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Abstract: 

Microorganisms such as bacteria often interact with their environment through extracellular 

molecules that increase access to limiting resources. These secretions can act as public goods, 

creating incentives for exploiters, a.k.a cheaters, to invade and ‘steal’ public goods away from 

producers. This phenomenon has been studied extensively in microbiology due to its 

implications for the evolution of cooperation, but little is known about the occurrence and impact

of public good exploiters in the environment. Here, we develop a new genomic approach to 

systematically identify bacteria that can exploit public goods produced during the degradation of 

polysaccharides. Focusing on chitin – the second most abundant biopolymer on the planet, we 

show that public good exploiters are active in natural marine microbial communities that 

assemble on chitin particles, invading during early stages of colonization and potentially 

hindering degradation. Unlike in classical studies of social evolution, exploiters and 

polysaccharide degraders are not isogenic and instead belong to distant lineages, facilitating their

coexistence. Our approach opens novel avenues to use the wealth of genomic data available to 

infer ecological roles and interactions among microbes.
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Main Text: 

In order to access insoluble nutrients in their environment, microorganisms frequently need to 

invest in costly secretions such as iron-scavenging molecules and hydrolytic enzymes, to name a 

few (1, 2). This form of extracellular metabolism opens a niche for public good exploiters, or 

‘cheaters’, that do not invest in those secretions but reap their benefits. Although many studies 

have investigated the in-vitro dynamics of otherwise clonal producers and exploiters, the 

environmental relevance of public good exploitation in a complex environment like the ocean 

remains poorly constrained. This is largely due to the difficulty of predicting microbial 

interactions in natural communities. In this paper, we developed a novel approach to predict such

interactions in communities that degrade complex forms of organic matter. The microbial 

degradation of complex organic matter is mediated by extracellular enzymes that break down 

biopolymers, releasing its fragments to the local environment. Polymer fragments (e.g., 

oligosaccharides) act as public goods, available as primary carbon and nitrogen sources for all 

members of the community and not just the enzyme producer. The prevalence of this process 

leads to the prediction that such communities should be riddled with public good exploiters, or 

cheaters, which compete directly with degraders by consuming the breakdown byproducts, but 

do not contribute to the pool of enzymes (3). However, community assembly experiments on 

complex carbon sources have revealed that, although secondary consumers (non-degraders) are 

numerically dominant, they do not necessarily grow on oligosaccharides and instead prefer to 

consume metabolic waste products, such as organic acids (4, 5). Therefore, it is unclear whether 

public good exploitation is relevant in natural biopolymer-degrading communities and if so, how 

it would contribute to community dynamics and function. 

Here, we address this problem in the context of the degradation of chitin, the second most

abundant biopolymer on the planet. By detecting genes that are evolutionarily and / or physically

linked to chitinases (enzymes that break chitin polymers), we found that exploitation has evolved

multiple times across different phyla, suggesting that exploitative lifestyles should be common in

natural chitin degrading communities. The study of the genomic signatures associated with 

chitinases helped us predict which organisms can act as chitooligosaccharide exploiters, without 

relying on prior protein functional annotation. After validating our predictions, we showed that 
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public good exploiters are present in naturally assembled communities in the ocean, and that 

their dynamics mirror those of degraders. Finally, we showed that exploiters sampled from 

natural communities can also stably coexist in the lab with degraders and waste product 

scavengers, showing that even in these simplified conditions, exploiters do not cause the 

“tragedy of the commons”, nor are they fully suppressed.

Predicting exploitation potential from genomes

In theory, detecting a public good exploiter from its genome should be straightforward: an 

exploiter should lack the genes for public good production (extracellular chitinases, in our case) 

but have the genetic machinery that allows it to compete for uptake and utilization of the public 

good against producers. However, as we will show below, predicting which organisms can grow 

on chitin oligosaccharides in a community is not a simple task. The reason is that competition for

oligosaccharide uptake in a community is a complex trait involving multiple processes encoded 

by different genes (6). These genes need not be in the canonical pathway for chitin utilization, as 

they can mediate surface attachment, biofilm formation, chemotactic behavior, among many 

other phenotypes. Moreover, given the limitations of gene functional annotations, especially in 

poorly studied taxa, many of the ecologically relevant genes could lack predicted functions. With

this in mind, we first aimed to identify a set of genes that could be used as predictors of the 

ability of an organism to compete for chitin degradation byproducts in a manner that is 

independent of functional annotations. We reasoned that if a gene increases the capacity of an 

organism to grow on chitin oligosaccharides, it should be ‘linked’ to chitinases, either by sharing

a similar evolutionary history or by being co-located in the chromosome (7, 8).

