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Abstract. The main contribution of this paper is the introdnction of a 
formal notion of public randomness in the coittcst of cryptographv. LVr 
show how t,his notion affects the definition of the security of a crypto- 
graphic primitive and the definition of how much security is preserved 
when one cryptographic primitive is r e d u c d  to  another. Previous works 
considered the public random bits as d part of the input. and sccurity 
was parameterized i n  terms of the tot,al length of the inpu t .  i1-e parame- 
terize security solely in terms of t f i p  length of the private input .  and treat 
the  public random bits its a separate resource. This  separation a l l o w  115 

to  independently address the important issues of how rnuch sec u r i t y  is 
preserved by a reduction and how many public random hi t s  art' used in 
the  reduction. 
TO exemplify these new defiiii tions. we present, reductions from weak one- 
way permutations to  one-way permutations with strong security preserv- 
ing properties that  are simpler than previously known redllrtions. 

1 Introduction 

Over the  years, randomness has proved to be a powerful algorithmic resource, 
i.e. randomized algorithms t h a t  are simpler. or more efficient. or bo th .  than  any 
known determinist,ic algorithm have been developed for a variety of problems. 
Randomness has also proved t,o be a powerful resource in  the construction of 
Cryptographic priniitives based on other primiti im, e.g. ,  the randoiriized reduc- 
tions from weak one-way funct,ions to  one-wa?; functions and tlie reductions from 
one-way funct,ions to pseudo-raIlcloin generators. The  source of randomness used 
in these reductions is typically pub l i c ,  in the sense  that^ the random bits are 
accessible to all par t ies  enacting the primitive and to any adversary trying to 
break the primitive. However, up till now, the distinction between the private 
P a t  of the input and the  public random b i t s  has been blurred. 

The main  contributions of t,his paper are to formally introduce the not'ion of 
Public randomness, to introduce appropriate generalizations of the definitions of 
v 
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cryptographic primitives tha t  use public. randomness and, perhaps most impor- 
tantly,  to modify the definition of what, it means to reduce one cryptographic 
primitive t.o another by allowing public randomness to be used in the  reduction. 
In terms of generalizing the definition of cryptographic primitives to include 
public randomness, the  main advantage is tha t  the security of a primitive can 
now be  parameterized. as it should be, solely in terms of the length uf the  private 
pa r t  of the  input! a n d  not at all in terms of the public random bits. In tterrns of 
reductions, the  main  advantage is that  we can now separately consider the  two 

issues of how much security is preserved by the reduction and how much public 
randomness is used in the  reduction. 

As particular examples of how a primitive t,hat uses public ranclorwess can 
be defined, we extend the  definitions of one-way functions and  pseudo-random 
generators to include public random bitfs. Generalizations along the  same lines 
for many other cryptographic primitives can be made, including those related to 
public key cryptography. 

As particular examples of how the  new definitions of reductions iising pub- 
lic randomness work, we provide reductions that, use public randomness from 
weak one-way permutations to one-way permutations. Following [I]. our prime 
concern is t he  security preserving properties (2E the  rerluct,ion, i . r . .  how inrich 
of trhe security of the  weak one-way permutat,ion is transferred to t ,hr nnr-way 
permuta t ion .  However, unlike [l], we consider the 3ecurit.X as it function solely 
of the  length of the  private input ,  which does not include the  public raiidorn 
bits. PVe show reductions that preserye ssciiritx in a v e r ? ~  st,rong sense. which is 
stronger than  that  of the  reduction due to [I] {under  the  new definitions) TVe 
begin with a very simple reduction (much simpier than  tha t  found in ; I ] ) .  I v h i c h  
uses a large number of public random hits. Through a sequence of increasingly 
intricate rerluctions, we converge OIL a reduction that is a slight modification of 
t he  reduction due to [lj. Rot,h the  reduction of [li and  o u r  improvement use only 
a linear number of public random bits. 

Another simple reduct.ion from a tveak one-ivay perrnutntion to a onr-n.ay 
permutation was developed recently and indeprndently b)- Phillips [2], Phillips 
showed tha t  his reduction preserves securitv somewhat better t,lian the retliiction 
of [l], when considering the  randomness as a part of the  input,. However. our new 
definitions of security preserving reductions with public randomness revPal that' 
Phillips' reduction actually preserves security as well as au r  reductions, i .e.  much 
better t han  111. Phillips' reduction uses more public random bits ( O ( n  l o g ( n ) ) )  
t han  our best reduction. 

