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ABSTRACT

The recent literature on endogenous economic growth allows for effects of
fiscal policy on long-term growth. If the social rate of return on investment
exceeds the private return, then tax policies that encourage investment can
raise the growth rate and levels of utility. An excess of the social return
over the private return can reflect learning-by-doing with spillover effects,
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are not called for if the private rate of return on investment equals the
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a broad concept of capital does not entail diminishing returns, or if

technological progress appears as an expanding variety of consumer products.
In growth models that incorporate public services, the optimal tax policy

hinges on the characteristics of the services. If the public services are
publicly-provided private goods, which are rival and excludable, or publicly-
provided public goods, which are non-rival and non-excludable, then lump-sum
taxation is superior to income taxation. Many types of public goods are
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and can therefore be superior to lump-sum taxation. In particular, the
incentives for investment and growth are too high if taxes are lump sum. We
argue that the congestion model applies to a wide array of public expenditures,

including transportation facilities, public utilities, courts, and possibly
national defense and police.
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The recent literature on endogenous economic growth has provided some

insights into why countries grow at different rates over long periods of

time. In some of these models, the government's choices of tax rates and

expenditure levels influence the long-term growth rates. The present paper

discusses these types of fiscal effects within a variety of models that can

generate long-term growth endogenously.

The models that we consider assume a closed economy and share a common

perspective with respect to household choices on consuming and saving. We

begin with the standard model of the representative, infinite-lived

household, which seeks to maximize overall utility, as given by

(1) U =
çu(c)eotdt

where c is consumption per person (in the extended family) and p>O is the

constant rate of time preference. Population is constant and the momentary

utility function is given by

(2) u(c) = c1/(1-u), >O

so that marginal utility has the constant elasticity -c. Households hold the

quantity a(t) of real assets (denominated in units of consumables) in the

form of claims on physical or human capital or internal loans. The real rate

of return on assets, in units of future consumables per unit of current

consumables per unit of time, is r(t). Thus, the household's budget

constraint determines the change over time in assets to be
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(3) â=r•a- c

(The term, r•a, includes returns on human capital—that is, labor income—as

well as returns on physical capital.)

As is well known, the first-order condition for the maximization of

utility in equation (1) subject to the budget constraint in equation (3)

requires the growth rate of consumption per person, denoted by to be

(4) = /c (l/).(r-p)

Equivalently, the real rate of return must satisfy

(5) r=p+c7c

That is, r equals the required premium in future consumption over current

consumption. This premium exceeds the rate of time preference, p, by a term

that equals the product of 'c and ,, the reciprocal of the intertemporal

elasticity of substitution. The higher the more the household must be

compensated for deferring consumption. The upward-sloping line in Figure 1

plots the relation between the interest rate and the growth rate implied by

the preference relation in equation (5). For our purposes, the positive

slope of this line is the main content of the standard model of household

saving over an infinite horizon.

Production Constant Returns k4 CaDital

The simplest model that generates growth endogenously is one where
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production, y, is linear in a broad concept of capital, k; that is, the "Ak

model":

(6) y=Ak

Producers that can borrow and lend at the rate r(t) seek to maximize the

present value of net revenues,

(7) Net revenues = {(Ak-,,i).exp[-I r(s)ds]}dt
Jo Jo

where q is the constant cost of capital in units of consumables and is

investment expenditures. (It is convenient for the subsequent analysis not

to normalize 'i to unity.) Omitting depreciation for simplicity and deferring

a consideration of adjustment costs until later, the change in the capital

stock is given by k = i. The first-order optimization condition entails

(8) r=A/,i

because A/7 is the constant rate of return on investment (with the division

by converting units of capital into units of consumables). It is the

private rate of return on investment that enters into equation (8), but the

social return equals the private return in this model.

The horizontal line in Figure 1 shows the relation between the interest

rate and the growth rate implied bythe production condition in equation (8).
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The line is horizontal because the growth rate does not affect the rate of

return on investment in this model.

Combining equations (5) and (8) yields the solution for the constant

growth rate of per cap ita consumption

(9) c = [/'7) - p]/u

This result can be read off the intersection of the two lines in Figure 1.

The growth rate is positive if (A/n) > p (and utility turns out to be bounded

if p > (A/)[1-u]). The growth rates of k and y can be shown, using the

budget constraint and the appropriate transversality conditions, to equal the

growth rate of c, which is given in equation (9). There is no transitional

dynamics and the economy is always in a position of constant, steady-state

growth.' The outcomes are Pareto optimal in this model because the social

return on investment equals the private return.

A number of endogenous growth models in the literature amount to a theory

of A/q, which is the private rate of return on investment. In some of these

models, considered in the following sections, the social return differs from

the private return, so that the decentralized equilibrium is not Pareto

tRebelo (1990) worked out a two-sector version of the Ak model with two types
of productive capital, k1 and k2, one of which could be human capital. The

properties of the steady- state growth rate are similar to those for the
one-sector model. In the two-sector model, however, there is a transition
from an initial ratio of k1 to k2 to the steady-state ratio. The details of
this transition path have not been worked out. King and Rebelo (1989)
provide related simulations for the transition path in a Cass (1965)-Koopmans
(1965) model with a one-sector technology but with diminishing returns to
capital.



optimal. Also, some models allow for a transition to the steady-state growth

path, whereas others have no transition.

