
Public Randomness
in

Cryptography"

Amir Herzberg' and Michael Luby'

1.B.M. T.J. IVatson. 'iorktown Heights. Nk' 10,598
International Computer Science Institute, U.C. Berkeley: Berkeley. California 9470.1

Abstract. The main contribution of this paper is the introdnction of a
formal notion of public randomness in the coittcst of cryptographv. LVr
show how t,his notion affects the definition of the security of a crypto-
graphic primitive and the definition of how much security is preserved
when one cryptographic primitive is r e d u c d to another. Previous works
considered the public random bits as d part of the input. and sccurity
was parameterized i n terms of the tot,al length of the inpu t . i1-e parame-
terize security solely in terms of t f i p length of the private input . and treat
the public random bits its a separate resource. This separation a l l o w 115

to independently address the important issues of how rnuch sec u r i t y is
preserved by a reduction and how many public random hi t s art' used in
the reduction.
TO exemplify these new defiiii tions. we present, reductions from weak one-
way permutations to one-way permutations with strong security preserv-
ing properties that are simpler than previously known redllrtions.

1 Introduction

Over the years, randomness has proved to be a powerful algorithmic resource,
i.e. randomized algorithms t h a t are simpler. or more efficient. or bo th . than any
known determinist,ic algorithm have been developed for a variety of problems.
Randomness has also proved t,o be a powerful resource in the construction of
Cryptographic priniitives based on other primiti im, e.g. , the randoiriized reduc-
tions from weak one-way funct,ions to one-wa?; functions and tlie reductions from
one-way funct,ions to pseudo-raIlcloin generators. The source of randomness used
in these reductions is typically pub l i c , in the sense that^ the random bits are
accessible to all par t ies enacting the primitive and to any adversary trying to
break the primitive. However, up till now, the distinction between the private
P a t of the input and the public random b i t s has been blurred.

The main contributions of t,his paper are to formally introduce the not'ion of
Public randomness, to introduce appropriate generalizations of the definitions of
v

Research supported in part by National Science Foundation operating grant CCR-
9016468 and grant To. 89-00312 from the United States-Tsrael Binational Science
Foundation [BSF)

E.F. Brickell (Ed.): Advances in Cryptology - CRYPT0 '92, LNCS 740, pp. 421-432, 1993.
@ Springer-Verlag Berlin Heidelberg 1993

422

cryptographic primitives tha t use public. randomness and, perhaps most impor-
tantly, to modify the definition of what, it means to reduce one cryptographic
primitive t.o another by allowing public randomness to be used in the reduction.
In terms of generalizing the definition of cryptographic primitives to include
public randomness, the main advantage is tha t the security of a primitive can
now be parameterized. as it should be, solely in terms of the length uf the private
pa r t of the input! a n d not at all in terms of the public random bits. In tterrns of
reductions, the main advantage is that we can now separately consider the two

issues of how much security is preserved by the reduction and how much public
randomness is used in the reduction.

As particular examples of how a primitive t,hat uses public ranclorwess can
be defined, we extend the definitions of one-way functions and pseudo-random
generators to include public random bitfs. Generalizations along the same lines
for many other cryptographic primitives can be made, including those related to
public key cryptography.

As particular examples of how the new definitions of reductions iising pub-
lic randomness work, we provide reductions that, use public randomness from
weak one-way permutations to one-way permutations. Following [I]. our prime
concern is t he security preserving properties (2E the rerluct,ion, i . r . . how inrich
of trhe security of the weak one-way permutat,ion is transferred to t ,hr nnr-way
permuta t ion . However, unlike [l], we consider the 3ecurit.X as it function solely
of the length of the private input , which does not include the public raiidorn
bits. PVe show reductions that preserye ssciiritx in a v e r ? ~ st,rong sense. which is
stronger than that of the reduction due to [I] {under the new definitions) TVe
begin with a very simple reduction (much simpier than tha t found in ; I]) . I v h i c h
uses a large number of public random hits. Through a sequence of increasingly
intricate rerluctions, we converge OIL a reduction that is a slight modification of
t he reduction due to [lj. Rot,h the reduction of [li and o u r improvement use only
a linear number of public random bits.