-4 full development and  details of [,his work can he found in [ 3 ] .  

2 Definitions 

2.1 Basic Notation 

If S is a set then $5' is the  number of elements i n  5 Let .c and y be bit strings. FVe 
let )Is 1 )  denote the  length of z \Ye let (z y) denote the sequence of two striiigs 
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c followed by y ,  and  when appropriate we also view this as t,he concatenation 
of 2 and y.  When (z,  y} is the inputJ t80 a function f ,  we write this as f ( c ,  y).  
We let xi denote the  ith bit  of E .  Let c E ( 0 :  1)" and let S c {I,. . . , n}. We 
let cs denote the  subsequence of bits in T indexed by S, e.g. cfl, , z )  denotes 
the first i bits of c, x { ~ + ~ ,  , denotes all bu t  the  first i bits of c, and  thus 

If z and  y are bit strings, each of length 1 ,  then ;c 3 y is the  vector s u m  mod 
2 (i.e. bit, wise parity) of E and y, i .e. (x 3 t ~ ) ~  = ( x L  + yi) niod 2 .  

..in rn x R bit matrix c is indicated by 2 E (0, l}mx''. W e  write x;,j to refer 
to the  (i. j )  in E .  We can also view c as a sequence c = ( L ~ . .  . . . x n l )  of m strings,  
each of length n; where z l  is t he  ith row of the matrix.  or as a string .r E (0, l},, 
of length mn,  which is the  concatenation of the rows of the  matrix.  

If a is a number.  then la1 is the  absolute value of U ,  [a,] is t,he srriallest integer 
greater than  or equal to a ,  log(a) is the  logarithm base two of w. If a number is 
an input t o  or a n  output of a n  algorithm. the assumption is that. it is presented 
in binary notation. 

In general. we use capit,al letters t o  denot,r randoni variables and random 
events. When  S is a set we use the not,at,ion .Y E~,, 5' to mean tha t  S is ;f. 

random variable uniformly distributed in j', and .C E~~ ,S indicates t.hat t is a 
fixed element of S chosen uniformly. 

c = { z ~ I ,  . , i } > x { t + : ,  . . n ) ) .  

2.2 Public Randomness 

A source of random bits is p u h l z c  for a, primitive i f  it can be read by all parties 
enacting the  primitive and  by any adversary trying t,o break the primitive. T h e  
public random string is always chosen uniformly. \.VP use .':I' to keep t,he public 
random string separated from other strings in a list of strings, e.g.  if y is the 
value of the  puhlic raiidoni string and  z is  t,hc input to some function f. then we 
write f(c: y)  t o  indicate the evaluation o f f  011 input I: with respect) to .y (note  
tha t  the  value o f f  depends both  on the  input L and  on the public random st'ring 
y ) ,  and  we write ( f ( x :  y j :  y) to indicate the pair of strings f ( z ;  y )  and y. 

Although the  public random bits arc known to an  adversary, it turns out  
t ha t  these bits often plays a crucial role in ensuring tha t  the primitive is secure. 

2.3 Security 

The security of a prirnit,ive quantifies tiow secure the  priniit,ive is against a.ttacks 
by a n  adversary trying to break the  primitive. T h e  important question to ~011- 

sider is "What, does the security measure?" Intuitively. the  security of a primitive 
is a measure of the  niininial computational resources needed by any adversary to 
break the  primitive. There  are two natural  cornputat,ional resources we consider; 
the rriaxirnal t.otjal time T tha t  the  adversary runs and  the  success probability 6 
of the  adversary. Both T and  6 are stat,ed with rrspect to  a given input instance 
to  the  adversary, and their definitions are primitive dependent. 