Learnin-by-Doin Models iJi Soillovers

The Arrow (1962)-Romer (1986) learning-by-doing model assumes that

production per worker, y, depends on own capital per worker, k, and also on

the average (or in some versions the aggregate) of the capital stocks of

other producers, 1. The effects from can represent the uncompensated

spillovers of knowledge or ideas from one producer to another. In a simple

case, the production function takes the Cobb-Douglas form,

(10) y = A.ka()0, 0<a<l

that is, production is subject to diminishing returns in k for fixed , but

constant returns with respect to k and together. The private rate of

return on investment in this model is (1-o)(A/,7)(k/k)°, which equals

(1-o)(A/q) in the equilibrium where k = k.2 As in the Ak model, the rate of

2Jf is the aggregate stock of capital (corresponding, say, to the total of

knowledge), then /k equals the number of producin units in the economy. In
that case, a higher number of producing units implies a scale benefit that
raises the economy's per capita rowth rate. Increases over time in the
number of units, which could be implied by population growth, then lead to

rising per capita growth rates. These implications do not follow if
represents the average of capital per worker in the economy. For example, in

Lucas (1988), corresponds to the average person's human capital. One
interpretation here is that the knowledge spillover relates to the ability of
the person whom one happens to encounter; if meetings are random, then the
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return is independent of the growth rate, as shown by the horizontal line in

Figure 1. The steady-state growth rate follows from equation (9),

substituting (1-a)(A/) for A/i7. As with the Ak model, the growth rate

always equals this value; that is, there is no transition to the steady

state. The growth rate falls short of the Pareto optimal rate, which is

found by using the social rate of return on investment, A/i7, instead of the

private return.

One way to attain the social optimum is to subsidize production (which

corresponds here to the income on broad capital) at the rate a/(1-a).

Thereby the private rate of return on investment becomes A/i7, which equals

the social return. The subsidy would have to be financed with a lump-sum

tax, which could be a consumption tax because the model lacks a labor-leisure

choice. Alternatively, the government could subsidize purchases of capital

goods (an investment-tax credit), so that buyers of capital pay only (1-a)i

for each unit. Again, the private return on investment would be A/i7.

Models Public Services

Barro (1990) constructs a growth model that includes public services as a

productive input for private producers. We consider three versions of this

type of model: publicly-provided private goods, which are rival and

excludable; publicly-provided public goods, which are non-rival and

non-excludable; and publicly-provided goods that are subject to congestion.

The third category of public goods, which are rival but to some extent

average ability would matter. Perhaps it helps to think about the costs to
aiiecono.ics department of appointing n.m additional member with below average
ability (the deadwood effect). If one has to interact with the new member,
then the effect on everyone else's productivity could be negative.



non-excludable, includes highways, water and sewer systems, courts, and so

on. We argue later that the congestion model may also be appropriate to

security services, such as national defense and police. Activities like

education and health can be represented by some combination of the first two

types of models.

In the first model, based on publicly-provided private goods, each

producer has property rights to a specified quantity of public services. The

services are rival but excludable; therefore, an individual producer cannot

trespass on or congest the services provided to others. If G is the

aggregate quantity of government purchases, then g = C/n is the quantity

allocated to each producer, where n is the number of producers (or finns).

In the case of a Cobb-Douglas technology, the production function is

(11) y = Akaga

Hence, production is subject to diminishing returns with respect to the

private input, k, for given g, but is subject to constant returns with

respect to k and g together. In this setting, an individual producer regards

his individual allotment of public services, g, as fixed when choosing the

quantity of private input, k.

The government runs a balanced budget and, in one version of the model,

levies a proportional tax at rate r = g/y on the quantity of output, y.

Because each unit of g requires the government to use one unit of resources

(measured in units of consumables), the natural efficiency condition for

determining the size of the public sector is y/Dg = 1. In the case of a

Cobb-Douglas technology, the government that seeks to maximize the utility of
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the representative household turns out to satisfy this condition even in the

second-best case where expenditures are financed by the distorting tax on

output. It can be readily verified from equation (11) that Oy/Og = 1 implies

g/y = a.3

The marginal product of capital can be determined from equation (11) as

(12) Oy/Dk = (la)A0)(g/y)0I(

where 8v/Ok is computed for a given value of g. The condition g/y = a can be

substituted on the right side of equation (12) if the size of the public

sector is optimal. The private rate of return on investment is found by

multiplying 8y/8k by (1-r)/t7, where r is the marginal tax rate on output (and

hence, on the income from capital) and i is again the cost of a unit of

capital in terms of consumables. (If g/y = a and the government levies a

proportional tax on y, then r = a.) Once again, the rate of return on

investment is independent of the growth rate, as shown by the horizontal line

in Figure 1.

The growth rate of the economy follows by substituting the expression,

(l-r)(êy/8k)/, for A/ in equation (9). Note that 8y/ôk depends on g/y in

equation (12); that is, this model brings in a dependence of the growth rate

on the quantity of the governments productive services. If g/y and r are

constant, then the model again has no transition period; that is, the growth

rate always equals the steady-state growth rate.

31f /y = a and r = g/y, then the representative firm ends up with zero
profit in this model. That is, the benefit from the public services just
balances the tax bill. The number of firms is then indeterminate.
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If the size of the government is optimal, so that g/y = a, then the

private and social returns on investment would coincide if the marginal tax

rate, r, were zero. If r > 0, the private return falls short of the social

return as in the learning-by-doing models. Hence, the growth rate in a

decentralized economy is too low from a social perspective. A Pareto optimal

outcome can be achieved by shifting to a lump-sum tax (which can be a

consumption tax in this model) or by subsidizing the purchase of capital

goods. If the private price of a unit of capital were .(1-r)—that is,

subsidized in the proportion r—then the private return on investment would

coincide with the social return and, therefore, the decentralized growth rate

would equal the socially optimal rate. Of course, the subsidy to purchases

of capital would have to be financed by a lump-sum tax; if such a tax were

feasible then it could have been used in the first place to finance the

governments purchases of goods and services.

