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Public Health Implications of 1990 Air Toxics Concentrations across the
United States
Tracey J. Woodruff,1 Daniel A. Axeirad,1 Jane Caldwell,1 Rachel Morello-Frosch, and Arlene Rosenbaum3
1U.S. Environmental Protection Agency, Washington, DC 20460 USA; 2School of Public Health, University of California, Berkeley,
Berkeley, CA 94720 USA; 31CF Kaiser, Systems Applications International Division, San Rafael, CA 94903 USA

Occupaional-and toxicological studies have demonstrated adverse health e&cts from exosure
to toxic air contaminants. Data on outdoor levels of toxic air contaminants have not been avail-
able for most communities in the United States, making it difficult to assess the potenil for
adverse human heah effects from general population exposures. Emissions datiafnrom staionary
and mobile sources e used in a atmospheric dispersion model to estimate outdoor concentra-
tions of 148 toxic air contaminants for each ofthe 60,803 census tracts in the contiguous United
States for 1990. Outdoor cocentrations of air toxics were compared to previously defined
benchmark concentrations foXr cancer d ancer health effects. Benchmark concentrations
are based on standard toxicological references an represent air toxic levels above which health
risks may occur. Thle number ofbenchmark concentrations exceeded by modeled concentrations
ranged from 8 to 32 per eus tract, with a mean of 14. Estimated concentrations of benene,
formaldehyde, a 1,3-butadiene were greater thn cancer benchmark concentrations in over
90%oQf the census tracts. App 10% ofa` ensus tracts had estimated concentrations
of one or more cardnogec HAPs greater than a 1-in-10,000 rik level0Twenty-two pollutants
with chronic toxicity benchmr on o d mnodeled c in excess of these
benchmarks, and i 200 census tracts had a modeled concentration 10 tirmes the
benchmark forat least one of:these pollutants. This co prehensi assessent of air toxic con-
centrations across the United States indicates hazardous ir pollutants rmay pose a potential pub-
lic health problem. y w air toxic, atmospheric dispersion model, exposure assessment,
riskassessment. Environ HerdrhPerct:106:245251 (1998). (0nline6April 1998]
http:I/ehpnesl.nie/is.nib.govo/doc/99811.06P245-251.o6drs#strcbhtml

There has been public concern regarding the
health effects of air pollution on health for
the past 50 years, much of it prompted by
the dramatic pollution episodes in Donora,
Pennsylvania, and London, England (1,2).
However, much of the attention resulting
from these episodes has focused on those
pollutants designated as criteria pollutants in
the Clean Air Act, such as particulate mat-
ter, ozone, and lead. Relatively little is
known about the potential health effects of
other toxic air pollutants, a number of
which are designated as hazardous air pollu-
tants (HAPs) in the Clean Air Act. HAPs,
also known as air toxics, have been associat-
ed with a variety of adverse health outcomes,
including cancer and noncancer effects such
as neurological, reproductive, and develop-
mental effects, mostly through occupational
and animal studies (3).

There have been some previous efforts to
characterize the potential impacts of haz-
ardous air pollutants (4-9). Some studies
have attempted to assess differential impacts
of air toxics on communities of color using
emissions estimates, mostly from the Toxics
Release Inventory (TRI), which contains
emissions estimates from major manufactur-
ers in the United States (7,5). Other analyses
have attempted to characterize the potential
public health impacts of air toxics (4-6,8,9).
One set of studies uses monitoring data and

concentrations estimated by dispersion
modeling of emissions from a subset of
commercial and industrial facilities to evalu-
ate potential noncancer health effects (4-6).
These studies found that outdoor concen-
trations were often greater than benchmarks
representing thresholds for potential public
health impacts. Another study using moni-
toring and modeling data found that air
toxics posed a potential cancer risk (8).
These analyses represent important steps in
assessing the public health implications of
air toxics. However, they rely on emissions
data for a limited selection of emissions
sources and monitoring data for a limited
selection of pollutants and locations to
assess broad public health impacts and typi-
cal population exposures. One of the impor-
tant limitations in our ability to better
understand the potential health effects of
HAPs is a lack of outdoor concentration
data with broad geographic coverage and
broad coverage of emissions sources. While
some monitoring data are available, they are
limited in terms of the number of pollutants
monitored and consistency of geographic
coverage (10).