Another simple reduct.ion from a tveak one-ivay perrnutntion to a onr-n.ay
permutation was developed recently and indeprndently b)- Phillips [2], Phillips
showed tha t his reduction preserves securitv somewhat better t,lian the retliiction
of [l], when considering the randomness as a part of the input,. However. our new
definitions of security preserving reductions with public randomness revPal that'
Phillips' reduction actually preserves security as well as au r reductions, i .e. much
better t han 111. Phillips' reduction uses more public random bits (O (n l o g (n)))
t han our best reduction.

-4 full development and details of [,his work can he found in [3] .

2 Definitions

2.1 Basic Notation

If S is a set then $5' is the number of elements i n 5 Let .c and y be bit strings. FVe
let)Is 1) denote the length of z \Ye let (z y) denote the sequence of two striiigs

423

c followed by y , and when appropriate we also view this as t,he concatenation
of 2 and y. When (z, y} is the inputJ t80 a function f , we write this as f (c , y).
We let xi denote the ith bit of E . Let c E (0 : 1)" and let S c {I,. . . , n}. We
let cs denote the subsequence of bits in T indexed by S, e.g. cfl, , z) denotes
the first i bits of c, x { ~ + ~ , , denotes all bu t the first i bits of c, and thus

If z and y are bit strings, each of length 1 , then ;c 3 y is the vector s u m mod
2 (i.e. bit, wise parity) of E and y, i .e. (x 3 t ~) ~ = (x L + yi) niod 2 .

..in rn x R bit matrix c is indicated by 2 E (0, l}mx''. W e write x;,j to refer
to the (i. j) in E . We can also view c as a sequence c = (L ~ x n l) of m strings,
each of length n; where z l is t he ith row of the matrix. or as a string .r E (0, l},,
of length mn, which is the concatenation of the rows of the matrix.

If a is a number. then la1 is the absolute value of U , [a,] is t,he srriallest integer
greater than or equal to a , log(a) is the logarithm base two of w. If a number is
an input t o or a n output of a n algorithm. the assumption is that. it is presented
in binary notation.

In general. we use capit,al letters t o denot,r randoni variables and random
events. When S is a set we use the not,at,ion .Y E~,, 5' to mean tha t S is ;f.

random variable uniformly distributed in j', and .C E~~ ,S indicates t.hat t is a
fixed element of S chosen uniformly.

c = { z ~ I , . , i } > x { t + : , . . n)) .

2.2 Public Randomness

A source of random bits is p u h l z c for a, primitive i f it can be read by all parties
enacting the primitive and by any adversary trying t,o break the primitive. T h e
public random string is always chosen uniformly. \.VP use .':I' to keep t,he public
random string separated from other strings in a list of strings, e.g. if y is the
value of the puhlic raiidoni string and z is t,hc input to some function f. then we
write f(c: y) t o indicate the evaluation o f f 011 input I: with respect) to .y (note
tha t the value o f f depends both on the input L and on the public random st'ring
y) , and we write (f (x : y j : y) to indicate the pair of strings f (z ; y) and y.

Although the public random bits arc known to an adversary, it turns out
t ha t these bits often plays a crucial role in ensuring tha t the primitive is secure.

2.3 Security

The security of a prirnit,ive quantifies tiow secure the priniit,ive is against a.ttacks
by a n adversary trying to break the primitive. T h e important question to ~011-

sider is "What, does the security measure?" Intuitively. the security of a primitive
is a measure of the niininial computational resources needed by any adversary to
break the primitive. There are two natural cornputat,ional resources we consider;
the rriaxirnal t.otjal time T tha t the adversary runs and the success probability 6
of the adversary. Both T and 6 are stat,ed with rrspect to a given input instance
to the adversary, and their definitions are primitive dependent.