A trivial strategy to increase the success probability 6 is to run  the adver- 
sary again. This  doubles the  running t ime, bu t  also almost doubles the  success 
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probability (especially if it is low) .  'This motivates us to simplify t,he nnnlysis 
by comparing only t,he ratios between t,hr success probabilities and  the running 
t imes of different adversaries. An a.ddit,ional simplification is to consider t8he ratio 
between the  success probability 6(n,)  and the  maximal  running t ime T ( n j .  both 
over all private input,s of length n .  Without much loss in generality. we hereaft>er 
assume that a n  adversary .4 always runs for the  same amount  of time T ( n )  on 
all inputs  parameterized by n. 
Definition (achievement ratio): The  achievement ratio of an adversary -4 
for a primitive f is defined as 60 where T(n) is the  running time of -4 and 

T ( n i  ' 
E(n) is the success probability of -4 for f on private inputs of lcngth n .  
Definition (breaking adversary and security): An adversary -4 is Rj ( n j- 
breaking for a primitive f if the  achievement ratio T(n of .1 for J satisfies 

$!$ 2 Rf(n) for infinitely many n E .\-. T h e  primitive f' is ti - R,j (n) ) -s tcure  
if there is no  Rf(n) -breaking  adversary for f .  

Intuitively, 0-secure means totally insecure. whereas I-secure means tot,ally 
secure. We would like the primitive to he harder to break than  it is to I K ~ .  

For example.  suppose f is a ( 1  - Rj(n ) ) - secu re  one-way function. where for all 
constants c. R j ( , n )  < 5 for sufficiently largc n. Then  f can be computed in 
polynomial time. whereas a polynomial t ime algorithm can only invert f with 
inverse polynomial probability for finitely many values of n. E .'I*. 

Allowing the  security of a primitive t o  be parameterized is important because 
different implementations of primitives may ctchirvp different. levels o f  security. 
which may offer different t,ratieoffs between efficiency and  securit<y. I\:e note t.hat, 
inverse polynomial security (e.g.  R, [ n) = -& j means tha t .  the primitive inav be 
broken by a polynomial adversary. 5 0  w e  expect t ha t  ~ n a r i y  applications w u i d  
require higher security. For example. it may be tha t  a part,icular function f is 
a (1 - Rf(n))-securr one-way function. where R j ( n : ~  = -, or even bp t t e r  

with R f ( n )  = A, T h e  statement t.hat, J is seciire with respect t o  either of 
these bounds  is quantifiably stronger than the  stat,ement tha t  it, is secure with 
respect to a n  inverse polynomial bound. O n  the  other hand .  for any function 
computable in t ime T ( n )  there is an inverting adversary tha t  rims in T(n) 2" 
t ime: a.nd thus  there is no (1 - &)-secure one-way function. 

6 i t z l  

2.4 Primitives with Public R.andornness 

Definition (standard function): -4 function fix; y) is called a standard p 7 ) c -  
tion with length relationship 1I.r / I  = R ,  1 1  y / j  = I(n).  1 1  f(x; y) / I  = nxjn) if 

- f(e: y) is computable in polynomial time. 
- If 1 1 ~ 1 1  = n then  i / y l (  = / i n )  and \ l f ( z : g ) \ l  = ~n(n), where both Ijn) and 

m(n) are polynomial in n. 

We now give the  definitions of primitives using public randomness. 
Definition (one-way function with public random bits): Let f ( z ;  L/) be 
a s tandard  function with length relationship 112 ( 1  = n. ; I  y l l  = l ( r ~ 1 .  1 1  f(.: Y )  / I  = 



rn(n). Let X EL( ( 0 ,  l } n  and  E' EL( {O, l}r(") .  The success prohnhzlztyof adversary 
A for f is 

b(nj = Pr i f (A( f (X;  Y ) ;  Y ) ;  1-1 = f ( X ;  Y) j .  
X , Y  

T h e  runnzng time T ( n )  of adversary -4 for f is the maximum over all t E (0: 1)" 
a n d  y E (0, l}'(n) of the  running time of A on input (f(x; y);  y). Then.  f is a 
(1 - Rf(n) ) -secure  one-way function if there is no Rf(n) -breaking  adversary for 

Definition (one-way permutation with public random bits): Let f(x: y) 
be a s tandard  function with length relationship j (  z ( 1  = n,  ( 1  y 1 1  = I(n) , ( 1  f(x; y) 1 1  = 
rn(n). Then.  f is a ( I -Rf (n ) ) - secu re  one-way permutation i f f  is a ( l - R f ( n ) ) -  
secure one-way function and  m(n)  = n and E is uniquely determined by f(.; y) 
and y. 
Definition (pseudo-random generator with public random bits) : Let 
g ( x ; y )  be a s tandard  function with length relationship / ( z / /  n.  i l y l /  = [ i n ) ,  
g ( c )  = m ( n ) ,  where m ( n )  > n.. The  sfretching parameter of g ( : x ;  y)  is rn(n)  - n .  
Let X EL/ (0. l}". 1~ Eu (0, l}'(''! and  2 cLi (0. l}rrl'n:'. The  success proba6zli t .y 
(distinguishing probability) of adversary A for y is 

h ( n )  = Pr [.-l(y(S; 1 . ) ;  

f. 