Given the paucity of measured data, an
alternative approach to assessing outdoor
concentrations of HAPs is to use atmos-
pheric dispersion models. Previously, exist-
ing analytical tools and data have been used

to model air toxic concentrations for small
geographic areas or for a limited number of
pollutants (4,6,A7. These methods can be
applied with a broader, national geographic
scope to evaluate the dispersion of multiple
air toxics from multiple sources. A recent
analysis, conducted as part of the EPA
Cumulative Exposure Project, has modeled
outdoor concentrations of air toxics across
the contiguous United States (11) to help
address the lack of data on outdoor concen-
trations. Emissions data from stationary and
mobile sources are used as inputs into a dis-
persion model that estimates 1990 average
outdoor concentrations of 148 air toxics for
every census tract in the contiguous United
States.

This comprehensive evaluation of the
potential public health implications of out-
door air toxics concentrations across the
United States assesses whether modeled con-
centrations are above or below a level that
may warrant concern. Estimated outdoor
concentrations are used as a reasonable proxy
for potential exposure in making relative
comparisons of hazard and performing
screening level analysis. Outdoor concentra-
tions of air toxics are compared to previously
defined levels (benchmark concentrations),
that represent thresholds of concern for
potential adverse public health impacts (12).

Methods
Outdoor concentrations of air toxics.
Outdoor concentrations of HAPs were esti-
mated using a Gaussian dispersion model
(11,13). The Assessment System for
Population Exposure Nationwide (ASPEN)
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used in this study is a modified version of
the EPA Human Exposure Model [HEM;
(13)], a standard tool designed to model
long-term concentrations over large spatial
scales. Long-term average concentrations of
HAPs were calculated at the census tract
level based on emissions rates of the HAPs
and frequencies of various meteorological
conditions, including wind speed, wind
direction, and atmospheric stability. In
addition, the model used in this analysis
incorporates simplified treatment of atmos-
pheric processes such as decay, secondary
formation, and deposition. There are
60,803 census tracts in the contiguous
United States that vary in physical size but
have typically 4,000-5,000 residents.

The pollutants chosen for modeling
were based on the list of 189 HAPs in sec-
tion 112 of the 1990 Clean Air Act
Amendments. A baseline year of 1990 was
selected for modeling. Available emissions
data were reviewed, and appropriate data
were identified for 148 HAPs.

A national inventory of HAP emissions
was developed for this study as a required
input to the dispersion model. For large
manufacturing sources, emissions data con-
tained in the EPA's TRI were used (14).
Emissions estimates were developed for

other sources, such as large combustion
sources, automobiles, and dry cleaners,
using HAP speciation data in combination
with the EPA's extensive national invento-
ries of 1990 emissions of total volatile
organic compounds (VOCs) and particu-
late matter (PM) (15,16). HAP emissions

were derived from VOC and PM emissions
estimates by applying industry-specific and
process-specific estimates of the presence of
particular HAPs in a VOC or PM emis-
sions stream (11). Details are described by
Rosenbaum et al. (11). Alaska and Hawaii
are not included in this study because the

Table 1. Classification of hazardous air pollutant (HAP) health effects information for comparison with estimated
outdoor concentrations

HAPs with
Health effect Tiera value (n) Health effect value
Cancerb 40 EPA inhalation unit risk for carcinogenicity

11 37 EPA oral unit risk for carcinogenicity expressed in
inhalation units; California EPA inhalation unit risk
estimate

Chronic noncancerc 33 EPA inhalation reference concentration
11 57 EPA provisional inhalation reference concentrations;

California EPA reference exposure level; Agency
for Toxic Substances and Disease Registry
minimum risk levels

Acuted II 16 EPA inhalation reference concentration
(developmental), EPA LOC/1,O00