The second version of the model treats public services as Samuelson

(1954)-style, non-rival, non-excludable public goods. In this case, the

aggregate quantity of government purchases, C, replaces the per capita

quantity, g, in each producers production function:

(13) y = Ak1 aGe

Equation (13) implies that the aggregate of public services, C, can be spread

in a non-rival manner over all of the n producers. Because of this

non-rivalry, the marginal product of public services is the effect of a

change in C on aggregate output, Y = y•n.4 Productive efficiency now

With free entry and no fixed costs, the number of firms, n, would be
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requires this revised marginal product of public services to equal one. (In

the Cobb-Douglas case, this condition still leads to the result, G/Y = a.)

The comparison between private and social returns to investment is

similar to that in the model where the public services were publicly-provided

private goods. Suppose, for example, that the size of the government

satisfies productive efficiency, but that government spending is financed

with a proportional tax on output, y. Then the privately determined growth

rate is again below the socially optimal rate, and a Pareto optimal situation

can be attained by shifting to a lump-sum tax.

The third version of the model (suggested by Ken Judd) allows for

congestion of the public services. In this case, the public good is rival

but not excludable. Suppose that the government services available to an

individual producer involve the ratio of total purchases, C, to the aggregate

of economic activity, Y. For example, C could represent total highway

mileage (or the size of a fishing pond) and Y the total of highway traffic

(or the number of fishermen). For a given C, the quantity of public services

available to a producer declines if other producers raise their levels of

usage, as represented by their levels of output.

Formally, the production function for each producer in the Cobb-Douglas

case would be

(14) y = Ak. (C/Y)°

infinite in this model. If fixed costs were introduced, the number of firms
could be determined from a zero-profit condition. However, this model—or
one where n is set exogenously—has the same type of counter-intuitive scale
effect that appeared in some of the learning-by-doing models: an increase in
the number of firms, n, raises the per capita growth rate.
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where O<a<l and k again represents the inputs provided by an individual

producer. Equation (14) says that individual production, y, satisfies

constant returns to private inputs, k, as long as the government maintains a

given state of congestion of the public facilities; that is, as long as the

government maintains the ratio of G to Y. Equivalently, aggregate

production, Y = ny, exhibits constant returns with respect to K = nk and G,

but diminishing returns to K for given C because of the increase in

congestion of the public services.

The crucial new element in equation (14) is that an individuals decision

to expand own capital, k, and hence output, y, congests the facilities

available for other producers. with no user fee—that is, under lump-sum

taxation—this distortion leads to the usual excessive use of the public

good. In particular, the private rate of return to investment now exceeds

the social return, and hence, the decentralized growth rate is too high.

The production function in equation (14) assumes that congestion depends

on the expenditure ratio, C/Y. In this case, the user fee that internalizes

the congestion distortion is a proportional tax on output or income at rate

r = G/Y. That is, a tax at this rate equalizes the private and social rates

of return on investment, and therefore leads to a Pareto optimal growth rate.

(The tax also yields just enough revenue to satisfy the governments budget

constraint in each period.)

One lesson for public finance is that taxes on output or income—or

equivalent user fees—are well matched to services that entail congestion.

The congestion model applies readily to highways and other transportation

facilities, water and sewer systems, courts, etc. The applicability of the
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model to government activities is, however, much broader if the setting

applies also to national and domestic security.

National defense is often regarded as the prototypical non-rival (and

non-excludable) public good. That is, in equation (13), the non-rival input

G might represent the national security services conveyed by defense

expenditures.5 Thompson (1974) disputed this interpretation by arguing that

defense expenditures were subject to a form of congestion. In particular,

the state of national security depends on defense expenditures, G, in

relation to the level of the external threat. This threat (that is, the

incentive to threaten) depends, among other things, on the size of the prize

available to external aggressors. The prize is, in turn, proportional to the

domestic capital stock, K, and hence (given C/Y in equation [14]), to the

level of domestic production, Y. Thus, the variable G/Y in equation (14)

could represent the effective level of national security. Similarly, if G

pertains to the domestic security services provided by police, prisons, and

so on, then G/Y could describe the effective level of domestic security. The

conclusion is that the congestion model of government services applies to a

substantial portion of the governments productive expenditures. This result

is important because the congestion model favors income taxation—as an

approximation to an appropriate user fee—over lump-sum taxation.

Barro (1990) also considered government consumption purchases, CC which

entered into household utility functions. These activities did not affect

production opportunities and therefore did not affect the social rate of

return on investment. On the other hand, if government expenditure is

5lnstead of entering directly into the production function, the security of
property rights could appear as a determinant of investment. The
implications for growth and investment end up being similar.
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financed by a proportional income tax, then an increase in Gd/Y raises the

marginal tax rate, r, and thereby lowers the private rate of return on

investment. It follows that an increase in GC/Y lowers the economy's

steady-state growth rate, 7 (in an absolute sense and also relative to the

socially optimal rate). This result follows even if the rise in Gc/Y is

warranted from the standpoint of maximizing the utility of the representative

household. That is, an increase in G'/Y can be consistent with an increase

in utility that accompanies a decrease in the growth rate.

Barro (1989) provided evidence on the relation between government

spending and economic growth in a sample of 98 countries over the period 1960

to 1985. Government consumption, GC was measured by government consumption

purchases as reported in the standard national accounts, less the amounts

spent on national defense and education. The assumption was that GC proxied

for public services that enter into household utility functions. The data

indicated a significantly negative relation between Gc/Y and the growth rate

of per capita real GDP.