= 11 - Pr [-4(Z; 1.1 I]. X . Y  z 1- 

T h e  runnzng t i m e  T i n ,  of adversar\.- .4 for g is t,he Inas imum over all : E 
(0, l}m(''! and y E (0. t}r("i of the running time of .-I on input, (L :  9 ) .  'Then. 
g is a (1 - Rg(n)) -secure  pseudo-random generator if there is no Ry(,n)-breaking 
adversary for g .  
Example : To exemplify the difference ht.rwpen t,he traditional definition of 
a one-way function and  the  definit,iori int,roduced hcre with public randomness. 
consider the  subset sum problem. -A one-way function based on the difficu1t.y of 
this problem can be defined in tvm ways: without public raridom bits and  wit'h 
public random bit.s. Let b E (0, l}n and let a E { O .  l I n x n .  In the  first definition 
without public random bits the  fiinction is 

r 

j ( u .  b ,  = ( a >  1 h, a,)  
,=: 

T h e  security is parameterized by the  Input  length 
definition, u is the  publlc random string and  the  function IS defined as 

= n' + n In the second 

11 

a = l  

In this case, the  security is parameterized by the length of the private input b. 
which is simply n. Xote t h a t  in both cases. the actual security of f is based on 
exactly the same thing, i.e. when n and b are chosen uriiforrnly then given a a n d  xi"=, bi . ai there is no  fast adversary that can find on average a b' E (0, 
such tha t  b: . ai = Cy=; bi . a , ,  The only difference is how the  security is 
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parameterized. Intuitively, security should be parameterized in trrms of what, is 
hidden from the adversary. and  not! in terms of the overall amount  of randoiniiess 
available to the function. T h e  first definition paraniet,erizes thr security in terms 
of the  overall amount  of randomness available to thc function, i.e. security is 
parameterized in terms of the  length of b plus the lengt,h of a .  The parameter 
of security in the  second definition is t,lie length of b ,  where b is what is really 
secret. 

Intuitively, a weak one-way fuiict,ion J is a function such tha t  it is hard t o  
find a n  inverse of f i x )  for some significant bu t  perhaps not very large fraction 
of .z E (0. l}n ( the  ‘hard set’) (In contrast, for a one-way function i t  is hard t a  
find a n  inverse of f (  J )  for all but an  insignificant fraction of t he  t E (0:  l}n.) We 
only give the  traditional definition (not, using public randomness); the definition 
using public randomness is straightforward. 
Definition (weak one-way function): Let j ( z )  be a stanclard function with 
length relationship / ) z / j l  = n .  l l f ( ~ - )  1 1  = l j n ) .  The weakness parameter  of f is 
a function s in)  such tha t  s ( n )  2 5 for soiiie constant c. The  time bound arid 
success probability of an  adversary -4 for f a r p  ciefiried exactly t,hr m i i e  wil.\.. as 
for a one-way funct ion.  An adversary *-I is Rj (n) -bceaE; in~  for s (  n j -wrak f if t.tierc-. 
is a subset H, of (0. 1)” of rrieasure at least, .s(71.) such taliat Rt( I I )  5 M, where 
E H ( n )  is the average success probability- over H ( n )  and T H (  7 2 j  is the maximal 
running t ime over H ( n ) ,  X function 1 is a ( 1 - I?,( n))-seciirP .s( 11 j-weak one-way 
function if there is no R;(n)-breaking adversary for s (n) -weak f. 
Example : Drfiiie f(2. y j  = zy. where Z ,  y E { 2 , .  . , ,  ‘2” - l}. The  problem 
of invert,ing f ( x ,  y)  consist,s of finding d”. y’ E { 2 .  . . . , 2” - I} such  that c’y’ = 
XY. Let, X. Y € 2 ,  { ’2? . . . ,2” - 1) be indcpendent randon1 variables. On a.veragc.. 
f(X. Y) is rather easy to invert. For instjarice. with probability :, ,YY is a n  even 
number.  in which case sett,ing x’ = ’2 arid y’ = inverts f1-Y. Ye). IIowever. 
with probability approxirnately l / n ’  hor,h X and Y a.rp prime n-h i t  numbers.  
If there is no adversary lhat can fact.or t h c  product of a pair of random n-bit 
prime numbers in time on average t,hcn f is a (1  - Rj (2n))-securc ?-weak 
one-way function. 