A trivial strategy to increase the success probability 6 is to run the adver-
sary again. This doubles the running t ime, bu t also almost doubles the success

424

probability (especially if it is low) . 'This motivates us to simplify t,he nnnlysis
by comparing only t,he ratios between t,hr success probabilities and the running
t imes of different adversaries. An a.ddit,ional simplification is to consider t8he ratio
between the success probability 6(n,) and the maximal running t ime T (n j . both
over all private input,s of length n . Without much loss in generality. we hereaft>er
assume that a n adversary .4 always runs for the same amount of time T (n) on
all inputs parameterized by n.
Definition (achievement ratio): The achievement ratio of an adversary -4
for a primitive f is defined as 60 where T(n) is the running time of -4 and

T (n i '
E(n) is the success probability of -4 for f on private inputs of lcngth n .
Definition (breaking adversary and security): An adversary -4 is Rj (n j-
breaking for a primitive f if the achievement ratio T(n of .1 for J satisfies

$!$ 2 Rf(n) for infinitely many n E .\-. T h e primitive f' is ti - R,j (n)) -s tcure
if there is no Rf(n) -breaking adversary for f .

Intuitively, 0-secure means totally insecure. whereas I-secure means tot,ally
secure. We would like the primitive to he harder to break than it is to I K ~ .

For example. suppose f is a (1 - Rj(n)) - secu re one-way function. where for all
constants c. R j (, n) < 5 for sufficiently largc n. Then f can be computed in
polynomial time. whereas a polynomial t ime algorithm can only invert f with
inverse polynomial probability for finitely many values of n. E .'I*.

Allowing the security of a primitive t o be parameterized is important because
different implementations of primitives may ctchirvp different. levels o f security.
which may offer different t,ratieoffs between efficiency and securit<y. I\:e note t.hat,
inverse polynomial security (e.g. R, [n) = -& j means tha t . the primitive inav be
broken by a polynomial adversary. 5 0 w e expect t ha t ~ n a r i y applications w u i d
require higher security. For example. it may be tha t a part,icular function f is
a (1 - Rf(n))-securr one-way function. where R j (n : ~ = -, or even bp t t e r

with R f (n) = A, T h e statement t.hat, J is seciire with respect t o either of
these bounds is quantifiably stronger than the stat,ement tha t it, is secure with
respect to a n inverse polynomial bound. O n the other hand . for any function
computable in t ime T (n) there is an inverting adversary tha t rims in T(n) 2"
t ime: a.nd thus there is no (1 - &)-secure one-way function.

6 i t z l

2.4 Primitives with Public R.andornness

Definition (standard function): -4 function fix; y) is called a standard p 7) c -
tion with length relationship 1I.r / I = R , 1 1 y / j = I(n). 1 1 f(x; y) / I = nxjn) if

- f(e: y) is computable in polynomial time.
- If 1 1 ~ 1 1 = n then i / y l (= / i n) and \ l f (z : g) \ l = ~n(n), where both Ijn) and

m(n) are polynomial in n.

We now give the definitions of primitives using public randomness.
Definition (one-way function with public random bits): Let f (z ; L/) be
a s tandard function with length relationship 112 (1 = n. ; I y l l = l (r ~ 1 . 1 1 f(.: Y) / I =

rn(n). Let X EL((0 , l } n and E' EL({O, l}r(") . The success prohnhzlztyof adversary
A for f is

b(nj = Pr i f (A(f (X; Y) ; Y) ; 1-1 = f (X ; Y) j .
X , Y

T h e runnzng time T (n) of adversary -4 for f is the maximum over all t E (0: 1)"
a n d y E (0, l}'(n) of the running time of A on input (f(x; y); y). Then. f is a
(1 - Rf(n)) -secure one-way function if there is no Rf(n) -breaking adversary for

Definition (one-way permutation with public random bits): Let f(x: y)
be a s tandard function with length relationship j (z (1 = n, (1 y 1 1 = I(n) , (1 f(x; y) 1 1 =
rn(n). Then. f is a (I -Rf (n)) - secu re one-way permutation i f f is a (l - R f (n)) -
secure one-way function and m(n) = n and E is uniquely determined by f(.; y)
and y.
Definition (pseudo-random generator with public random bits) : Let
g (x ; y) be a s tandard function with length relationship / (z / / n. i l y l / = [i n) ,
g (c) = m (n) , where m (n) > n.. The sfretching parameter of g (: x ; y) is rn(n) - n .
Let X EL/ (0. l}". 1~ Eu (0, l}'(''! and 2 cLi (0. l}rrl'n:'. The success proba6zli t .y
(distinguishing probability) of adversary A for y is

h (n) = Pr [.-l(y(S; 1 .) ;

f.