Public investment, G', was taken as a proxy for the government's

activities that enter into production functions. The empirical results

indicated little relation between G'/Y and economic growth, especially if the

ratio of private investment to GDP was held constant. One interpretation of

this finding is that public investment is not very important for economic

growth. An alternative explanation, however, is that governments are

optimizing and are therefore going to the point where the marginal effect of

public investment on the growth rate is close to zero. In this case, we

would find little relation across countries between the growth rate and the

share of GOP that went to public investment.
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Models h Varieties j Capital Imperfect Competition

Technological progress is a central element in many models of long-term

economic growth. Romer (1987, 1990) modeled technological change by applying

the analyses of varieties of products from Dixit and Stiglitz (1977) and

Ethier (1982) to endogenous growth models. Related models in an

international context have been developed by Grossman and Helpman; see, for

example, Grossman and llelpman, 1988. In these models, technological progress

corresponds to an expansion of the number of types of capital goods.8 An

increase in the number of types—that is, inventions—requires purposive

activity in the form of research and development. Firms get compensated for

their R&D activity through the retention of monopoly power over the use of

their inventions. Therefore, the models involve elements of imperfect

competition.

The household consumption side of these models is the same as that used

before. To illustrate the production side, assume that producers of "basic

goods," y, use the quantity x of a variety of capital inputs, j = 1, ... , N.

where N is the number of varieties available at time t. The production

function is

N

(15) y = A.L0.(x)l_0, 0<0<1

j=1

where L is labor input. This functional form exhibits additive separability

across the xj's. Thus, new types of capital goods are different from, but

61t is possible to work out similar models in which technological progress
involves improvements in the quality of capital goods rather than increases
in the number of varieties.
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neither better nor worse than, the old oneé. The subsequent analysis treats

N(t) as continuous in time, rather than discretely varying. The continuous

case can be modeled formally by replacing the sum in equation (15) by an

integral over quantities of capital goods over a range of types. For given

N, equation (15) implies constant returns in the various xs and L together,

but diminishing returns in the xi's with L held fixed. In the subsequent

analysis, L is regarded as constant for the representative producer (that is.

aggregate labor supply is given and the real wage rate adjusts to ensure full

employment).

The producers of basic goods are perfect competitors and face the rental

price ft3 for the capital good of type j. The marginal product of capital is

(16) DyIoxj = A.(1a).La.(xY

The first-order condition for the maximization of profit equates this

marginal product to Rj; hence, the demand for x3 is

(17) x = L.[A(a)]/a

Producers of consumables are perfect competitors and can use one unit of

basic goods, y, to generate one unit of consumables, c. Accordingly, the

price of c in units of y is still unity.

A producer of a new type of capital good, say type j, must first incur a

fixed cost for research and development to generate a design. Each design is

assumed to cost the constant amount fi in units of the basic good, y. Hence,



the assumption is that the technology for doing research is the same as the

technology for producing basic goods and consumables. Once the cost fi is

incurred, the producer of capital good j is assumed to maintain a perpetual

monopoly in the production of this good. This production involves the

constant marginal cost i as in previous models. For simplicity, 17 is assumed

to be the same for capital goods of all types. Producers of good j rent the

quantity x of their infinitely-durable capital at the price to the

producers of basic goods.

The present value of profits for a capital-goods producer who begins

production of good j at time 0 is

(18) II = - -17.x(O) +

{[R.xj-].exp[-Jtr(s)ds}dt

where x is given from the demand function in equation (17). The term -fi is

the cost of R&D and the term -i.x.(O)is the cost of producing the discrete

amount x(O) when the good is first introduced. The subsequent path x(t) is

assumed to be differentiable, so that the term 17.kJ(t) is the cost of

production at each t>0. The term R3x3 is the flow of rental income.

We limit attention to the steady state where the interest rate, r(s),

equals the constant r. In that case, the first-order conditions for

maximizing the expression in equation (18) subject to equation (17) imply a

markup formula for the monopoly rental:

(19) ft3 = r17/(1-a)
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That is, the ratio of the present value of the rental price, R/r to the

marginal cost, 77, equals the constant markup ratio, 11(1-a). Because i and a

are independent of j, the rental price is the same for all j. The value

R = is constant in the steady state (when r is constant).

Correspondingly, the quantity x is independent of t or j:

(20) x = x = ____

Because x is constant (in the steady state), the term is zero in

equation (18). That is, the creator of a new design at time 0 produces the

entire quantity of capital x(O) at that time; production at later dates

equals zero. Nonzero production of existing types of capital goods would

occur in the steady state if the model were extended to allow for

depreciation of capital stocks or growth of the labor force.

There is free entry into the business of creating a new design and using

it to produce capital goods. Therefore, the present value of profits shown

in equation (18) must end up being zero. Using the constancy of x = x, =

R, and r(s) = r, the zero-profit condition is

(21) fi = x.[(R/r) - = xl7a/'(l-a)

where the formula for R/r from equation (19) was used. Combining equations

(20) and (21) to eliminate x leads to a condition for the interest rate,

(22) r = A(1a)(1a)(()a0(p/Ly0
= (9v/8x.).(1-a)/77 =

(ö/ôx)/(R/r)
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where the calculations use the formula for ay/8x from equation (16) and for

R/r from equation (19). The right side of equation (22) is the private rate

of return on investment, which equals the marginal product of capital divided

by the monopoly price of capital, R/r. As in previous models, this rate of

return is independent of the growth rate, as shown by the horizontal line in

Figure 1. Recall from equation (19) that R/r is the multiple l/(1-a) of the

marginal cost, . This excess of the monopoly price over marginal cost

lowers the private rate of return on investment (relative to what it would

have been in a competitive situation in which price equaled marginal cost)

and correspondingly lowers the interest rate, r.