LOC, levels of concern. Development of toxicity data has previously been described by Caldwell et al. (12).
"The tiers indicate the level of priority for use of toxicological data and uncertainty in the data. Tier information is highest priority data with
most confidence.
bThe pollutant groups arsenic, beryllium, cadmium, chromium, lead, and nickel compounds have each been assigned a single Tier cancer
benchmark concentration. Other HAPs with Tier cancer benchmarks are individual pollutants.
cThe pollutant groups manganese, cadmium, and selenium compounds have each been assigned a single Tier 11 chronic benchmark concentration.
Other HAPs with Tier 11 chronic benchmarks are individual pollutants.
trhe pollutant group chromium compounds has been assigned a single Tier 11 acute benchmark concentration. Other HAPs with Tier 11 acute
benchmarks are individual pollutants. There is one Tier acute benchmark concentration.

Figure 1. Distribution of total modeled air toxic concentrations by county in the contiguous United States in 1990, shown in quartiles.
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national VOC and PM emissions invento-
ries do not indude data for these states.

The dispersion model accounted for
long-term concentrations of RAPs attribut-
able to current (i.e., 1990) anthropogenic
emissions within 50 km of each census
tract centroid. For 28 HAPs, estimated
outdoor concentrations also included a
background component attributable to
long-range transport, resuspension of his-
torical emissions, and natural sources
derived from measurements taken at clean
air locations remote from the impact of
local anthropogenic sources (11).

Cancer and noncancer benchmark con-
centrations. Benchmark concentrations
were derived from available toxicity data on
carcinogenic and short- and long-term non-
carcinogenic effects for each IAP (12). A
benchmark concentration represents a level
of potential regulatory and public health
concern. Concentrations posing a one-in-a-
million cancer risk were used as benchmark
concentrations for cancer effects. The EPA's
inhalation reference concentrations (RfC),
or similar values developed by other agen-
cies, representing levels below which long-
term exposure is not expected to result in
any adverse health effects, were selected as
the benchmark concentrations for non-
cancer health effects from long-term expo-
sure. Levels of Concern (LOC), established
for chemicals on the list of extremely haz-
ardous substances in the Superfund
Amendments and Reauthorization Act, sec-
tion 302 (17), were divided by a safety fac-
tor of 1,000 (LOC/1,000) and chosen as
screening indicators of potential noncancer
hazards from short-term exposures to
HAPs. The factor of 1,000 was suggested as
an appropriate crude estimate of the factor
needed to convert the LOC, based upon
mortality or very serious effects, into a level
which would ensure that no adverse health
effects would be observed and to address
concerns about the uncertainty of the esti-
mate (3). Toxicity data were compiled from
various regulatory sources including the

EPA, the California Environmental
Protection Agency (Cal-EPA), and the
Agency for Toxic Substances and Disease
Registry (ATSDR) (12).

Fourteen of the 148 HAPs included in
this study are chemical groups. For exam-
ple, the HAP listed as mercury compounds
is made up of several different constituents,
induding mercuric chloride, elemental mer-
cury, mercuric nitrate, and mercury (aceto)
phenyl, all with potentially different levels
of toxicity. Thus, it is difficult to assess the
toxicity of chemical groups because each is
comprised of a number of different con-
stituents that may have varying levels of
toxicity. For this paper, toxicity values that
can be assigned to an entire chemical group
are induded (12). Toxicity values applicable
only to individual constituents of chemical
groups are not included because the mod-
eled concentrations developed in this study
represent the entire group.

Toxicity values were separated into two
tiers, with those values having the highest
level of data quality, consistency in deriva-
tion, and peer review assigned to Tier I.
Details on the rationale and methodology
for prioritizing hazard data are discussed
elsewhere (12). Table 1 shows the dassifi-
cation of toxicity data for deriving bench-
mark concentrations used in this paper.

Comparisons ofestimatedHAP concen-
trations to benchmark concentrations. The
modeled concentrations developed in this
study represent long-term outdoor concen-
trations present in any one location. To
screen for whether a modeled concentra-
tion represents a potential health risk to the
general population, it is compared to
benchmark concentrations for cancer and
noncancer effects. A HAP may have both
cancer and noncancer benchmarks. A mod-
eled long-term concentration greater than a
cancer or chronic benchmark is considered
to be an indicator of potential adverse
health effects.