= 11 - Pr [-4(Z; 1.1 I]. X . Y z 1-

T h e runnzng t i m e T i n , of adversar\.- .4 for g is t,he Inas imum over all : E
(0, l}m(''! and y E (0. t}r("i of the running time of .-I on input, (L : 9) . 'Then.
g is a (1 - Rg(n)) -secure pseudo-random generator if there is no Ry(,n)-breaking
adversary for g .
Example : To exemplify the difference ht.rwpen t,he traditional definition of
a one-way function and the definit,iori int,roduced hcre with public randomness.
consider the subset sum problem. -A one-way function based on the difficu1t.y of
this problem can be defined in tvm ways: without public raridom bits and wit'h
public random bit.s. Let b E (0, l}n and let a E { O . l I n x n . In the first definition
without public random bits the fiinction is

r

j (u . b , = (a > 1 h, a,)
,=:

T h e security is parameterized by the Input length
definition, u is the publlc random string and the function IS defined as

= n' + n In the second

11

a = l

In this case, the security is parameterized by the length of the private input b.
which is simply n. Xote t h a t in both cases. the actual security of f is based on
exactly the same thing, i.e. when n and b are chosen uriiforrnly then given a a n d xi"=, bi . ai there is no fast adversary that can find on average a b' E (0,
such tha t b: . ai = Cy=; bi . a , , The only difference is how the security is

426

parameterized. Intuitively, security should be parameterized in trrms of what, is
hidden from the adversary. and not! in terms of the overall amount of randoiniiess
available to the function. T h e first definition paraniet,erizes thr security in terms
of the overall amount of randomness available to thc function, i.e. security is
parameterized in terms of the length of b plus the lengt,h of a . The parameter
of security in the second definition is t,lie length of b , where b is what is really
secret.

Intuitively, a weak one-way fuiict,ion J is a function such tha t it is hard t o
find a n inverse of f i x) for some significant bu t perhaps not very large fraction
of .z E (0. l}n (the ‘hard set’) (In contrast, for a one-way function i t is hard t a
find a n inverse of f (J) for all but an insignificant fraction of t he t E (0: l}n.) We
only give the traditional definition (not, using public randomness); the definition
using public randomness is straightforward.
Definition (weak one-way function): Let j (z) be a stanclard function with
length relationship /) z / j l = n . l l f (~ -) 1 1 = l j n) . The weakness parameter of f is
a function s in) such tha t s (n) 2 5 for soiiie constant c. The time bound arid
success probability of an adversary -4 for f a r p ciefiried exactly t,hr m i i e wil.\.. as
for a one-way funct ion. An adversary *-I is Rj (n) -bceaE; in~ for s (n j -wrak f if t.tierc-.
is a subset H, of (0. 1)” of rrieasure at least, .s(71.) such taliat Rt(I I) 5 M, where
E H (n) is the average success probability- over H (n) and T H (7 2 j is the maximal
running t ime over H (n) , X function 1 is a (1 - I?,(n))-seciirP .s(11 j-weak one-way
function if there is no R;(n)-breaking adversary for s (n) -weak f.
Example : Drfiiie f(2. y j = zy. where Z , y E { 2 , . . , , ‘2” - l}. The problem
of invert,ing f (x , y) consist,s of finding d”. y’ E { 2 , 2” - I} such that c’y’ =
XY. Let, X. Y € 2 , { ’2? . . . ,2” - 1) be indcpendent randon1 variables. On a.veragc..
f(X. Y) is rather easy to invert. For instjarice. with probability :, ,YY is a n even
number. in which case sett,ing x’ = ’2 arid y’ = inverts f1-Y. Ye). IIowever.
with probability approxirnately l / n ’ hor,h X and Y a.rp prime n-h i t numbers.
If there is no adversary lhat can fact.or t h c product of a pair of random n-bit
prime numbers in time on average t,hcn f is a (1 - Rj (2n))-securc ?-weak
one-way function.

5

1

3 Reductions

All of the results presentled in this paper involvr a reduction ,;from one type of
cryptographic primitive to another. I n this section, we give a fornial definition
of reduction. FYe only define a reduction in the case when both cryptographic
primitives are standard functions.