5 

1 

3 Reductions 

All of the  results presentled in this paper involvr a reduction ,;from one type of 
cryptographic primitive to another.  I n  this section, we give a fornial definition 
of reduction. FYe only define a reduction in  the case when both cryptographic 
primitives are standard functions. 

Central  to the definition of a reduction is t,he notion of an  oracle Turing 
machine.  
Definition (oracle Turing machine): An oracle Turzn,g mach.zne is a ran- 
domized Turing machine S whose behavior is not. fully specified. T h e  behavior is 
not fully specified in t,he sense tha t  S, in t,he course of its execution, irit,eractively 
makes calls (hereafter described as oracle calls) to and receives corresponding 
ou tpu t s  from an  algorithm tha t  is nut  part  of the desrript,ion of 5’. We let S.l 
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denote the fully specified Turing machine described by S using algorithm .-I to 
compute the oracle calls. 

Yote that although the running time of S is not, defined, the running time of 
S" is defined. Also, if .4 is a Turing machine then so is S". 

Let f be a generic instance of the first primitive, where f ( z )  is a standard 
function with length relationship 1 1  1: / I  = R and 1 1  f(x) / I  = I (n) .  Let S EU ( 0 ,  l}n. 
There are two parts t o  a reduction: (1) an oracle Turing machine P that effi- 
ciently converts f ( X )  into an instance g!Y) of the second primitive, where g is a 
standard function and Y is the polynomially samplable probability distribution 
on inputs to  g ;  ( 2 )  an oracle Turing machine S that  is the guarantee that the 
security of f ( X )  is passed on to g(k ' ) .  The security guarantee is of the form that 
if A is a breaking adversary for g ( Y )  theri S" is a breaking adversary for f (s) .  
More formally, 
Definition (reduction): We say that there is a reduction from przmziizie-1 to  
primitive-,? if there are two oracle 'Turing machines P and S with the following 
properties. Given any instance f of primatwe-1, Pf is an instance g of pr imi t i sd .  
Given any R,(n)-breaking adLVersary -4 for 9 ,  S" is a Rf(ri)-hreakirig adversary 
for f .  

The reduction guarantees that thrrr is rio R,( n)-breaking adversary- for 9 as 
long as there is no Rj(n)-breaking adversary for f. To have the reduction inject 
as much of the securit,y of f as possible int>o g3 we would like R j ( n )  to hc, i ~ ?  

large as possible witti respect to  R,(nj. e.g.. R ~ ( R )  = R,(i2). 

To give a rough measure of the arxiuuIit, of security a reduction preserves. we 
make the following definit,ions. 3o te  that in all definitions the reduction has an 
overhead of $. However. typically R,(n)  < -$ and i t  is therefore the  dominant 
factor. 
Definition (preserving reductions): The reductlion from p ~ i 7 n ~ t i 7 ~ e - l  to  
primitive-2 is said to h e  

- sltghtly preserving If there are con>tarits (1 2 1. J >_ 1 and c 2 0 such that 

- po lynomia l l y  preserving if there are constants J 2 1 and c 2 0 such t h a t  

- linearly preservzng if there is a constant c 2 0 such that  

For a linearly preserving reduction. Rj(71) is linearly lower bounded b y  n g ( n ) ,  
and for a polynomially preserving reduction. Rj ( n )  is polynomially lower bounded 
by Rg(n) (in both cases there is also a polynomial in n factor). On the other 
hand, for a slightly preserving reduction the lower bound on Rf(n) can be much 
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weaker than  any polynomial factor in R,( 71). For t,his reason. a linearly preserv- 
ing reduction is more desirable than a polynoniially preserving reduction whicli 
in turn is more desirable than a slightly preserving reduct,ion. 