We developed a computational approach to detect genes that coevolve or are colocalized 

with chitinases across 8752 non-redundant complete bacterial genomes spanning the tree of 

bacterial life (Supplementary Table S1, Supplementary Data S1-2). To infer coevolution, we 

took advantage of the fact that the number of chitinases in a genome can change drastically even 

among close relatives, ranging from 0 to 15 chitinases (Fig. 1A), implying frequent gene gain 

and loss events. By reconstructing the history of gene gain and loss for 3,237,392 gene families 

across the tree of bacterial life and contrasting these histories against a null model of gene 

content coevolution (Methods), we found 2097 gene families that coevolve with chitinases in 
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Fig. 1 Large-scale detection of genes that co-evolve with chitinases allows gene-content based genome classification. 

(A) Chitinase copy number in a group of Pseudoalteromonas strains. Inset shows the GTDB-tk derived phylogenetic tree of 

8752 genetically distinct (ANI < 99.9%) closed genomes used in this study, with chitinase copy-number indicated on each tip 

(gold bars). Major phylogenetic groups are highlighted on the tree. (B) An example of coupled gain/loss of a chitinase and two 

distally located co-evolving genes in a group of closely related Shewanella rubidaea strains. (C) Conditional probability density

of losing a chitinase while retaining a coevolving gene (gold) and vice-versa (purple). The probabilities are calculated for each 

co-evolving gene, and the distribution is over all co-evolving genes. (D) A group of Klebsiella pneumoniae strains, where strain

NCTC9667 lost all chitinases while retaining co-evolving genes. Nag genes do not co-evolve with chitinases in this group but 

are shown to highlight pathway completeness (E) Genome classification from co-evolving gene content. Co-evolving genes are

grouped into clusters based on their patterns of co-evolution with each other. Each genome is represented by a bit-string that

marks the presence and absence of each cluster. A linear model is trained on all fully sequenced genomes to predict chitinase

copy number, given their co-evolving cluster content. New genomes are classified into ecological phenotypes based on the 

(un)coupling between observed (Ochi) and expected (Echi) number of chitinases.

bacteria (Fig. 1B). In addition, we identified 1479 genes that co-localize together with chitinases 

in the genome, for a total of 3576 candidate predictor genes (Supplementary Data S3). These 
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genes had diverse KEGG annotations such as chemotaxis and motility, attachment and biofilm 

formation as well as the synthesis of antibiotics, but were most enriched for genes of unknown 

function and mobile element related functions, highlighting the need for an annotation-agnostic 

approach (Supplementary Fig. S1, Supplementary Data S4)(9). Chitinase-linked genes with 

nearly identical presence-absence distributions across our species set (e.g., two proteins in the 

same operon) were further clustered into 1905 “accessory clusters”, containing either individual 

gene families or small gene family clusters.

Although by definition the histories of gain and loss of chitinases and accessory clusters 

were correlated, chitinases had a higher loss rate than their coevolving genes (mean odds-ratio = 

0.755, t-test p-value < 5e-5) (Figure 1C, Supplementary Fig. S2). This means that through 

evolution there were multiple events in which chitinases were lost but accessory clusters 

retained, likely leading to the evolution of an oligosaccharide (public good) exploiter. An 

example is shown in Figure 1D, where a Klebsiella pneumoniae strain lost its chitinases, while 

retaining the genes required for amino-sugar transport and metabolism (nagABCDEKZ)(10), 

along with attachment and secretion pili (sfmCD, gsp/gspCJK)(11), as well as other genes 

involved in arsenic resistance (arsC)(12), 3-HPP catabolism (mhpEF)(13), and several sugar 

transport proteins (sorBEF, manZ)(14, 15), all of which coevolve with chitinases. The retention 

of these genes may be explained by the fact that they are involved in multiple functions, not just 

chitin degradation. However, independent of the selective pressure that keeps them in the 

genome, the result of chitinase losses and accessory cluster retention is the evolution of an 

organism that carries all the genomic machinery needed to compete for chitin oligosaccharides 

but that does not produce hydrolytic enzymes.