Estimated outdoor concentrations were
also compared to benchmarks for health

Table 2. Background concentrations for hazardous air pollutants (HAPs) that exceed benchmark concen-
trations in all census tracts

Background Cancer benchmark Ratio of background No. of census tracts with
Hazardous air concentration concentration to benchmark exceedances, disregarding
pollutant (pg/rm3) (pg/m3)a concentraton background (%)
Bis(2-ethylhexyl) 1.6 0.25 6.4 18 (<1)
phthalate
Benzene 0.48 0.12 4.0 56,000 (92)
Carbon tetrachloride 0.88 0.067 13 1,600 (3)
Chloroform 0.083 0.043 1.9 4,900 (8)
Ethylene dibromide 0.0077 0.0045 1.7 900(1)
Ethylene dichloride 0.061 0.038 1.6 13,000 (21)
Formaldehyde 0.25 0.077 3.2 57,000 (94)
Methyl chloride 1.2 0.56 2.2 110( )
aAIl cancer benchmarks are for Tier carcinogens except for bis(2-ethylhexyl) phihalate.

effect concerns from short-term exposure.
While the estimated concentrations in this
analysis do not represent short-term peak
concentrations, exceedance of short-term
benchmarks by annual average concentra-
tions strongly suggests that transient peak
concentrations may also be too high.

Comparison of estimated HAP concen-
trations to benchmark concentrations
implicitly treats outdoor concentrations as
equivalent to exposure concentrations.
Outdoor concentrations are a reasonable
proxy for exposures that occur both out-
doors and indoors, given the high rates of
penetration into indoor environments for
various HAPs (18,19).

Hazard ratios were computed for each
available benchmark for each census tract
by dividing each estimated HAP concen-
tration by the HAP's benchmark concen-
trations for both cancer and noncancer
effects. Hazard ratios greater than 1 indi-
cate that the estimated concentration
exceeds the benchmark concentration.

Results
Figure 1 shows the distribution of total
modeled HAP concentrations of each coun-
ty, by quartile, across the contiguous United
States. Total modeled HAP concentrations
are the unweighted sum of the estimated
concentrations of all 148 HAPs. The county
level concentrations represent average con-
centrations of the census tracts in each
county. Most of the top quartile of total
HAP concentrations occur in the industrial-
ized areas of the West and East Coasts,
around the Great Lakes, and along the Gulf
of Mexico. Other methods for weighting
concentrations of HAPs result in similar
spatial distributions. There can be consider-
able variability in the concentrations among
the census tracts within a county. The coef-
ficient of variation of the total HAP concen-
tration for the census tracts within each of
the counties ranged from 0 to 180%, with a
median value of21%.

Comparison of estimated HAP concen-
trations in each of the census tracts to
benchmark concentrations showed that
there were a number of benchmark concen-
trations exceeded in a majority of the census
tracts. Eight pollutants [benzene, carbon
tetrachloride, chloroform, ethylene dibro-
mide, ethylene dichloride, formaldehyde,
methyl chloride, and bis(2-ethylhexyl)
phthalate] had modeled concentrations
exceeding the benchmark concentrations
for cancer in 100% of the census tracts. For
each of these HAPs, the background con-
centration alone, as defined above, exceeded
the benchmark concentration for cancer, as
shown in Table 2. To evaluate the impact
of current anthropogenic emissions, the
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background concentration was subtracted
from the total estimated concentrations,
with remaining concentrations compared to
benchmark concentrations. Modeled con-
centrations for two pollutants (benzene and
formaldehyde) exceeded the benchmark
concentration in over 90% of the census
tracts and one HAP (ethylene dichloride)
exceeded the benchmark concentration in
21% of the census tracts (Table 2). The
remaining five HAPs had concentrations
from modeling of current anthropogenic
sources that exceeded benchmark concen-
trations in a much smaller percentage of the
census tracts.