Consider a reduction from a one-way function f to a pseudo-random genera,- 
tor 9 and  suppose we want t he  reduction to guarant,ee Lhat, y is ( 1  - R,( n))-secure. 
The difference between these types of guarantees isn’t, so impor tan t  when R,(n) 
is no t  t oo  small. e.g.$ if R,(n,) is inverse polynomial in n then a11 types guar- 
antee tha t  Rjin,) is inverse polynomial i n  n, antl thus g is ( 1  - Rg(n))-secure 
if there is no polynomiel t ime adversary that can invert 1 with inverse poly- 
nomial probability-. However. the difference between these t,ypes of gna.rantees 
increases dramatically as R,&) goes to zero a t  a faster rat(:, which is expw.ted 
in  most applications. To see the drarnat,ic diiferences between the  strengths of 
t,he reduct,ions, consider the  case when R g ( n )  = *3-rl1’’ and  = ~3 = 2 and 
c = 0 .  For a linearly preserving reductiou. y is (1  - R : J ( r ~ ) ) - ~ ~ ~ : u r e  if the , .  Y l 3  1s 110 

1 1 2  R1(4 = 2-” -breaking adversary for f. For a polynomixll:; prcserviris reduc- 
tion, y is (1 - Ry(n))-securC if tiiere is no ~ , , ( n  j = 2-2”’’ -breaking adversiiry 
for f. For a slightly p t  rving rd i Jc t ion ,  !/ is (1 - R,i I? !)-secure if ~.herc3 is no 
Rj(n,) = %-‘“-breaking adversary for  J .  N o t e  that in this [-asp K!(n) is tjhr: 
2n.’Ia power of Rg(n!, which is n o t  a.t ail ;,o~!noliiiai i n  ~ , ( r z ! .  111 fact-. fo r  trivial 
reasons there is a 2-“”-breakirig adversary for f. an{.{ tliiis t ~ i e  slightly prewrL-iiig 
reduction does not guarantee that i y  (1  - 2-‘7”’ )-scsiire no matt,er how swiire 
f is. 

Because of t8he tremenJous superiority of a l i n ~ ~ a r l y  preserviiig over a polyno- 
mially preserving reduction m e r  a slightly preserving reduct8ion. i t  is importar i t  
to design the strongest reduction possible. Some of t lie most important’  work 
(both  theoretically antl practically) left to  h e  done is tfi find stroiiger preserving 
reductions between cryptographic primitives than arc c-imi-ntly knowri. e.g.  t h e  
strongest reductioris known from R one-way fun(-tion t o  ;II ps~~i~lo-ra.nc1~~11i gen- 
erator and from x weak one-way funct ion  to  a oris-way function ( in  the: general 
case) a re  only slightly preservirig. 

It tu rns  out’ that the primary quantity that determines t,he st,rength of the 
reduction is the ratio 3, whcre n is the length of the  privnt,c part, of the in- 
put for g a n d  n,‘ is the length of the private part uf t h f  input for calls t o  f 
when computing 9 .  The bigger this ratio the more t,he loss in security. T h e  best 
ca.se is when these two lengths are equal or nearl; equal. ‘The reason f o r  this is 
that typically the achievement rat,io €or 5’,4 is either 1inr;tr or polynomial in the  
achievement ratio R,(n) for J4q arid S“ breaks one of the cijlls to f on inputs of 
length n’, and thus Rj(n’) is either linear or polynomial in R,(n). For example.  
if n’ = n and Rf(n‘) = R g ( n )  then the reduction is linearly preserving. Slightly 
weaker, if n’ = cn for some constant, c > 0 and Rf(n’) = R y ( n ) f  for some 
constant d > 1 tjhen the reduction is polynornially preserving. This  can be seen 
as follows. Even in the worst case, when Ry(ri.) = &, i t  is easy to verify t ha t  
R,(rl) = R , ( ~ ’ / E )  5 Rg(7~‘)’ / f .  Thus, Rj(n’) 5 R S ( ~ , ’ ) J ^ ’ f .  If n’ is substantially 
smaller than  n, (bu t  still polynomial in n), then the reduction is typically oiilg 
slightly preserving. 
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4 The Reductions 

We describe several linearly preserving reductions from a weak one-way permu- 
ta t ion  to a one-way perrnutat,ion. All of the  reductions work only for functions 
that are p e r ~ n u t a t i o n s . ~  In [4], Yao describes a reduction from a general weak 
owf to a one-way function, bu t  the  reduction is only slightly preserving. A good 
research problem is t o  design a linearly preserving (or even polynomially pre- 
serving) reduction without any restriction on the  weak one-way function. 