Motivated by these observations, we devised an approach to systematically differentiate 

degraders, exploiters, and waste product consumers (‘scavengers’), solely on the basis of 

genomic data. The large list of accessory clusters found to coevolve with chitinases provided us 

with a set of possible variables to predict an organism’s phenotype, in particular its ability to 

grow on chitooligosaccharides. Assuming that the number of hydrolases in a genome should 

correlate with the ability of an organism to grow on the corresponding soluble sugars (16), we 

trained an elastic-net regression model (Methods) to predict the number of chitinases in a 

genome based on its accessory cluster content. The model was trained separately for each 
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phylum (Methods, Supplementary Table S2) and out of the 1905 coevolving clusters, on average 

~190 clusters were sufficient to predict the number of chitinases with high accuracy (average 

cross-validated R2 = 0.825, Supplementary Fig. S3 for comparison with random sets of genes). 

Interpreting the expected number of chitinases predicted by the model (Echi) as a measure of the 

potential of the organism to compete for chitooligosaccharides, we classified genomes as 

degraders, exploiters or scavengers based on the contrast between Echi and the actual number of 

chitinases observed in the genome (Ochi). If the observed number of chitinases was zero and the 

expected number was greater or equal to one (Ochi = 0, Echi ≥ 1), we predicted the organism to be 

an exploiter, because it had the genetic machinery that typically accompanies chitinases in 

genomes of degraders, but lacked the hydrolytic enzyme. If Ochi ≥ 1, Echi ≥ 1, we expected the 

organism to act as a degrader and if Echi < 1 we predicted that the organism was unable to grow 

on chitooligosaccharides, and therefore must act as waste-scavenger if present in a chitin-

degrading community (Fig. 1E). 

Co-evolving gene content successfully predicts mono- and co-culture phenotypes

Having trained our model, our next task was to validate its predictions in the context of a 

naturally assembled chitin-degrading community. To this end, we leveraged a collection of 57 

isolates of copiotrophic marine bacteria, co-isolated from the coastal ocean using paramagnetic 

model marine particles (4, 5). Although our model was not trained on the genomes of this set, we

were still able to accurately predict their chitinase content (R2 = 0.604). We predicted 13 

degraders, 17 exploiters, and 27 scavengers in this collection. Notably, these functional groups 

were phylogenetically diverse, belonging to such diverse orders as Flavobacteriales, 

Alteromonadales, Rhodobacterales, and Vibrionales (Supplementary Fig. S4). We interpreted 

our ecological classification (degrader, exploiter, and scavenger) in terms of growth phenotypes 

that could first be tested using in-vitro mono cultures: degraders should grow on chitin and its 

monomer GlcNAc, exploiters should grow on GlcNAc but not on chitin, and scavengers should 

grow on neither of the two substrates (Fig. 2A, Supplementary Fig. S5). We assessed our 

predictions against those made by genome-scale metabolic models generated using CarveMe, a 

state-of-the-art tool that derives organism-specific models based on a universal, manually curated

set of reactions (17).  
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Fig. 2 Evolution-guided classification predicts isolate phenotypes in mono- and co-culture. (A) Final yield of 57 marine 

isolates after 96 hours of growth on Chitin and its monomer N-Acetylglucosamine. Yield was measured as fluorescence 

emitted from incorporated Sybr-gold DNA dye (methods). Each point represents the mean of at least 3 biological repeats. 

Points are colored according to their observed phenotype. (B) Agreement between predictions made using different genome-

informed methods, and actual observed phenotypes. Phenotypically, exploiters are isolates that grow on GlcNAc (>1000 a.u), 

but not on chitin (<1000 a.u) (C) Co-cultures between 2 degraders and 3 Flavobacteria exploiters. Exploiters were misclassified 

by the genome-scale metabolic model, but correctly classified by their co-evolving gene content. Growth was conducted for 

72 hours in minimal media with chitin as the sole carbon source. The x-axis depicts the fold change in degrader yield during 

co-culture compared to monoculture, and the y-axis shows the same quantity for the exploiter. Each point represents a 

different co-culture, and represents the mean fold-change from 2 independent replicates. Raw data is for the co-cultures is 

presented in Supplementary Table S4.