The household optimization problem still implies from equation (5) that

the steady-state interest rate satisfies the condition, r = p + o', as

indicated by the upward-sloping line in Figure 1. Therefore, the

steady-state values of r and 7 are still determined by the intersection of

the two lines shown in the figure. Equivalently, equation (9) holds with i/it

replaced by the expression for the private rate of return on investment from

the right side of equation (22). Hence, the steady-state growth rateis now

(23) 7 = (l/) [A(1- a) (1- a)
1 (1 0)aa(fl/Ly a -

One interesting implication is that a decrease in the cost of doing research.

fi, raises the steady-state growth rate.7

7The model Contains a pronounced scale effect in that an increase in the
labor force, L, leads to an increase in the steady-state growth rate.
Moreover, as in some of the learning-by-doing models (n. 2) and the model
with public goods (n. 4), growth in the labor force would lead to continuing
increases in the growth rate of per capita output. The reason is that the
cost of doing research, fi, represents a lump-sum expense that can be spread
across a market of arbitrary size. Hence, by expanding the size of the
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The model also determines the steady-state value of x = k/N, which equals

(fl/,).(l-a)/a from equation (21). The economy can begin at an arbitrary

value of x; that is, an arbitrary ratio of total capital to the number of

types of capital. Then the model implies a transition to the steady-state

ratio, but the details of this transition have not been worked out.8

It turns out, given the Cobb-Douglas specification for production, that

the choice of x—which equals the quantity of capital relative to the number

of designs—coincides with the value that would be chosen by a social

planner. (See Romer, 1987, for a discussion.) The decentralized outcome

involves, however, the private rate of return on investment, which depends on

the monopoly price of capital, R/r = 171(1-a), whereas the related social

planner's problem involves the social rate of return, which depends on the

true marginal cost of capital, rj. The excess of the monopoly price over the

competitive one implies that the private rate of return on investment falls

short of the social return, and hence, that the steady-state growth rate in

the decentralized economy is below the socially optimal rate. In this sense.

the results are similar to the findings in the learning-by-doing model with

spillovers and in some of the models with an income tax. In all three types

of models—learning by doing with spillovers, taxation of income from capital

market, an increase in L represents a decrease in the effective cost of
research, filL, which leads to a higher growth rate. These effects might not
arise if the model contained other costs that rose as an innovation was
spread over a larger scale of operations. As a related matter, Becker and
(urphy (1989) argue that the benefits of increased specialization are offset
by costs involved with the increasing span of control.

The model is like the two-sector production framework (see n. 1), except
that the state variables are now the stock of capital, k, and the number of
designs, N, which corresponds to accumulated research or knowledge capital.
The transitional dynamics should be similar to that in the two-sector
production model.
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(in models where government services are not subject to congestion), and

varieties of capital goods in an environment of imperfect competition—the

key element is the shortfall of the private rate of return on investment from

the social rate of return. It follows that a Pareto optimum can be attained

in each model if the government raises the private rate of return on

investment to the social rate of return without introducing other

distortions. As in the two earlier models, this outcome can be achieved in

the capital-varieties model either by subsidizing the purchase of capital

goods (at the rate a) or by subsidizing the income on capital (at the rate.

o/[l-a]).

A natural policy that does not work in the model with varieties of

capital goods is to subsidize research. Note from equation (22) that the

private rate of return on investment depends on the cost of research through

the term (fl). It would be possible to raise the private rate of return to

the social rate with the appropriate subsidy on research; namely, the private

cost fl would have to be the fraction (1a)h/a of the social cost . The

problem with this policy is that it distorts the choice of quantity of

capital, k, versus the number of varieties, N. That is, the value x = k/N is

no longer Pareto optimal if research is subsidized. (Recall that the

decentralized model generates the appropriate value of x in the case where

the production function is Cobb Douglas.) with the subsidy to research,

private producers would have too much incentive to create new types of

capital goods.

Romer's (1990) extended model motivates a subsidy to research by adding a

learning-by-doing, spillover effect that is specific to the research sector.

In the language of the present model, the extension is that the cost of an
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additional design (or invention), fi, declines with the total number of

existing designs, N. Although a creator of a new product is assumed to

maintain a monopoly position with respect to the production of the good, this

creator is assumed to have no property rights over the added knowledge that

helps everyones future research. In the model where uncompensated learning-

by-doing effects were transmitted via the accumulation of capital, a subsidy

to capital accumulation could be helpful. Analogously, if the learning-by-

doing effects are tied to research activity, then a subsidy to research could

be beneficial.

The Association between Interest Growth

Equation (5), which caine from utility maximization, implies a

relationship in the steady state among the interest rate, r, the preference

parameters p and , and the growth rate, 7. In particular, given p and , an

increase in r goes along with an increase in 7, as shown by the upward-

sloping line in Figure 1.

The interest rate, r, also equals the steady-state value of the private

rate of return on investment. The production models considered thus far

determine the return on investment as a function of technological parameters,

spillover effects in production, quantities of public services, taxes that

affect the net income from capital or the cost of purchasing capital, and the

9Continuing growth in N would lead to continuing declines in fi, which would
lead in the present model to continuing increases in the growth rate. Romer
(1990) assumes, however, that the research sector is intensive in human
capital, relative to the sector that produces basic goods. Specifically, he
assumes that the required amount of human capital in the research sector is
proportional (for given N) to the number of new designs created. In this
case, the growth of real wages offsets the effect of increasing N and leads
to a constant cost of designs, fi, in the steady state. Then the steady-state
growth rate is again constant.
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costs of doing research. In all of these models, one variable that does not

enter into the formulas for the steady-state rate of return on investment is

the steady-state growth rate, -j. Therefore, the relation between the rate of

return on investment and the growth rate is a horizontal line, as shown in

Figure 1.