Figure 2 shows the distribution of the
number of benchmark concentrations
exceeded by estimated outdoor concentra-
tions per census tract across the United
States. The lowest number of benchmarks
exceeded in an individual census tract was
8 and the highest was 32, with a mean of
14. Approximately 50% of the census
tracts, or 30,000, had between 11 and 15
estimated HAP concentrations that exceed-
ed benchmark concentrations.

There was a wide range of hazard ratios
for the HAPs. Figure 3 shows a quartile
plot of the hazard ratios for cancer bench-
marks classified as Tier I. Of these 40 pollu-
tants, 35 had at least one census tract with
an estimated concentration over the bench-
mark concentration. Thirteen HAPs had
estimated concentrations at least 100 times
the cancer Tier I benchmark concentrations
(i.e., estimated concentrations greater than
a 1 in 10,000 cancer risk level); such con-
centrations occurred in about 10% of the
census tracts with total residential popula-
tion of approximately 20 million people.
Five HAPs did not exceed a benchmark
concentration in any census tract and had a
hazard ratio less than 0.01 in most census
tracts. An additional 21 pollutants with
Tier II cancer benchmarks had portions of
their hazard ratio distributions above one,
while three of these pollutants, lead, p-
dichlorobenzene, and quinoline, had por-
tions of their distributions above 100.

Figure 4 shows the quartile plot of the
hazard ratios for pollutants with Tier I
chronic toxicity benchmarks. Eight of these
pollutants had some portion of their hazard
ratio distributions above 1, with exceedances
of the benchmark concentrations occurring
in approximately 56,000 census tracts. One
of these pollutants-acrolein-had a medi-
an hazard ratio greater than 1 and a maxi-
mum ratio of about 1,000. There were also
approximately 200 census tracts with a resi-
dential population of approximately
220,000 that had hazard ratios for any pol-
lutant with a Tier I chronic toxicity bench-
mark greater than 100. Fourteen additional
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Figure 2. Distribution of the reestimated number of hazardous air pollutant benchmark concentration
exceedances per census tract in 1990, considering all Tier and Tier II benchmark concentrations.
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pollutants with Tier II chronic toxicity
benchmarks had hazard ratios greater than
1. Of these, chromium had estimated con-
centrations at least 100 times the chronic
toxicity benchmark in 12 census tracts,
while the other 13 HAPs had maximum
hazard ratios less than 15. The remaining 43
pollutants with chronic toxicity Tier II

benchmarks had all hazard ratios below 1.
In addition, 4 pollutants with acute toxicity
benchmarks had hazard ratios greater than
1, with a maximum ratio of 40. Approxi-
mately 800 census tracts had at least one
exceedance ofan acute toxicity benchmark.
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Discussion
This analysis of air toxics concentrations
across the United States detected several
HAPs that are ubiquitously high in com-

parison to benchmark concentrations. For
some of these air toxics, the concentration
was dominated by background concentra-

tions made up of a combination of long-
range transport, resuspension of historical
emissions, and nonanthropogenic sources.

For the HAPs with background concentra-

tions that exceeded benchmark concentra-
tions, carbon tetrachloride and ethylene
dichloride have no known natural contri-
butions to background, while the other six
have some portion of background from
both anthropogenic and nonanthropogenic
sources (20-22). The relatively high back-
ground concentrations indicate a ubiqui-
tous presence of these pollutants to which
current and future emissions are added. If
background is disregarded, two of these
eight pollutants have modeled concentra-

tions greater than the benchmark concen-

tration in over 90% of the census tracts

(benzene and formaldehyde).
This analysis uses emissions data for

1990, and changes in air toxics concentra-

tions may have occurred since then. The
EPA estimates that total emissions of
VOCs, which include many of the HAPs in
this analysis, decreased approximately 3%

from 1990 to 1995 (23). Overall emissions
of the VOC HAPs in this analysis may have
experienced a similar decline during this
time; however, changes in emissions and
concentrations of individual HAPs will
probably vary substantially because the
decline in VOC emissions was not constant
across source categories. Estimated on-road
mobile source emissions of VOCs declined
by about 11% from 1990 to 1995; corre-
sponding reductions in mobile source emis-
sions of HAPs such as benzene, 1,3-butadi-
ene, and formaldehyde may be likely.
Decreases in mobile source emissions may
be offset to some extent by increases in
VOCs emitted by several other source cate-
gories because the EPA estimates indicate
increases of VOC emissions for chemical
and allied product manufacturing (6%
increase), other industrial processes (5%),
solvent utilization (7%), waste disposal and
recycling (7%), and nonroad mobile
sources (6%) from 1990 to 1995 (23).