Central to the definition of a reduction is t,he notion of an oracle Turing
machine.
Definition (oracle Turing machine): An oracle Turzn,g mach.zne is a ran-
domized Turing machine S whose behavior is not. fully specified. T h e behavior is
not fully specified in t,he sense tha t S, in t,he course of its execution, irit,eractively
makes calls (hereafter described as oracle calls) to and receives corresponding
ou tpu t s from an algorithm tha t is nut part of the desrript,ion of 5’. We let S.l

427

denote the fully specified Turing machine described by S using algorithm .-I to
compute the oracle calls.

Yote that although the running time of S is not, defined, the running time of
S" is defined. Also, if .4 is a Turing machine then so is S".

Let f be a generic instance of the first primitive, where f (z) is a standard
function with length relationship 1 1 1: / I = R and 1 1 f(x) / I = I (n) . Let S EU (0 , l}n.
There are two parts t o a reduction: (1) an oracle Turing machine P that effi-
ciently converts f (X) into an instance g!Y) of the second primitive, where g is a
standard function and Y is the polynomially samplable probability distribution
on inputs to g ; (2) an oracle Turing machine S that is the guarantee that the
security of f (X) is passed on to g(k ') . The security guarantee is of the form that
if A is a breaking adversary for g (Y) theri S" is a breaking adversary for f (s) .
More formally,
Definition (reduction): We say that there is a reduction from przmziizie-1 to
primitive-,? if there are two oracle 'Turing machines P and S with the following
properties. Given any instance f of primatwe-1, Pf is an instance g of pr imi t i sd .
Given any R,(n)-breaking adLVersary -4 for 9 , S" is a Rf(ri)-hreakirig adversary
for f .

The reduction guarantees that thrrr is rio R,(n)-breaking adversary- for 9 as
long as there is no Rj(n)-breaking adversary for f. To have the reduction inject
as much of the securit,y of f as possible int>o g3 we would like R j (n) to hc, i ~ ?

large as possible witti respect to R,(nj. e.g.. R ~ (R) = R,(i2).

To give a rough measure of the arxiuuIit, of security a reduction preserves. we
make the following definit,ions. 3o te that in all definitions the reduction has an
overhead of $. However. typically R,(n) < -$ and i t is therefore the dominant
factor.
Definition (preserving reductions): The reductlion from p ~ i 7 n ~ t i 7 ~ e - l to
primitive-2 is said to h e

- sltghtly preserving If there are con>tarits (1 2 1. J >_ 1 and c 2 0 such that

- po lynomia l l y preserving if there are constants J 2 1 and c 2 0 such t h a t

- linearly preservzng if there is a constant c 2 0 such that

For a linearly preserving reduction. Rj(71) is linearly lower bounded b y n g (n) ,
and for a polynomially preserving reduction. Rj (n) is polynomially lower bounded
by Rg(n) (in both cases there is also a polynomial in n factor). On the other
hand, for a slightly preserving reduction the lower bound on Rf(n) can be much

428

weaker than any polynomial factor in R,(71). For t,his reason. a linearly preserv-
ing reduction is more desirable than a polynoniially preserving reduction whicli
in turn is more desirable than a slightly preserving reduct,ion.

Consider a reduction from a one-way function f to a pseudo-random genera,-
tor 9 and suppose we want t he reduction to guarant,ee Lhat, y is (1 - R,(n))-secure.
The difference between these types of guarantees isn’t, so impor tan t when R,(n)
is no t t oo small. e.g.$ if R,(n,) is inverse polynomial in n then a11 types guar-
antee tha t Rjin,) is inverse polynomial i n n, antl thus g is (1 - Rg(n))-secure
if there is no polynomiel t ime adversary that can invert 1 with inverse poly-
nomial probability-. However. the difference between these t,ypes of gna.rantees
increases dramatically as R,&) goes to zero a t a faster rat(:, which is expw.ted
in most applications. To see the drarnat,ic diiferences between the strengths of
t,he reduct,ions, consider the case when R g (n) = *3-rl1’’ and = ~3 = 2 and
c = 0 . For a linearly preserving reductiou. y is (1 - R : J (r ~)) - ~ ~ ~ : u r e if the , . Y l 3 1s 110