Consider a change in any of the parameters that influence the steady-

state private rate of return on investment. The interest rate, r, ends up

changing by the same amount as this rate of return. Therefore, for given p

and , the, household formula, r = p + oy from equation (5), implies that

moves in the same direction. Thus, shifts on the production side of the

model generate positively correlated movements in r and .

Consider, on the other hand, changes in the preference parameters, p and

. The steady-state r is already determined by the production side, which

fixes the steady-state private rate of return on investment. Therefore, r

does not change and moves in the direction opposite to shifts in p and .

In other words, shifts on the utility side of the model generate uncorrelated

movements in r and .

Putting the results together, the implication is that the models predict

positively correlated movements in r and '. This conclusion is troublesome

because this correlation is difficult to detect empirically, whether one

interprets as the per capita growth rate of consumption or as the per

capita growth rate of other variables, such as output and capital. In

particular, the data suggest, as a first approximation, that the per capita

growth rate of consumption is uncorrelated with r.

The results about the correlation of r and 'y reflect an asymmetry in the

model whereby the consumers' required premium on future consumption
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(equation [5]) is increasing in 7 but the private rate of return on

investment is independent of 7. The latter property no longer holds if

investment entails adjustment costs; in that case, the private rate of return

on investment tends to be diminishing in . This extension is useful because

it can eliminate the apparently counterfactual prediction of a positive

correlation between r and . The correlation ends up depending on whether

the preponderance of shifts comes from the utility side or the production

side. Of course, economists often assume that preference parameters, such as

p and g in the utility function, are stable. In that case, the model would

still predict a positive correlation between r and 7. A later section shows,

however, that growth in the variety of consumer products amounts to a shift

in the rate of time preference in the one-consumer-good model or,

equivalently, to a form of technological progress in generating utility.

Therefore, the conclusions depend to some extent on which form of

technological change—that involving varieties of capital goods or that

involving types of consumer products—is more significant.

Adjustment f Investment

The effects of adjustment costs in a growth model can be illustrated by

introducing these costs into the Ak model of production. Suppose (following

Abel and Blanchard, 1983, and Sala i Martin, 1989) that output is now

(24) y = Ak - ,i.(i/k)

where the term i.Ø(i/k) reflects (internal) adjustment costs, which

represent a subtraction from output. The assumptions are 0(0) = 0, ' > 0,
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and ' � 0. Because i is the direct outlay on investment, the formulation

amounts to specifying the total cost of these purchases as i. [1+(i/k)]

That is. (i/k) is the proportionate premium paid on each unit of investment

goods. The functional form implies, as seems reasonable, that a doubling of

i and k doubles the total cost of investment goods.

Producers again optimize by setting the private rate of return on

investment equal to r. In the steady state, this condition is now

(25) r = (1/q).(A +

where p is the steady-state growth rate. The term A + ,772Ø is the marginal

product of capital (from equation (24), noting that 7 = i/k). The variable q

(Tobin's q) is the shadow price of capital in place in units of consumables.

Because of adjustment costs, q exceeds when ' = i/k is positive; in

particular, q is given in the steady state by

(26)

It can be shown that the private rate of return on investment, given on the

right side of equation (25), is diminishing in 7.10 The downward-sloping

curve in Figure 2 shows this relationship. The upward-sloping line in the

figure, which appeared also hr Figure 1, is the preference relation from

equation (5).

lOThe transversality condition requires r > 7, where r is iven by equation
(25). This condition implies that the right side of equation (25) is
diminishing in .
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From the side of preferences, an increase in p or o shifts the preference

schedule upward and leads therefore to an increase in r and a decrease in 7.

That is, preference shifts generate an inverse correlation betweenr and .

From the side of production, an increase in the private rate of return on

investment, induced say by an increase in A, shifts the production schedule

upward. Consequently, r and both increase. In other words, shifts on the

production side lead to a positive correlation between r and .

Varieties of Consumer

In a previous section, we allowed for technological progress in the form

of new varieties of capital goods. The analog on the consumer side is

technological progress in the shape of new types of consumer goods. This

setting is, in fact, the one considered originally by Dixit and Stiglitz

(1977) in a static context.1'

The households momentary utility function is now modified from equation

(2) to

(27) u =

where M(t) is the number of varieties of consumer products available at time

t. We now assume O<o<1 (in order to get well-behaved demand functions for

individual goods). Total utility, U, is still given from equation (1) with u

''We have benefited in this section from discussions with Paul Romer. See
Xie (1990) for a model of endogenous economic growth that allows for an

increasing variety of consumer goods.
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substituted for u(c) and p still treated as the constant rate of time

preference -

Suppose that P1 is the consumer price (measured in units of the basic

good, y) for type i, I = 1, ..., M. For a good with constant P1 over time,

the first-order conditions for maximizing utility imply (as a generalization

of equation [4]):

(28) /c = (l/c).(r-p).

The relative quantities consumed of goods i and j are determined from the

household's first-order optimization conditions as functions of the relative

prices:

(29) c/c = (P/P)'I

If the expenditure share of good I is not too large (so that income effects

from changes in P on the demand for c1 can be neglected), equation (29) and

the households budget constraint imply that the elasticity of demand for c1

with respect to P is approximately equal to -i/o' (see Grossman and Helpman.

