher puberty mean score than

boys (Table 1), and post hoc analyses demonstrated that
puberty-X-sex interactions were characterized by a posi-
tive slope in boys and negative slope in girls, as described
above. To ensure that interactions between puberty and
sex were not driven by a curvilinear (inverted U) rela-
tionship, where early pubertal maturation was accom-
panied by increased iFC (more representative of boys) and
late pubertal maturation by decreased iFC (more repre-
sentative of girls), analyses were repeated while control-
ling for quadratic effects. These analyses relied on power
polynomial regression (supplemental material, Table S2).
Puberty-X-sex interactions remained significant after
controlling for quadratic effects of puberty.
Another way to control for pubertal differences between

girls and boys was to match pubertal maturation between
sex groups. Boys exhibited lower pubertal development
scores than girls (Table 1), and, reciprocally, low levels of
pubertal development ( < 2) were not observed in girls. To
ensure that the differential effect of puberty between boys
and girls was not driven by non-overlapping develop-
mental stages, we tested for puberty-X-sex interactions
within a sample of participants who had pubertal devel-
opment scores of 2 or greater (supplemental material,
Table S3). Importantly, all clusters identified as a function
of the interaction within our whole brain analyses
remained significant after excluding participants with low
PDS scores.

Exploratory brain–behavior analyses
Multiple regression analyses were conducted to deter-

mine whether the three iFC principal components
uniquely predicted variance within the three behavioral
principal components. The ACC-sex principal compo-
nent was negatively associated with the principal com-
ponent characterizing internalizing problems (β=
−0.139, p= 0.028), whereas controlling for other iFC
principal components.

Discussion
To our knowledge, this is the first resting-state fMRI

study to examine the effects of puberty and sex, without
the confounding effects of chronological age. This study is
specifically focused on the resting-state networks that
have been previously implicated in youth vulnerability to
internalizing problems. The main tenet that drives the
present work is that adolescence is a period of huge
transformations, particularly at the brain level, and that
these changes contribute to the development of psycho-
pathology, such as internalizing disorders. Furthermore, a
critical determinant of these changes rests on puberty-
related action of sex steroids. The uniqueness of this study

Fig. 1 Scatterplot illustrating a representative relationship
between puberty and the iFC of the central-executive network
(central-executive network), as a function of sex Specifically,
pubertal development (x axis) is positively associated with the mPFC
iFC with dmPFC (y axis) in boys, but negatively associated with the iFC
between these regions in girls
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is to examine developmental changes within functional
brain organization that can be attributed to pubertal
maturation, age being held constant, and that these
changes are likely to play a role in the vulnerability to
internalizing disorders.
Accordingly, the three seeds examined in the present

study belong to the DMN80. These seeds have also been
shown to be associated with subthreshold elevated40, as
well as depressed41 mood symptoms in two independent
subsets of a community cohort of 14 yo (IMAGEN con-
sortium39). Of note, these cortical regions have also been
implicated in the processing of salience and emotion
encoding, particularly in the context of social and self-
referential information (mPFC)82, visual stimuli (PCC)83,
and autonomic visceral signals (pgACC)84.
Based on the Triple-Network Model55 and the focus on

vulnerability to emotion dysregulation, three predictions
regarding the iFC of the DMN were tested. First, pubertal
maturation would impact the DMN iFC differently in girls
and boys. Second, sex differences in the DMN iFC would
be detected independently of puberty. Third, no sex-

independent effects of puberty would be found, given that
puberty is by essence sexually dimorphic. Finally,
brain–behavior relationships would inform the potential
contribution of the DMN to the onset of internalizing
problems 2 years later. Findings were broadly in line with
predictions.

Puberty-X-sex interaction
As expected, within- and between-network couplings of

the DMN were affected by pubertal maturation differently
in girls and boys. These effects were restricted to the
lmPFC and lPCC seeds (Table 5). The lmPFC and lPCC
connectivity maps revealed similar patterns with regards
to iFC topography and sex effects. First, both maps
revealed within-network and between-network iFC clus-
ters, the latter specifically with the central-executive
network, but not the SN. Second, all findings followed
the same motif, i.e., connectivity decreased with puberty
in girls, but increased in boys. We speculated that this
pattern could be relevant to the emergence of affective
dysregulation in adolescence, which affects more girls

Table 5 Significant iFC of three seeds, left medial PFC, left anterior cingulate cortex, and left posterior cingulate cortex
across the whole brain

