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Abstract 

Background: Accurate, comprehensive, cause-specific mortality estimates are crucial for informing public health 
decision making worldwide. Incorrectly or vaguely assigned deaths, defined as garbage-coded deaths, mask the true 
cause distribution. The Global Burden of Disease (GBD) study has developed methods to create comparable, timely, 
cause-specific mortality estimates; an impactful data processing method is the reallocation of garbage-coded deaths 
to a plausible underlying cause of death. We identify the pattern of garbage-coded deaths in the world and present 
the methods used to determine their redistribution to generate more plausible cause of death assignments.

Methods: We describe the methods developed for the GBD 2019 study and subsequent iterations to redistribute 
garbage-coded deaths in vital registration data to plausible underlying causes. These methods include analysis of 
multiple cause data, negative correlation, impairment, and proportional redistribution. We classify garbage codes 
into classes according to the level of specificity of the reported cause of death (CoD) and capture trends in the global 
pattern of proportion of garbage-coded deaths, disaggregated by these classes, and the relationship between this 
proportion and the Socio-Demographic Index. We examine the relative importance of the top four garbage codes by 
age and sex and demonstrate the impact of redistribution on the annual GBD CoD rankings.

Results: The proportion of least-specific (class 1 and 2) garbage-coded deaths ranged from 3.7% of all vital registra-
tion deaths to 67.3% in 2015, and the age-standardized proportion had an overall negative association with the Socio-
Demographic Index. When broken down by age and sex, the category for unspecified lower respiratory infections 
was responsible for nearly 30% of garbage-coded deaths in those under 1 year of age for both sexes, representing the 
largest proportion of garbage codes for that age group. We show how the cause distribution by number of deaths 
changes before and after redistribution for four countries: Brazil, the United States, Japan, and France, highlighting the 
necessity of accounting for garbage-coded deaths in the GBD.
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Background
Across humanity, we know two events to be inevitable: 

birth and death. In order to maximize the quality and 

quantity of time spent between these two events, we need 

accurate, timely, and cause-specific mortality estimates. 

Even though systematic cause of death (CoD) report-

ing has improved since the first such records measuring 

bubonic plague mortality [1], no country has yet cre-

ated a perfectly accurate death registration system. �e 

highest-quality CoD data are reported via vital registra-

tion (VR) systems, through which “the continuous, per-

manent, compulsory and universal” recording of vital 

demographic events occurs “in accordance with the legal 

requirements of a country” [2, 3]. �e presence of VR 

systems is far from ubiquitous and remains especially 

inadequate in lower- and lower-middle-income coun-

tries [4–6]. Furthermore, the process of completing and 

accurately coding a death certificate according to the 

international standard established by the International 

Statistical Classification of Diseases and Related Health 

Problems (ICD) is challenging for all countries, regard-

less of income status [7].

According to the ICD, only one CoD is reported 

for statistical purposes: the underlying cause of death 

(UCoD), i.e., the disease or injury that initiated the chain 

of events leading to death [8]. Physicians often do not 

receive adequate training in the public health importance 

of ICD rules, however, and death certificates are regularly 

filled out incorrectly [9–11]. As a result, many deaths are 

ascribed to “garbage” codes, i.e. codes that are not spe-

cific enough, are an immediate or intermediate CoD, or 

impossible CoD [12, 13]. Sepsis, for example, is often 

listed as an UCoD, however, a number of conditions, 

including malaria, diabetes, or a road traffic injury [14] 

may be the underlying cause that leads to sepsis. Garbage 

codes mask the distribution of true underlying causes, 

and numerous country-specific data quality analyses that 

address garbage coding have revealed different mortal-

ity patterns than initially reported [15–20]. Furthermore, 

coding practices vary across age groups, sexes, space, and 

time, severely hindering intra- and inter-country compa-

rability of cause-specific mortality over time and limit-

ing the usability of CoD data for public health purposes 

[21–24].