1989, for a related discussion).

The production of consumer goods of M types is modeled analogously to the

production of capital goods of N types in the capital-varieties model

discussed before. A producer of consumer goods of type i first pays the

lump-sum cost (measured in units of basic goods, y) for research to

generate a design. Once is paid, the quantity c1 is produced by the

monopoly producer at constant marginal cost 9 (in units of y). Because the
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demand for c has constant elasticity -1/u, with 0<o<1, the monopoly price

turns out to be a constant markup on marginal cost:

(30) P = 01(1-u)

The monopoly producer of good i receives the flow of net revenues,

c(P1_9). With free entry to the creation and production of new products,

the present value of this flow must equal the lump-sum cost of a design, .

In the steady state, where r is constant, this zero-profit condition dictates

the level of which turns out to be

(31) c = (rE/0).(1-u)/u

Because all goods are treated symmetrically in the utility function and in

the costs of production, equations (30) and (31) determine P1 and

independently of the index i.

In the steady state, the quantity consumed, c, of a good of given type

is determined from equation (30) and is constant over time (for any time

interval over which the good is available). But then equation (28) implies

r = p; that is, r is independent of 7 or u, and is determined in the steady

state entirely by the constant rate of time preference.

Basic goods, y, are still produced competitively in accordance with the

Ak model with adjustment costs, as discussed in the preceding section.

Hence, equations (25) and (26) imply a negative relation between r and 7 in

the steady state, as shown by the downward-sloping curve in Figure 3. (As

long as there are adjustment costs, the results would be similar in the model
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that allows for varieties of capital goods.) The change in the present model

from Figures 1 and 2 is that the upward-sloping preference schedule is

replaced by the horizontal line, r = p.

Per capita consumption, c, equals lc1, where c is the consumption of

any of the available varieties, i = 1, .. ., M. In the steady state, c is

constant but M, and hence, c grow at the rate 7. That is, the growth of per

capita consumption corresponds entirely to growth in varieties and not at all

to growth in the per capita consumption of a particular type of good.

Using equation (28), the growth rate of per capita consumption, c, is

given (in or out of the steady state) by

(32) = /c = (1/o).(r-p) + M/M

which can be rewritten as

(33) r = p - q.(/i +

Equation (33) modifies equation (5) to allow for growth in the varieties of

consumer goods at rate M/M. In effect, the net rate of time preference is

p - .M/M; that is, the promise of new varieties of consumer goods in the

future effectively makes people more patient. It is only the excess of the

growth rate of per capita consumption, 7' over the growth rate of varieties,

M/M, that requires a premium in r above p. Generally, r p as 7c M/M. In

the steady state, where = M/M, r = p applies.
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To interpret these results, note that the expression for momentary

utility from equation (28) can be written as

(34) u = M(c)/(1-e) =

where c = Mc was substituted on the right side. Growth of c with a given t

would be subject to the usual diminishing marginal utility. That is why the

required premium for future consumption relative to present consumption is

increasing in 7c for given M/M in equation (33). But equation (34) shows why

growth in c that is accompanied by equal growth in M is not subject to

diminishing marginal utility. The growth in product variety, M, is

effectively a form of technological progress in the generation of utility.

This progress relieves the tendency toward diminishing marginal utility, just

as the technological progress in the capital-varieties model relieved the

tendency for diminishing marginal productivity of capital. Utility is

effectively linear in c in this model when the growth of c is accompanied by

corresponding growth of variety. That is why the steady- state r ends up

equal to p and independent of 7 or .

An increase in the private rate of return on investment, say a rise in A,

now implies no change in r, but an increase in 7—see Figure 3. On the other

hand, an increase in the rate of time preference, p, leads to an increase in

r and a reduction in 7. Hence, this model implies that r and 'y would be

negatively correlated overall.

The downward slope of the production relation in Figures 2 and 3 reflects

the adjustment costs for installing capital. It would also be possible to

introduce adjustment costs on the consumer side of the model. These costs
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would arise, in particular, in the introduction of new types of consumer

products. It seems that the inclusion of these costs would restore a

positive relation between r and in the model with varieties of consumer

goods. That is, a higher 7 implies a more rapid rate of introduction of new

products and hence greater adjustment costs. Presumably, consumers would

require a premium above p for future consumption over present consumption and

this premium would be increasing in '. Then the correlation between r and 7

would depend on the relative variances of costs related to the introduction

of new products on the production side versus the consumer side. (The

preference parameters, p and , could be entirely stable here.) There would

seem to be no presumption that one set of shocks would be more important;

hence, the correlation between r and 7 could be either positive or negative.

In the model with varieties of capital goods, the choice of quantity of

capital relative to the number of varieties, x=k/N, turned out not to be

distorted (with Cobb-Douglas production functions). The outcomes were not

Pareto optimal overall because the monopoly price for capital goods lowered

the private rate of return on investment below the social return. In effect.

the excess of the monopoly price of capital over the competitive price acted

like a tac on the income from capital. The growth rate was depressed,

exactly as it would have been if the government had levied an explicit tax on

the income from capital.

In the setting with varieties of consumer goods, the monopoly price of

each good exceeds the competitive price. It turns out again that the

determination of the quantity of consumption relative to the number of

varieties, c = c/M, is not distorted. (This result depends on the

constant- elasticity specification of utility in equation (27); see Dixit and
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Stiglitz (1977) and Judd (1985) on the distortions that can arise more

generally.) The excessive price of consumables works just like a consumption

tax. But in the present model, which lacks a labor-leisure choice, a

consumption tax is not distorting.12 For this reason, the results in the

model with a variety of consumer goods (and with no distortions on the

production side) are Pareto optimal. In particular, the growth rate, , and

the value of c1 = c/sf coincide with the choices that would be made by a

social planner who sought to maximize the utility of the representative

consumer.