In all the  reductions. we assume tha t  the  weak one-way functiorl doesn't use 
a public r andom st,ring. Only minor niodificat,ions need be made t,o handle the 
case when t,he weak one-way function uses public randomness. 

All of the  reductions share a coniinon approach. and  each reduc:ion hiiilds 011 

the idea,s developed in previoiis reductions. For ,completeness. w first, describc 
a general reduction from a weak one-way function to a one-way function. 
Reduction 1 [Yan] : Let j ( s )  lie ;t s (n) -weak one-way function, w h P r P  .I: E 
(0: I}". Let 2' = 5. let y E {o, l].Vxn and define the  one-way functsion 

Theorem 1 [Yao] : 
s( n)-weak one-way funct,iori j to one-way function y .  More precisely. there  is a n  
oracle algorithm Y such that i f  -4 is an  R,( r,X)-brcAaking ad\.err;nr.y for g iy )  clien 

Yote t,hat s ( n j  must be at least inverse poIynoinia1 in n for t h e  rcductioii t o  
even slightly preserving. This is because it is necessary for n. to be (t polynomial 
fraction of :V) and .\: = fi. 

Reduction 1 is a slightly preserving reduction froiii 

R, ri. .V 1 S A  is a Rj(n) -breaking  adversary for s(n)-w.veali f ( s ) .  where R,;In)  = r1.V ' 

4.1 

An irnportant observation about  Reduction 1 IS that y doesn't use any public 
random bits beyond what is used by f. T h e  reasor1 the rectuct,ion is only slightly 
preserving is tha t  g partitions its private input, into many small strings and  uses 
each of these st,rings as a private input to f .  This  can be thought of as a parallel 
construction, in the sense that, the calls t o  f are on  independent input>s and  thus 
all calls to f can be computed sirnultaneously. The linearly preserving reduction 
given here is similar in its basic structure to R.eduction 1. The  main difference 

tha t  instead of partitioning the  privat,e input  of y into :L' p r i v a k  inpiit's of 
length n for j ,  the private input t o  y is a single string 2 E (0. 1)". and  t'he 
public random string is used to generate 11' inputs of length 1% to f sequentially-. 
Reduction 2 : Let f i x )  be a s (n) -weak one-way permutation, where 2 E 
(0, 

A simple linearly preserving reduction 

Let LV = &. let T E {O. l}!Vx7L and define the  one-way permutation 

q ( x ;  T i  = y.v-i 
3 

These reductions can be extended to the important  case of regular fiinct>ions, which 
more general than permutations b u t  still not the general case. A function is regular 

if each point in t,he range of the  functioii has the same number of preirriagcs. '' 



430 

where yl = z and, for all i = 2 , .  . . , ?J - 1, yz = T , - ~  3 f (y i - l  j. 
Theorem 2 : Reduction 2 is a linearly preserving reduct,ion from a s(n)-weak 
one-way permutation f to one-way permutation g .  More precisely, there is a n  
oracle algorithm .S such that if -4 is an R,(n)-breaking adversary for q(x: 7 )  then 
S 4  is a R,-(n)-breaking adversary for s(n)-weak f(z), where Rf(nj = 7. R,ln')  

The proof of Theorem 2 is similar in spirit to the proof of the Theorem 1. We 
only describe the oracle algorithm S. Suppose that A is an adversary with time 
bound T(n)  and success probability E(n) for g ,  and thus the achievement ratio is 
#. A on input g(z; T )  and ;7 finds L with probability 6 ( n )  when c EL[ { O .  1)" 
and T (0,  1)lVxn. The oracle machine described below ha.s the property that 
SA inverts f on inputs of length ri with probability at least, 1 - s ( n ) )  where the 
time bound for S" is n(n!. The input to S" is f ( z )  where .z EL( (0 ,  l}". 
Adversary SA on input f(z) : 

n V T i n  1 

Repeat times 
5/n 1 

Randomly choose i Err { 2 .  . . , -V -,- l}. 
Randomly choose 7 EL! { 0 , l  n. 