Overall, our model performed better than the annotation-based predictions, making ~30%

fewer errors (18 vs 26 errors, Matthews correlation = 0.51 vs 0.28), confirming the value of our 

approach (Supplementary Fig. S6). Critically, virtually all of the improvement came from the 

ability of our model to correctly predict exploiters, which the genome-scale metabolic model 

misclassified as scavengers (Fig. 2B, Supplementary Table S3). In particular, we find that the 

gap-filled genome-scale metabolic model underperforms when predicting the phenotypes of two 

relatively understudied families, Flavobacteriaceae and Alteromonadaceae (Fig 2B, 

Supplementary Fig. S7). This is consistent with the notion that models that rely on functional 

annotations should perform poorly on organisms that are distant from the few that have been 

experimentally characterized, such as E. coli, B. subtilis, or V. cholerae. In contrast, our 

approach only requires sampling enough genomic diversity and a single annotation (in this case, 

chitinases), and can therefore be applied to any uncultured and poorly annotated organism. 

Ultimately our predictions make a statement about interactions between co-cultured 

community members. Plasmid encoded fluorescent reporters allowed us to study the dynamics of

a vibrio1A01 (Vibrio) and alteroA3R04 (Alteromonas) co-culture in detail, when these two 
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strains were grown with chitin as the sole carbon source. This experiment showed that the 

exploiter (alteroA3R04) was only able to grow in the presence of the degrader, at the cost of the 

degrader’s final yield but not its maximal growth rate (Supplementary Fig. S8-10). This result 

prompted us to examine more pairs to confirm our ability to predict exploitative interactions 

based on the final yields of the co-cultured members. To this end, we co-cultured several 

degrader-exploiter pairs in minimal-media containing chitin as the sole carbon source for 72 

hours. We used 2 different degraders and 3 isolates that were predicted by our method to be 

exploiters, but were classified as scavengers by the genome-scale metabolic model. We found 

that, as predicted, in all cases the interaction was exploitative: putative exploiters produced on 

average ~10-fold more colony forming units (CFUs) compared to growth in monoculture. 

Degraders, on the other hand, suffered from the presence of exploiters, decreasing their yield by 

a factor of ~6 on average (Fig. 2C). Interestingly, we found that in those cases where degraders 

were suppressed by cheating, the exploiter did not reach a high yield, and vice-versa. This trade-

off between exploitation and degrader yield can be recapitulated with simple consumer-resource 

models that include public good exploitation (Supplementary Fig. S12), lending further support 

to the notion that our method is able to successfully predict GlcNAc consumers (i.e. exploiters) 

where annotation-based methods fail.

Dynamics of exploiters in the environment

Our  in-vitro  results  do  not  guarantee  that  our  putative  exploiters  can  invade  natural  chitin-

degrading  communities  in  a  manner  consistent  with  their  purported  role.  To  address  this

question, we studied the population dynamics of our isolates in their native seawater community.

We mapped the isolates’ 16S rRNA sequences to the time-series data of the original enrichment

experiment, in which the community assembled from seawater onto chitin particles for a period

of 244 hours (Fig.  3A)(4,  5).  This allowed us to analyze the colonization dynamics of each

mapped isolate across the different ecological roles (Fig. 3B). We found that the colonization

dynamics  of  exploiters  were  more  similar  to  that  of  degraders  than  to  that  of  scavengers,

consistent with their role as parasites of degraders. Exploiters reached maximum frequency in the

succession shortly after degraders (12-16 h for exploiters, 8 h for degraders), while scavengers

peaked at late successional stages (>80 h) (Supplementary Fig. S11). This observation implies

that the accessory gene clusters, containing the genetic machinery to chemotax towards GlcNAc,
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Fig. 3 Exploiter dynamics mimic those of degraders in complex natural communities. (A) Natural, highly diverse bacterial

communities were sampled as sea water samples taken from Nahant, MA, USA, and incubated with chitin as the sole carbon

source.  Samples  from the incubation  were taken periodically  for  DNA extraction  and isolate  collection.  (B)  Colonization

dynamics of 16S sequences that perfectly matched the 16S sequences of isolated strains. Isolates were assigned an ecological

role according to their co-evolving gene content. Each panel shows the trajectories of a different ecological role, and each line

represents the trajectory of a single 16S sequence in a single repeat. 1 representative strain from each role is highlighted as

indicated by the legend. The early colonization window was defined as in (4) (C) Grouping strains by the expected number of

chitinases (Echi), and not by their observed number (Ochi), results in a clean separation between early colonizers (degraders and

exploiters) and late colonizers (scavengers). Asterisk marks p-value < 0.05. N.S = p-value > 0.3).