�e Global Burden of Disease (GBD) study, a tool for 

quantifying health loss from hundreds of diseases, inju-

ries, and risk factors, is one response to the question of 

how to generate usable cause-specific mortality estimates 

from a collection of imperfect, heterogeneous data [2, 

25, 26]. �e GBD produces regular, timely estimates of 

cause-specific mortality that are comparable by age, sex, 

year, and location from 1980 onwards. Accounting for 

garbage-coded deaths is one of the key data processing 

steps in creating cause-specific mortality estimates and 

reveals a mortality distribution that countries can use to 

compare the mortality level and composition over time, 

across age groups and sexes. Here we present the meth-

ods developed to account for garbage-coded deaths in VR 

data by location, year, age, and sex in the GBD 2013 study 

through GBD 2020, in addition to describing the pattern 

of garbage-coded deaths in the world. Furthermore, we 

draw from previously established criteria, namely cover-

age and frequency of garbage-coded deaths, to evaluate 

the overall quality of CoD VR data in the world [16, 27].

Methods
�e GBD produces a continuously updated, comprehen-

sive, comparable database of standardized CoD data by 

age, sex, location, and year from 1980 onwards. We aim 

to include as much CoD data as possible: rather than 

exclude data that do not fit the ideal, we have devised a 

number of methods to enhance the usability of a variety 

of CoD data sources. Existing CoD data sources differ 

based primarily on the method by which the data were 

collected (e.g., VR, verbal autopsy, sibling history) and 

the coding system and format used to report the CoD 

data (e.g., International Classification of Diseases [ICD]-9 

and ICD-10) (Additional file  1: Figure  1). �is variation 

creates a number of challenges in standardizing the data, 

including unknown age and/or sex, tabulated (aggre-

gated) cause codes, misclassification of underlying causes 

to another cause or to garbage codes, and stochastic 

noise in deaths over time. An overview of the process for 

building the CoD database is summarized briefly below 

(Additional file 1: Figure 2), though an in-depth descrip-

tion of all methods is outside the scope of this paper and 

described elsewhere [2]. Specifically, we focus on the set 

Conclusions: We provide a detailed description of redistribution methods developed for CoD data in the GBD; these 
methods represent an overall improvement in empiricism compared to past reliance on a priori knowledge.
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of algorithms used to reallocate garbage-coded deaths 

to a most likely UCoD, collectively referred to as “redis-

tribution” (the third box in Additional file  1: Figure  2). 

�is study complies with the Guidelines for Accurate 

and Transparent Health Estimates Reporting (GATHER) 

statement [28]. �e GBD study used de-identified data, 

and the waiver of informed consent was reviewed and 

approved by the University of Washington Institutional 

Review Board (application number 46665). Data prepara-

tion and analyses were carried out using R version 3.5.1 

and Python 3 [29, 30].

We will first briefly cover the key steps in the data 

processing pipeline to contextualize how redistribu-

tion of garbage-coded deaths fits into creating the CoD 

database (Additional file 1: Figure 2). First, all causes of 

death are mapped from their original coding onto the 

GBD cause list [2]. Second, observations from some CoD 

data sources are not available by detailed age and sex, 

and must be split into detailed age and sex groups. �is is 

achieved by using cause, age, and sex specific global mor-

tality rates generated from CoD VR where complete age 

and sex detail is available. Alongside population, these 

mortality rates are used to estimate an expected number 

of deaths in each detailed age group and for both sexes, 

which are then scaled to total the deaths in the original 

non-detailed observation. Additional details on the age 

and sex splitting process can be found elsewhere [2]. 

�ird, deaths where the cause has been misclassified to 

Alzheimer’s disease and other dementias are reassigned 

to the most plausible underlying cause [2]. Fourth, deaths 

assigned to a garbage code are redistributed (the focus of 

this manuscript) (Fig. 1). Fifth, misclassification of HIV-

related deaths is corrected [2, 31, 32]. Finally, noisy data 

due to stochastic variation are smoothed and CoD data 

are uploaded to a central database for use in the GBD 

fatal estimation process [2]. �is paper provides further 

detail on the most current methods developed to account 

for garbage-coded deaths in VR data using the detailed 

ICD-9 and ICD-10 nosological classification systems, as 

these data represent the vast majority of GBD’s mortality 

data (Additional file 1: Figure 1).