Talaraich

Region Cluster Size (k) Maxima X Y Z

Puberty by sex

lMPFC seed DMN–CEN L dmPFC (BA 6) 223 17.16 −4.5 4.5 56.5

R dlPFC (BA 9) 36 11.87 40.5 34.5 29.5

DMN–DMN R mTemporal ctx 41 16.10 58.5 −56 −6.5

lPCC seed DMN–CEN R dmPFC (BA 8) 47 16.28 7.5 25.5 44.5

L Precentral Ctx (BA 6) 61 15.30 −47 1.5 32.5

R Precentral Ctx (BA 6) 70 12.28 46.5 1.5 26.5

DMN–DMN R mTemporal Ctx 68 16.42 58.5 −53 −9.5

L Inferior Parietal Ctx 82 24.38 −44 −47 41.5

Sex

lMPFC seed R Occipital Cx 37 17.97 31.5 −89 17.5

lPCC seed DMN–SN L Insula 41 22.34 −38 −23 11.5

R Insula 89 16.55 46.5 −14 11.5

DMN–DMN R mTemporal Ctx 56 13.37 43.5 −59 14.5

R aTemporal Ctx 47 16.42 58.5 7.5 −6.5

lpgACC seed DMN–CEN L mPFC (BA 10) 142 16.60 −1.5 55.5 14.5

L dlPFC (BA 9) 102 15.57 −50 16.5 26.5

DMN–DMN R PCC 37 15.35 13.5 −68 14.5

L Thalamus 48 17.79 −7.5 −23 8.5

DMN–DMN reflects within-network iFC, whereas DMN–CEN, and DMN–SN reflect between-network iFC
Of note, the occipital cortex and the thalamus are not associated with specific resting-state networks
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Fig. 2 Pubertal development is associated with the iFC of the central-executive network (central-executive network), as a function of sex
Upper panel: interactions between puberty and gender characterizing the iFC between the mPFC seed ROI (1a), clusters within the dmPFC (1b), and
dlPFC (1c). Not depicted, is the right middle temporal cortex. Bottom panel: interactions between puberty and sex characterizing the iFC between
the pCC seed ROI (2a), the dmPFC (2b), and the bilateral precentral gyrus (2c). Not depicted are the right middle temporal and left inferior parietal
cortex

Fig. 3 Sex is associated with the iFC of the DMN (default-mode network), the central-executive network (central-executive network), and
the salience network (salience network) Upper panel: boys exhibited higher iFC than girls between the lpgACC seed ROI (1a) and clusters within
the dmPFC (1b), dlPFC (1c), cuneus (1d), and thalamus (1e). Bottom panel: boys exhibited higher iFC than girls between the lpCC seed ROI (2a), the
bilateral insula (2b), regions of the anterior (2c), and middle temporal cortex (2d)
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than boys. Accordingly, the observed sexually dimorphic
maturational changes of the DMN might reflect changes
in adaptive emotion regulation with puberty. The direc-
tion of these changes might be protective in boys, or
reflect vulnerability in girls for mood dysregulation.
In support of this thesis, the exploratory brain–behavior

analysis across the whole sample revealed a negative
association between the spgACC iFC component and
internalizing symptoms 2 years later: The lower the
connectivity at 14 yo, the more severe were internalizing
problems at 16 yo. This relationship suggests that puberty,
which is accompanied by decreased iFC in girls, might
amplify risk for internalizing symptoms in girls. Findings
from the literature using clinical samples or individuals at
risk for internalizing disorders could inform this inter-
pretation. Unfortunately, results are inconsistent, in terms
of topology, direction of group differences, methodology,
and sample characteristics. A number of studies in
pediatric samples have reported that internalizing symp-
toms were associated with lower iFC in core networks. For
example, Frost-Bellgowan et al. (2015)92 reported lower
DMN-iFC (with insula, ventral striatum, pre/post central
gyrus) in behavioral inhibited (at risk for internalizing
disorders) vs. healthy children (8–17 yo), and showed that
girls (not boys) exhibited a negative correlation of
internalizing-symptom severity with DMN-iFC. Another
study of 8–12-yo children also showed that patients with
depression/anxiety (vs. healthy peers) had similarly lower
iFC, but this time in the ventral attention network, which
was the exclusive focus of this work66. In contrast, a
relatively large study in a community sample of 112
children (53 boys, 59 girls; mean age= 11.5 yo)93 focused
on the three networks of the triple-network model55 in
relation to internalizing symptoms (i.e., anxiety and
depression, and rumination). Findings revealed no sex
differences in the iFCs of the DMN, SN, or CEN. How-
ever, brain–behavior correlations identified a positive
correlation between iFC within the SN and the levels of
internalizing symptoms in girls, but not in boys. Specifi-
cally, higher SN-iFC predicted more severe symptoms in
girls. In summary, this study93 reported a differential
effect of sex on the association of SN-iFC with inter-
nalizing symptoms, affecting only girls. Compared with
our current study, this brain–behavior relationship93

concerned a different network (SN) and was in the
opposite direction to our findings (greater iFC with higher
symptoms, while we showed lower iFC with higher
symptoms). Furthermore, it is difficult to compare these
results with the present findings, because of the differ-
ences in methodology (independent component analysis),
and of the significantly younger sample (11yo). Collec-
tively, these pediatric studies concur on the association
between dysfunction and internalizing symptoms, but the
direction of this dysfunction is inconsistent, as is the

specific couplings. In addition, the two studies probing the
effect of sex revealed that brain–behavior associations
concerned mainly girls. This observation supports our
interpretation that the puberty-related reduction in the
DMN iFC in girls might carry vulnerability for inter-
nalizing symptoms.
Negative findings regarding the distinct iFC modulation