adhere to chitin surfaces, etc., are the main determinant of early colonization, and not chitinases

themselves.  In  other  words,  our  response  variable,  Echi,  should  be  a  better  predictor  of

colonization  dynamics  in  a  wild  community  than  chitinase  copy number  (Ochi).  To  test  this

assertion,  we calculated  the  maximal  speed of  colonization  of  each  isolate  during  the  early

phases of assembly, before the community became dominated by scavengers (Methods, Fig. 3C).

As expected, we found that Echi was a better predictor of colonization speed than the observed

number  of  chitinases,  Ochi.  Genomes  predicted  to  contain  chitinases  had  a  19-fold  higher

colonization rate on average compared to those predicted to lack chitinases (p-value = 0.02). In

contrast, genomes encoding chitinases did not display a significant difference in colonization rate

compared to those that lacked chitinases (p-value = 0.37, average fold-difference = 2.1).

Exploiters, degraders and waste scavengers coexist in synthetic communities

In the natural chitin-degrading communities the dynamics of colonization and growth are 

successional, meaning stable coexistence cannot be attained on a single chitin particle. Instead, 

degraders, exploiters and scavengers could stably coexist at the larger scale of many particles 
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(the metapopulation). To test whether the degraders and exploiters could coexist in a closed 

system with chitin particles as the sole carbon source – or whether their overlap in resource 

preference would lead to an eventual community collapse, we assembled synthetic communities 

with 44 strains sampled from our isolate collection and from the three different roles. The strains 

were chosen based on 16S sequence distance and robust preculture growth. To assess 

coexistence, we serially passaged the co-culture over 11 dilution-growth cycles (Fig. 4A,B,  

Supplementary Data S5) and repeated these experiments with three different dilution factors 

(which determine the minimum growth rate required to survive serial passages) to assess the 

robustness of coexistence to different growth conditions (Methods). 

Following a short transient where species are rapidly purged, community richness 

stabilized on 10-15 members (Fig. 4C), with coexistence of all three roles across all dilution 

factors (Fig. 4D). Over the final five transfers, after community richness had equilibrated, 

exploiters were stably maintained but at low abundance, recruiting roughly 10% of all reads. 

Scavengers, by contrast, were the most abundant ecological group (20-80%), supporting previous

findings of widespread export of metabolic waste by exploiters and degraders (4, 5). Scavenger 

and degrader abundances were controlled by the dilution factor, with degraders increasing in 

relative abundance with increasing dilution strength (Fig. 4D). This trend can be interpreted as a 

consequence of the lower time-averaged growth rates of scavengers, which have to wait for the 

accumulation of secreted metabolites to grow. 

It is evident that replicates can be variable in terms of the frequencies of the different 

ecological roles (Fig 4D). Closer inspection of the community compositions across dilution 

factors and replicates revealed different patterns of diversity within ecological roles. In most 

communities, degraders were dominated by a single strain, pseudo3D05 (Pseudoalteromonas), 

and two exploiters, mariba6B07 (Maribacter) and tritonA3R06 (Tritonibacter), while four to five

scavengers coexisted in the same community. However, there were clear cases in which other 

strains became dominant: pseudo3D05 coexisted with other degraders at appreciable abundance 

in at least four out of the twelve communities; was altogether replaced by colwelD2M02 

(Colwellia) in one replicate and gilvimE3M09 (Gilvimarinus) in another, while one of the two 

exploiters seemed to reach higher relative abundances at higher dilution factors. The abundance 

of different scavengers varied across replicates in a seemingly stochastic manner, especially at 
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Fig. 4 Synthetic communities display stable coexistence of ecological roles, with stochastic strain replacement. (A) 

Synthetic communities were assembled from 44 isolates that represent different phylogenetic groups and ecological types 