1 1 2 R1(4 = 2-” -breaking adversary for f. For a polynomixll:; prcserviris reduc-
tion, y is (1 - Ry(n))-securC if tiiere is no ~ , , (n j = 2-2”’’ -breaking adversiiry
for f. For a slightly p t rving rd i Jc t ion , !/ is (1 - R,i I? !)-secure if ~.herc3 is no
Rj(n,) = %-‘“-breaking adversary for J . N o t e that in this [-asp K!(n) is tjhr:
2n.’Ia power of Rg(n!, which is n o t a.t ail ;,o~!noliiiai i n ~ , (r z ! . 111 fact-. fo r trivial
reasons there is a 2-“”-breakirig adversary for f. an{.{ tliiis t ~ i e slightly prewrL-iiig
reduction does not guarantee that i y (1 - 2-‘7”’)-scsiire no matt,er how swiire
f is.

Because of t8he tremenJous superiority of a l i n ~ ~ a r l y preserviiig over a polyno-
mially preserving reduction m e r a slightly preserving reduct8ion. i t is importar i t
to design the strongest reduction possible. Some of t lie most important’ work
(both theoretically antl practically) left to h e done is tfi find stroiiger preserving
reductions between cryptographic primitives than arc c-imi-ntly knowri. e.g. t h e
strongest reductioris known from R one-way fun(-tion t o ;II ps~~i~lo-ra.nc1~~11i gen-
erator and from x weak one-way funct ion to a oris-way function (in the: general
case) a re only slightly preservirig.

It tu rns out’ that the primary quantity that determines t,he st,rength of the
reduction is the ratio 3, whcre n is the length of the privnt,c part, of the in-
put for g a n d n,‘ is the length of the private part uf t h f input for calls t o f
when computing 9 . The bigger this ratio the more t,he loss in security. T h e best
ca.se is when these two lengths are equal or nearl; equal. ‘The reason f o r this is
that typically the achievement rat,io €or 5’,4 is either 1inr;tr or polynomial in the
achievement ratio R,(n) for J4q arid S“ breaks one of the cijlls to f on inputs of
length n’, and thus Rj(n’) is either linear or polynomial in R,(n). For example.
if n’ = n and Rf(n‘) = R g (n) then the reduction is linearly preserving. Slightly
weaker, if n’ = cn for some constant, c > 0 and Rf(n’) = R y (n) f for some
constant d > 1 tjhen the reduction is polynornially preserving. This can be seen
as follows. Even in the worst case, when Ry(ri.) = &, i t is easy to verify t ha t
R,(rl) = R , (~ ’ / E) 5 Rg(7~‘)’ / f . Thus, Rj(n’) 5 R S (~ , ’) J ^ ’ f . If n’ is substantially
smaller than n, (bu t still polynomial in n), then the reduction is typically oiilg
slightly preserving.

429

4 The Reductions

We describe several linearly preserving reductions from a weak one-way permu-
ta t ion to a one-way perrnutat,ion. All of the reductions work only for functions
that are p e r ~ n u t a t i o n s . ~ In [4], Yao describes a reduction from a general weak
owf to a one-way function, bu t the reduction is only slightly preserving. A good
research problem is t o design a linearly preserving (or even polynomially pre-
serving) reduction without any restriction on the weak one-way function.

In all the reductions. we assume tha t the weak one-way functiorl doesn't use
a public r andom st,ring. Only minor niodificat,ions need be made t,o handle the
case when t,he weak one-way function uses public randomness.

All of the reductions share a coniinon approach. and each reduc:ion hiiilds 011

the idea,s developed in previoiis reductions. For ,completeness. w first, describc
a general reduction from a weak one-way function to a one-way function.
Reduction 1 [Yan] : Let j (s) lie ;t s (n) -weak one-way function, w h P r P .I: E
(0: I}". Let 2' = 5. let y E {o, l].Vxn and define the one-way functsion

Theorem 1 [Yao] :
s(n)-weak one-way funct,iori j to one-way function y . More precisely. there is a n
oracle algorithm Y such that i f -4 is an R,(r,X)-brcAaking ad\.err;nr.y for g iy) clien

Yote t,hat s (n j must be at least inverse poIynoinia1 in n for t h e rcductioii t o
even slightly preserving. This is because it is necessary for n. to be (t polynomial
fraction of :V) and .\: = fi.