Let yi = f ( 2 )  5 
Compute !lit: = ir, % f ( y i  i. . . . , y4'+l = a. 
Compute L',, = LrI(u,v+l: ir j . 

if f ( v i - 1 )  = f(z) then output, ~ i - ~ ,  

f(Yzr ) .  

U , - I  = Tz-2 5 f ( 2 $ - 2 ) .  Compute ill = irU 5 f(co j 

4.2 

Although Reduction 2 is Linearly preserving, it does have the drawback that t'he 
length of the public random string is rather large. and even worse this length 
depends linearly on the weakness parameter $(n) of the weak one-way function. 
In this subsection, we describe a linrarly preserving reduction that uses a much 
shorter public random string. 

The overall structure of the reduction is the same as Reduction 2. The differ- 
ence is that we use many fewer public random strings of length n in a recursive 
way to produce the almost random inputs to f. The reduc,tiori is in two steps. 
In the  first step we describe a linearly preserving reduction from a s(,n)-weak 
one-way permutation f to a +-weak one-way perrnutacion 9 .  The second step 
reduces g to a one-way permutation h using the construction given in Reduction 
2. 
Reduction 3 : Let f ( z )  be a s(n)-weak one-way permutation, where .c E 
(0 ,  l}n. Let 2 = [log3,2(2/s(n))] and let iV = 2' .  Let i~ E ( 0 .  l}'xn. Define 

A linearly preserving reduction using less randomness 

six:  T 1 )  = f ( 7 1  -3 ft.)). 
For all i = 2, . . . , I ,  reciirsively define 
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Theorem 3 : Reduction 3 is a linearly preserving reduction from a s (n ) -  
weak one-way permutation f ( z )  to +-weak one-way perinutation y( x: T ) .  More 
precisely, there is an oracle algorithm S such that  if A is an Ryjn)-breaking 
adversary for :-weak g(e; T )  then S-' is a Rf(nj-brPaking adversary for s (n ) -  

weak f 3  where RJ ( n )  = 
The final step in the reduction is to go from weak one-way permut,ation g with 

weakness parameter f t o  a one-way permutation h using Reduction 2 ,  except, 
now g has weakness parameter $ and uses a public random string of length 
m = O(nlog( l /s(n)).  Thus.  when using Reductmion 2 to go from g to h,, we set 
LV = log(l /R,(n))  5 n and partition the public random st,ring into lV blocks of 
length n + m.  Thus, the overall reduction uses O(n2 log( l l s j n ) ) )  public random 
bits, as opposed to  0 LL- for Reduction 2 .  It  is not hard to verify that  the 
overall reduction from f to  h is linearly preserving 

R ( n )  

(.q(:i) 

4.3 

The work described in [l] gives a polynomially preserving reduction from a weak 
one-way permutation to a one-way permutation that, uses only a linear amount of 
public randomness. A s  briefly described below their reduction can he  modified 
in minor ways to yield a linearly preserving reduction ifrom a wcak one-way 
permutation f to a one-way permutation h that, uses only a linear number of 
public random bits overall. 

As in Reduction 3 .  the reduction is in two s t rps :  The first step is a linearly 
preserving reduction from a s( n)-weak one-way perrriutacion f to a +-weak one- 
way permutation g and the second step reduces 3 to a one-way permutation h. 
As in Reduction 3 ,  t'hr first step is recursive and uses O(log(s(nj) independent 
public random strings, but t,hey are each of const,ant length instead of length n.. 
The idea is to  define a coristant degree expander graph with vert,ex set' (0, I}", 
and then each string is used t,o select. a random edge out of a vertex i n  the 
expander graph The second step is itcrative, but  uses only ail additiona.1 (3 (n )  
public random bits. These O ( n )  public random bits are used to  define a random 
walk of length O ( n )  on a related expander graph. 

The overall number of public random bits used in the entire reduction j,from f 
to  h is only linear. The way [l] describes the reduction. the one-way permutation 
f is applied to  inputs of different lengths (all within a coristant multiplicative 
factor of each other) t o  yield h,. For this reason, as they describe their reduction it 
is only polynomially preserving, even with respect to the new definitions. Minor 
modifications to  their reduction yields an a1t)rrnative reduction where all inputs 
to f are of the same length as the privat.e input, to h. It can be shown that  the 
alternative reduction with respect, to the new definitions is linearly preserving. 

A linearly preserving reduction iising expander graphs 
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