Identi�cation of garbage codes

In the first step of the cause of death database creation, 

every ICD code is mapped to a corresponding CoD in the 

mutually exclusive, collectively exhaustive GBD cause hier-

archy (Additional file 1: Figure 3) [2]. Not every ICD code 

is a valid UCoD in the GBD hierarchy, however; garbage-

coded deaths describe ICD codes that cannot or should not 

be considered the UCoD (Additional file 1: Figure 4) [33]. 

�is includes impossible causes of death, e.g., senility; non-

specific causes, e.g., ill-defined cancer site; causes that the 

GBD considers a symptom rather than a cause, e.g., back 

pain; and intermediate or immediate causes that result 

from other underlying conditions, e.g., heart failure, sepsis. 

We refer to these codes as “garbage codes”; garbage-coded 

deaths are not lost during analysis, but instead grouped 

based on diagnostic relatedness and collectively reassigned 

to the most probable UCoD during a process we refer to as 

redistribution, described in detail in the following sections.

Categorization of garbage codes

While all garbage codes are alike in that they cannot (or 

should not) be considered the UCoD, not all garbage codes 

are the same, and vary in their level of specificity. For 

example, deaths that are garbage-coded as “sepsis” could 

be attributed to hundreds of underlying causes of deaths, 

whereas deaths garbage-coded to “unspecified stroke” have 

a short list of possible underlying causes. In GBD 2016, gar-

bage levels, here termed “classes”, were created to catego-

rize garbage codes into four classes of increasing specificity 

[34]. A more detailed explanation of these classes has been 

published previously [35]; and they are briefly described in 

Box 1 (a table of ICD codes by garbage class can be found 

in Additional file 1: Figure 4).

Classes one and two are collectively referred to as major 

garbage; correction of these classes has the most important 

policy implications, and the proportion of age-standard-

ized major garbage out of all deaths in each location and 

year is a key component of the star rating data-quality met-

ric produced by GBD [2], described in further detail below. 

In GBD 2020, 16.9% of ICD-9 and ICD-10 VR data across 

all years were major garbage-coded deaths, with the per-

cent of major garbage staying relatively stable over time, 

ranging from a low of 13.5% to a high of 18.4% during the 

period from 1980 to 2019 (Additional file 1: Figure 5).

Star rating

Fatal GBD estimation is most accurate when using data 

from complete VR systems that span consecutive years, 

with a low proportion of garbage-coded deaths. In GBD 

2013, the Vital Statistics Performance Index (VSPI), a com-

posite of six metrics, was created to empirically measure 

the performance of VR systems [27]. In GBD 2016, a sim-

pler system was developed, using a star rating system from 

0 to 5 to represent data quality for a location across a given 

time series [34]. For any given location-year, the two com-

ponents that determine this star rating are the proportion 

of age-standardized major garbage and level of complete-

ness. Completeness is a measure of how successfully the 
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Fig. 1 Flowchart for methods used to determine inputs into redistribution algorithm

Box 1 Classes of garbage codes

Class 1 includes garbage codes that are attributable to causes within all three Level 1 GBD causes in the GBD cause hierarchy (communicable, mater-
nal, neonatal, and nutritional disease (CMNN); non-communicable disease (NCD); injury). For example, “sepsis” or “peritonitis” could be the result of any 
of the three Level 1 causes, and as such are the least specific class of garbage code and are redistributed across all three cause groupings

Class 2 includes garbage codes that are attributable to causes within a single Level 1 GBD cause in the GBD cause hierarchy, e.g., “unintentional unspec-
ified injuries” and such deaths are all redistributed onto injuries causes

Class 3 includes garbage codes that are attributable to causes within a single Level 2 GBD cause, e.g., “ill-defined cancer site” deaths are all redistributed 
onto neoplasms

Class 4 includes garbage codes that are attributable to causes within a single Level 3 GBD cause, e.g., “unspecified stroke” deaths will be redistributed to 
one of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage
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VR captures deaths that occur in a location-year (regardless 

of garbage coding). It is calculated as the fraction of total 

reported deaths in the VR over total GBD estimated all-

cause mortality deaths. �ese components are then used 

to calculate a percent well certified (PWC) value between 

0 and 1 (Eq. 1).