Reduction 1 is a slightly preserving reduction froiii

R, ri. .V 1 S A is a Rj(n) -breaking adversary for s(n)-w.veali f (s) . where R,;In) = r1.V '

4.1

An irnportant observation about Reduction 1 IS that y doesn't use any public
random bits beyond what is used by f. T h e reasor1 the rectuct,ion is only slightly
preserving is tha t g partitions its private input, into many small strings and uses
each of these st,rings as a private input to f . This can be thought of as a parallel
construction, in the sense that, the calls t o f are on independent input>s and thus
all calls to f can be computed sirnultaneously. The linearly preserving reduction
given here is similar in its basic structure to R.eduction 1. The main difference

tha t instead of partitioning the privat,e input of y into :L' p r i v a k inpiit's of
length n for j , the private input t o y is a single string 2 E (0. 1)". and t'he
public random string is used to generate 11' inputs of length 1% to f sequentially-.
Reduction 2 : Let f i x) be a s (n) -weak one-way permutation, where 2 E
(0,

A simple linearly preserving reduction

Let LV = &. let T E {O. l}!Vx7L and define the one-way permutation

q (x ; T i = y.v-i
3

These reductions can be extended to the important case of regular fiinct>ions, which
more general than permutations b u t still not the general case. A function is regular

if each point in t,he range of the functioii has the same number of preirriagcs. ''

430

where yl = z and, for all i = 2 , . . . , ?J - 1, yz = T , - ~ 3 f (y i - l j.
Theorem 2 : Reduction 2 is a linearly preserving reduct,ion from a s(n)-weak
one-way permutation f to one-way permutation g . More precisely, there is a n
oracle algorithm .S such that if -4 is an R,(n)-breaking adversary for q(x: 7) then
S 4 is a R,-(n)-breaking adversary for s(n)-weak f(z), where Rf(nj = 7. R,ln')

The proof of Theorem 2 is similar in spirit to the proof of the Theorem 1. We
only describe the oracle algorithm S. Suppose that A is an adversary with time
bound T(n) and success probability E(n) for g , and thus the achievement ratio is
#. A on input g(z; T) and ;7 finds L with probability 6 (n) when c EL[{ O . 1)"
and T (0, 1)lVxn. The oracle machine described below ha.s the property that
SA inverts f on inputs of length ri with probability at least, 1 - s (n)) where the
time bound for S" is n(n!. The input to S" is f (z) where .z EL((0 , l}".
Adversary SA on input f(z) :

n V T i n 1

Repeat times
5/n 1

Randomly choose i Err { 2 . . . , -V -,- l}.
Randomly choose 7 EL! { 0 , l n.

Let yi = f (2) 5
Compute !lit: = ir, % f (y i i. . . . , y4'+l = a.
Compute L',, = LrI(u,v+l: ir j .

if f (v i - 1) = f(z) then output, ~ i - ~ ,

f(Yzr) .

U , - I = Tz-2 5 f (2 $ - 2) . Compute ill = irU 5 f(co j

4.2

Although Reduction 2 is Linearly preserving, it does have the drawback that t'he
length of the public random string is rather large. and even worse this length
depends linearly on the weakness parameter $(n) of the weak one-way function.
In this subsection, we describe a linrarly preserving reduction that uses a much
shorter public random string.