(Supplementary Data S5). The initial composition was identical for all communities, as they were sampled from the same 

initial mix. Communities were allowed to grow for 84 hours and were transferred 11 times. We performed 3 different dilution 

factors (10-1, 10-2, and 10-3), with 4 repeats per condition. (B) GTDB-tk generated phylogenetic tree of the isolates used in this 

experiment. Isolate phenotypes are indicated by colored circles at the tip of the tree. Isolates that survived to the end of the 

experiment in at least one condition are indicated by name. (C) The number of species present in a community (Richness) as a

function of time (measured in number of growth-dilution cycles). (D) Steady-state relative abundance (transfer > 8) of each 

ecological role in the synthetic communities. Each point represents the total role abundance from a given sample at a specific

time point. Large circles represent the medians for each role as a function of the dilution factor. Colors represent ecological 

roles as in panel A. (E) Each bar represents the role-normalized abundance of all isolates belonging to a certain ecological role

at the final time point. After normalization, abundances of strains with same role add up to 1. 

low dilution factors (Fig. 4E). These compositional changes within the different roles seemed to 

be independent of each other, i.e., the different strains were substituted with no apparent 

consequence for the rest of the community. The fact that the roles stably coexisted despite 

variation in community composition suggests that degraders, exploiters, and scavengers 

represent three stable metabolic niches in polysaccharide degrading communities.
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Discussion

In this study we developed a novel computational approach that allowed us to predict phenotype 

from genome, in particular the ability of an organism to act as a chitologosaccharide consumer. 

A key feature of our method is that it is agnostic to functional annotations and instead builds on 

evolutionary patterns that can be inferred directly from genomic data. The fact that genome 

repositories continue to grow at an accelerated pace, whereas functional annotations remain 

limited to what can be learned from a few model organisms, underscores the relevance and 

timeliness of our approach. Ancestral genome reconstructions have been used for many years to 

infer gene-gene coevolution, with the goal to expand and guide the discovery of protein-protein 

interactions in microorganisms (18). However, the work presented in this paper is the first to 

leverage these methods to infer and validate the growth phenotypes of microbes and their 

ecology in complex communities.   

Using this approach, we showed that oligosaccharide exploiters, which share many 

genomic features with degraders but do not encode the relevant hydrolytic enzymes, are 

abundant in natural communities and have the potential to hinder degradation. The frequent 

losses of chitinases during the evolution of bacteria are likely the result of short-term 

evolutionary incentives created by the release of public goods during extracellular hydrolysis. 

For degraders, in turn, the invasion of exploiters can create incentives to privatize the public 

good, via spatial aggregation or tethering of enzymes to the membrane (19). Recent studies have 

also shown that some Flavobacteria are capable of a ‘selfish’ mode of uptake, whereby long 

oligomers are directly incorporated inside the cell, bypassing the need for extracellular 

hydrolysis (20). The relative advantage of one strategy over the other and the conditions where 

each may be more relevant, remain still unknown. However, what is clear is that the constant 

tension between degraders and exploiters seems to have shaped the evolution of polysaccharide 

degradation strategies among bacteria, highlighting the fact that microbial interactions and the 

evolutionary dynamics they generate can impact key ecosystem processes, such as the 

degradation of organic matter.

Although consistent with the notion of a social ‘cheater’, there is an important difference 

between the exploiters we identified and cheaters, as typically conceived in the social evolution 
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literature: cheaters are loss-of-function mutants that rise in frequency due to a short-term fitness 

advantage over a wild-type cooperator phenotype (21). Natural exploiters of polysaccharide 

degraders, by contrast, invade communities by a process of community assembly. Consequently, 

exploiters in naturally assembled chitin-degrading communities are distantly related to degraders

and have diverse metabolic potentials. This increases the possibilities for coexistence, since 

organisms belonging to these two roles can differ along multiple phenotypic dimensions, but it 

also makes it harder to predict interspecific interactions. Our in-vitro studies indicate that, under 

simple batch culture conditions, public good exploiters hinder the growth of degraders, 

potentially slowing down the turnover of organic matter. However, further work is needed to 

elucidate the impact of this common ecological interaction in more realistic conditions, such as 

under fluid flow and multiple nutrient limitations.
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