The results from this analysis are limit-
ed by incomplete hazard data. Most of the
hazard ratios greater than 1 were for cancer
benchmark concentrations. This is consis-
tent with the presence of a large number of
carcinogenic HAPs in section 112 of the
Clean Air Act and the conservative one-in-
a-million benchmark used. However,
incomplete toxicity information for the

HAPs must be considered when assessing
potential health impacts. Approximately
20% of the modeled HAPs with a weight
of evidence indicating potential carcino-
genicity do not have a cancer value, and
50% do not have a benchmark concentra-
tion for noncancer health effects (12). Even
for some of the ubiquitous pollutants iden-
tified in this analysis, there is incomplete
toxicity information. For example, benzene
and 1,3-butadiene have both been associat-
ed with reproductive and developmental
effects (3), but they currently have no
benchmark concentrations for such effects.
Finally, 29 of the 148 HAPs included in
this study have no Tier I or Tier II bench-
mark concentrations for any effects, even
though there are previous studies indicat-
ing some of these HAPs are of potential
health concern (3). For example, N,N-
dimethylaniline has been characterized by
the EPA as being of high concern for non-
cancer effects, but quantitative hazard
information is not available (3).

Another limitation in the toxicity infor-
mation for the 1APs is in hazard evaluation
for chemical groups. Outdoor concentra-
tions of HAPs were estimated for 14 chemi-
cal groups. It is difficult to assess the toxici-
ty of chemical groups because they are com-
posed of a number of different species. For
example, the HAP listed as mercury com-
pounds is made up of several different con-
stituents including mercuric chloride, ele-
mental mercury, mercuric nitrate, and mer-
cury (aceto) phenyl, all with potentially dif-
ferent levels of toxicity. Future work will
evaluate the constituents of the chemical
groups and their potential toxicity. The
incomplete assessment of the toxicity of the
HAPs, induding both unquantified effects
and incomplete information on chemical
groups, limits the ability to fully assess the
potential health significance of the modeled
HAP concentrations.

The modeled concentration estimates
developed in this study have a general ten-
dency to underestimate HIAP concentrations
found by the limited monitoring data avail-
able (11). This could result in underesti-
mates of the frequency with which bench-
mark concentrations were exceeded in 1990.
In addition, the modeled concentrations do
not capture spatial or temporal peak concen-
trations that could be significant. The avail-
able monitoring data support this study's
condusion that exceedances of benchmark
concentrations are common. For example,
several sources of long-term monitoring data
for benzene and 1,3-butadiene show that
measured concentrations routinely exceed
benchmark concentrations (11).

This analysis only considers the poten-
tial health impact of individual pollutants,
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though the results indicate a concern for
multiple pollutants in combination. Census
tracts across the United States were predict-
ed to have a mean of 14 HAP concentra-
tions greater than the benchmark concen-
tration, indicating simultaneous high con-
centrations of multiple HAPs. An estimated
HAP concentration less than the bench-
mark concentration may indicate that the

HAP does not represent a public health risk
on its own. However, additive or synergistic
interactions among HAPs may pose a threat
to public health beyond that identified in
this paper. Currently, too little is known
about how pollutants interact to fully evalu-
ate the potential health risks posed by expo-
sure to multiple HAPs at concentrations
below toxicity benchmarks.

This study indicates that chronic out-
door HAP concentrations pose a potential
public health problem. Within the limita-
tions of the available data, this study iden-
tifies the HAPs representing the highest
potential health risks. Future regulatory
and scientific activities can begin to focus
on these pollutants to address and further
evaluate their public health significance.
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