The overall structure of the reduction is the same as Reduction 2. The differ-
ence is that we use many fewer public random strings of length n in a recursive
way to produce the almost random inputs to f. The reduc,tiori is in two steps.
In the first step we describe a linearly preserving reduction from a s(,n)-weak
one-way permutation f to a +-weak one-way perrnutacion 9 . The second step
reduces g to a one-way permutation h using the construction given in Reduction
2.
Reduction 3 : Let f (z) be a s(n)-weak one-way permutation, where .c E
(0 , l}n. Let 2 = [log3,2(2/s(n))] and let iV = 2' . Let i~ E (0 . l}'xn. Define

A linearly preserving reduction using less randomness

six: T 1) = f (7 1 -3 ft.)).
For all i = 2, . . . , I , reciirsively define

43 1

Theorem 3 : Reduction 3 is a linearly preserving reduction from a s (n) -
weak one-way permutation f (z) to +-weak one-way perinutation y(x: T) . More
precisely, there is an oracle algorithm S such that if A is an Ryjn)-breaking
adversary for :-weak g(e; T) then S-' is a Rf(nj-brPaking adversary for s (n) -

weak f 3 where RJ (n) =
The final step in the reduction is to go from weak one-way permut,ation g with

weakness parameter f t o a one-way permutation h using Reduction 2 , except,
now g has weakness parameter $ and uses a public random string of length
m = O(nlog(l /s(n)). Thus. when using Reductmion 2 to go from g to h,, we set
LV = log(l /R,(n)) 5 n and partition the public random st,ring into lV blocks of
length n + m. Thus, the overall reduction uses O(n2 log(l l s j n))) public random
bits, as opposed to 0 LL- for Reduction 2 . It is not hard to verify that the
overall reduction from f to h is linearly preserving

R (n)

(.q(:i)

4.3

The work described in [l] gives a polynomially preserving reduction from a weak
one-way permutation to a one-way permutation that, uses only a linear amount of
public randomness. A s briefly described below their reduction can he modified
in minor ways to yield a linearly preserving reduction ifrom a wcak one-way
permutation f to a one-way permutation h that, uses only a linear number of
public random bits overall.

As in Reduction 3 . the reduction is in two s t rps : The first step is a linearly
preserving reduction from a s(n)-weak one-way perrriutacion f to a +-weak one-
way permutation g and the second step reduces 3 to a one-way permutation h.
As in Reduction 3 , t'hr first step is recursive and uses O(log(s(nj) independent
public random strings, but t,hey are each of const,ant length instead of length n..
The idea is to define a coristant degree expander graph with vert,ex set' (0, I}",
and then each string is used t,o select. a random edge out of a vertex i n the
expander graph The second step is itcrative, but uses only ail additiona.1 (3 (n)
public random bits. These O (n) public random bits are used to define a random
walk of length O (n) on a related expander graph.

The overall number of public random bits used in the entire reduction j,from f
to h is only linear. The way [l] describes the reduction. the one-way permutation
f is applied to inputs of different lengths (all within a coristant multiplicative
factor of each other) t o yield h,. For this reason, as they describe their reduction it
is only polynomially preserving, even with respect to the new definitions. Minor
modifications to their reduction yields an a1t)rrnative reduction where all inputs
to f are of the same length as the privat.e input, to h. It can be shown that the
alternative reduction with respect, to the new definitions is linearly preserving.

A linearly preserving reduction iising expander graphs

Acknowledgements

We wish to thank Oded Goldreich. Hugo M Iirawczyk arid Rafail Ostrovsky for
their comments.

43 2

References

1. Goldreich, 0.. Impagliazzo, R.. Levin. L . , Venketesan, R.. Zuckerman, D. . “Security
Preserving hmplilicaLion of Hardness”, Proceedings of the 31st IEFE Symposium
on Foundations of Computer Sciencc. pp. 318-336, 1990.

2. Phillips, S. J.. “Security Preserving Hardness Aknplification Using PRGs for
Bounded Space - Preliminary Report!’, unpublished manuscript. July 1993.

3 . Luby, M., “Pseudorandomness and Applications:’, monograph in progress.
4. Yao, A., “Theory and applications of trapdoor fiinctions”, Proceedings of h e ‘3rd

IEEE Symposium on Foundations of Computer Science. pp. 80-91 ~ 1982.

	Public RandomnessinCryptography"
	1 Introduction
	2 Definitions
	2.1 Basic Notation
	2.2 Public Randomness
	2.3 Security
	2.4 Primitives with Public R.andornness

	3 Reductions
	4 The Reductions
	4.1 A simple linearly preserving reduction
	4.2 A linearly preserving reduction using less randomness
	4.3 A linearly preserving reduction iising expander graphs

	Acknowledgements
	References