Concluding observations

We studied the role of tax policy in various models of endogenous

economic growth. If the social rate of return on investment exceeds the

private return, then tax policies that encourage investment can raise the

growth rate and thereby increase the utility of the representative household.

An excess of the social return over the private return can reflect

learning-by-doing with spillover effects, the financing of government

consumption purchases with an income tax, and monopoly pricing of new types

of capital goods. On the other hand, tax incentives to investment are not

called for if the private rate of return on investment equals the social rate

of return. This situation applies in growth models if the accumulation of a

broad concept of capital does not entail diminishing returns, or if

technological progress appears as an expanding variety of consumer products.

'2lhere would be distortions if some goods were produced under conditions of
monopoly, whereas others were produced competitively. This setting would
arise, for example, if the monopoly on new varieties of goods were not
perpetual. See Judd (1985) for a discussion of the case where monopoly
rights, possibly enforced by patents, persist only for a finite interval.
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In growth models that incorporate public services, the optimal tax policy

hinges on the characteristics of the services. If the public services are

publicly-provided private goods, which are rival and excludable, or

publicly-provided public goods, which are non-rival and non-excludable, then

lump-sum taxation is superior to income taxation. Many types of public

services, such as transportation facilities, public utilities, courts, and

possibly national defense and police services, are subject to congestion.

That is, the goods are rival, but non-excludable to varying degrees. In

these cases, income taxation works approximately as a user fee and can

therefore be superior to lump-sum taxation. In particular, the incentives

for investment and growth are too high if taxation is lump sum.



3;3

References

Abel, A.B. and O.J. Blanchard, 'An Intertemporal Model of Saving and

Investment," Econometrics, 51, Mary 1983, 675-692.

Arrow, K.J., "The Economic Implications of Learning by Doing," leview of

Economic Studie3, 29, 155-173, June 1962.

Barro, R.J., "Economic Growth in a Cross Section of Countries," National

Bureau of Economic Research, working paper no. 3120, September 1989.

"Government Spending in a Sjmple Model of Endogenous Growth,

Journal of Political Economy, 98, October 1990.

Becker, G.S. and K.M. Murphy, "Human Capital, the Division of Labor, and

Economic Progress," unpublished, University of Chicago, October 1989.

Cass, D., "Optimum Growth in an Aggregative Model of CApital Accumulation.'

leview of Economic Studies, 32, July 1965, 233-240.

Dixit, A.K. and J.E. Stiglitz, "Monopolistic Competition and Optimum Product

Diversity." American Economic leview, 67, June 197, 297-308.

Ethier, W.J., "National and International Returns to Scale in the Modern

Theory of International Trade," American Economic leview, 72, June 1982,

389-405.

Grossman, G.M. and E. Helpman, "Comparative Advantage and Long-Run Growth,"

unpublished, Princeton University, December 1988.

and , "Product Development and International Trade,"

Journal of Political Economy, 97, December 1989, 1261-1283.

Judd, K., "On the Performance of Patents," Economeirica, 53, May 1985,

567-585.



34

King, R.G. and S. Rebelo, 'Transitional Dynamics and Economic Growth in the

Neoclassical Model,' National Bureau of Economic Research, working paper

no. 3185, November 1989.

Koopmans, T.C., On the Concept of Optimal Economic Growth," in The

Econometric Approach to Development Planning, North Holland, Amsterdam,

1965.

Lucas, R.E., "On the Mechanics of Economic Development," Journal of lonetary

Economics, 22, July 1988, 3-42.

Rebelo, S., "Long Run Policy Analysis and Long Run Growth," National Bureau

of Economic Research, working paper , April 1990.

Romer, P.M., "Increasing Returns and Long-Run Growth,' Journal of Political

Economy, 94, October 1986, 1002-1037.

"Growth Based on Increasing Returns due to Specialization,"

American Economic Review, Proceedings, 77, May 1987, 56-62.

'Endogenous Technological Change," Journal of Political Economy.

98, October 1990.

Sala i Martin, X., "Lecture Notes on Economic Growth," unpublished, Harvard

University, 1989.

Samuelson, P.A., "The Pure Theory of Public Expenditures," Review of

Economics k Statistics, 36, November 1954, 387-389.

Thompson, E.A., "Taxation and National Defense," Journal of Political

Economy, 82, July/August 1974, 755-782.

Xie, D., "International Trade and Economic Growth," unpublished, University

of Chicago, March 1990.



34J saJu

0
ci



C
I)

 
0)

 L 0)
 

Fi
gu

re
 

2 
Sc

he
du

le
s 

fo
r 

Pr
ef

er
en

ce
s 

an
d 

Pr
od

uc
tio

n 
w

ith
 A

dj
us

tm
en

t C
os

ts
 f

or
 I

nv
es

tm
en

t 

G
ro

w
th

 
ra

te
 



1 In
 

Fi
gu

re
 

3 
Sc

he
du

le
s 

fo
r 

Pr
ef

er
en

ce
s 

an
d 

Pr
od

uc
tio

n 
w

ith
 A

dj
us

tm
en

t 
C

os
ts

 f
or

 I
nv

es
tm

en
t 

an
d 

G
ro

w
th

 
in

 V
ar

ie
tie

s 
of

 C
on

su
m

er
 

G
oo

ds
 

G
ro

w
th

 
ra

te
 