by puberty in girls and boys are notable. The lack of sex
modulation of the effects of puberty on the lpgACC seed
connectivity, and the lack of implication of the SN (par-
ticularly the insula) and the amygdala were surprising.
Indeed, their established role in the coding of salience and
emotional responses (e.g., ref. 94,95, would be expected to
contribute to the increased emotional intensity and lability
in adolescence (e.g., ref. 60,64,96). These negative findings
suggest that the iFC of the nodes/circuits underlying
emotion/motivation processes do mature similarly in boys
and girls. Although task-based fMRI studies have reported
puberty-related changes of these structures in response to
emotion/motivation probes (e.g., ref. 20,22,24), how sex
influences these trajectories has not been reported.

Sex main effect
In fact, the present findings reveal sex effects, inde-

pendent of puberty, in the spgACC iFC and SN (insula).
In all cases, connectivity was higher in boys than girls.
These sex effects concerned mainly two of the three seeds,
the lPCC and lpgACC.
From the perspective of the Triple-Network Model, sex

impacted differently the between-network connectivity of
the anterior (spgACC seed) and posterior (lPCC seed)
DMN components (Table 5) (anterior vs. posterior hubs
of the DMN97). Sex influenced the connectivity of the
anterior DMN seed (spgACC) with the SN, and the
connectivity of the posterior seed (lPCC) with the central-
executive network. In line with this distinction, as dis-
cussed above, the anterior spgACC connectivity predicted
internalizing symptoms 2 years later (age 16 years),
whereas the posterior lPCC component was not asso-
ciated with any of the behavioral components.
These differential effects of sex on the anterior and

posterior DMN iFC need to be examined more closely in
the context of the modulation of the Triple-Network
Model, and might suggest a refinement of this model by
considering regional functional specialization within the
DMN, i.e., the anterior and posterior aspects. Accordingly,
they suggest that the modulation by sex and puberty
affects differently the anterior and posterior DMN com-
ponents98, which likely play distinct roles in vulnerability
to emotion dysregulation.

Limitations
These findings are not without limitations. First, pub-

erty was measured by self-report (PDS71), without
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physical examination or hormonal assays. However, the
PDS has been shown to have good psychometric prop-
erties and convergent validity from self- and physician-
rated Tanner stages71,72. Second, as girls and boys were of
similar age, the average pubertal level was higher in girls.
Two different control analyses were conducted to validate
the findings. First, the youngest boys were removed from
analysis to equalize the puberty mean in girls and boys.
Findings with these control analyses revealed that the
pattern of results remained pretty much unchanged
(supplemental material, Table S3). Second, we conducted
multiple regression analyses, which included quadratic
terms for puberty across the whole sample. This approach
explored whether the effects of puberty were indeed
characterized by two separate and opposite lines of
regression in girls and boys, while controlling for an
inverse-U-curve pattern of pubertal maturation. Results
showed that the puberty-X-sex interaction was still sig-
nificant (supplemental material, Table S2). Therefore, we
are confident in the findings of different pubertal trajec-
tories in boys and girls. Third, this study was cross-sec-
tional, which is sub-optimal for the study of
developmental changes. However, this limitation is
leveraged by the relatively large sample size, and also the
homogeneous age that allowed us to dissociate the effects
of chronological changes from those specific to puberty.
Fourth, this study focused on extending earlier brain
structural findings of neural risk for mood problems in 14
yo. Accordingly, only three seeds were investigated, which
constrained the yield of this study. However, this
approach is specific to a behavioral domain that, we hope,
will foster the formulation of models of vulnerability to
internalizing problems to be tested in the future.

Conclusions
This study reveals that pubertal maturation influences

iFC differently in boys and girls, and that sex can impact
iFC independently of puberty. First, because mood dys-
regulation has its peak onset in adolescence, during
pubertal maturation, it is reasonable to consider a role of
puberty in the rise of incidence rate of mood symptoms.
Second, because mood dysregulation, particularly
depression and anxiety, occurs disproportionally in girls,
sex is expected to uniquely modulate circuits of emotion
regulation. For these reasons, analyses were focused on
three regions previously identified as conferring risk for
mood problems in adolescents. These three regions hap-
pened to belong to the DMN, which is recognized to be
perturbed in pathological mood disturbances. Findings
revealed that both puberty-X-sex interaction and sex
main effects modulate within-network and between-
network clusters of the DMN iFC. Notably, effects of
puberty did not involve the amygdala or the SN, sug-
gesting the notion that pubertal maturation might not

significantly affect the iFC of these key centers of emotion
processes. This is in contrast to the effect of sex, which
did impact DMN–SN iFC. Tentatively, stronger iFC in
boys might suggest tighter emotional control, also
potentially serving a protective role against emotion dys-
regulation. Finally, the spgACC iFC significantly predicted
internalizing symptoms 2 years later, supporting the
association of this network with mood dysregulation.
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