Star values are then assigned based on the calculated 

PWC value. A mapping of PWC values to star ratings can 

be found in the Additional file  1 (Additional file  1: Fig-

ure 6). �is method for assigning a star rating to a specific 

location-year of data and then summarizing that metric 

across a time series is described in detail elsewhere [34]. 

A location can increase its number of stars by decreasing 

the proportion of major garbage-coded deaths, increas-

ing the total number of deaths captured, and increasing 

the number of available years of data. Data quality, as 

measured via the star ranking system, ranges substan-

tially across GBD locations and within countries with 

subnational detail available (Additional file 1: Figure 7).

Redistribution

Redistribution is the process of reallocating garbage-

coded deaths to plausible underlying causes [12]. For 

each group of diagnostically related garbage codes, we 

define a set of probable underlying causes of death and 

the proportion of garbage-coded deaths that are redis-

tributed to each underlying cause, separately by GBD age 

group, sex, location, and year. We want to note that while 

uncertainty intervals for these proportions are calculated, 

they are used only to aid in the modelling of data that 

have completed all steps of the data processing pipeline 

(Additional file 1: Figure 2). �ey are not used to inform 

redistribution of the garbage coded deaths. �us, specific 

details regarding calculation of redistribution uncertainty 

have been omitted from this paper but are described in 

detail elsewhere [2].

�ere are four main methods used to determine a set of 

plausible underlying causes and proportions for a given 

group of garbage codes, explained in detail in subsequent 

paragraphs: (1) multiple cause analysis, (2) negative cor-

relation, (3) impairment, and (4) proportional redistri-

bution (Table 1, Fig. 1). Garbage codes are first grouped 

based on diagnostic relatedness (Additional file  1: Fig-

ure  4), afterwards one of these four methods is chosen. 

�e appropriate method is determined on a case-by-case 

basis, as will be explained in more detail below. Each of 

(1)

PWC = PercentCompleteness ×

(

1 − PercentMajorGarbage

)

these methods independently produces the necessary 

inputs to redistribution, where garbage-coded deaths are 

reallocated. Although the underlying algorithm for redis-

tribution, the final step shown in bright green in Fig. 1, 

has not changed significantly since GBD 2013 [36], sub-

stantial improvements were made during GBD 2019 and 

2020 to the methods for the steps feeding into redistribu-

tion, shown in teal boxes in Fig. 1.

Multiple cause analysis

Death is not a single event, but rather a chain of causal 

events ultimately leading to death. Multiple cause data, 

individual-level records listing all causes from the death 

certificate, include the chain of events leading to death 

(Part I, Fig. 2) and other significant conditions contribut-

ing to mortality, but are not part of the sequence directly 

leading to death (Part II, Fig. 2) [37].

�e chain of events leading to death includes underly-

ing (disease or injury that initiated the events resulting 

in death), intermediate (events initiated by the underly-

ing cause), and immediate (the terminal event) causes 

(Fig. 2) [37]. Multiple cause data rarely distinguish inter-

mediate from immediate causes, and therefore we refer 

to all causes in the chain (i.e., non-underlying causes) on 

a death certificate as intermediate causes. For example, 

if a child gets pneumonia, is unable to receive adequate 

medical attention and then dies of sepsis, we would say 

the underlying cause of death is pneumonia and sepsis is 

an intermediate cause. �ese data are particularly use-

ful to analyze causes that would not otherwise be cap-

tured by the underlying cause alone [38], but such data 

are difficult to obtain due to data privacy issues; Table 2 

shows the number of deaths and location-years available 

for analysis in GBD 2020. As the list of location-years 

Table 1 Number of garbage-coded deaths (and percentage 
of all garbage-coded deaths) by ICD revision and method of 
determining redistribution parameters for cause of death data 
from 1980 to 2019

Method ICD-9 ICD-10 Total

Multiple cause 18,266,079
(35.1%)

35,096,700
(30.8%)

53,362,779
(32.2%)

Negative correlation 11,711,386
(22.5%)

34,410,369
(30.2%)

46,121,755
(27.8%)

Impairment 209,513
(0.4%)

449,294
(0.4%)

658,807
(0.4%)

Proportional redistribution 21,796,259
(41.9%)

43,851,463
(38.5%)

65,647,722
(39.6%)
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Fig. 2 International medical death certificate for cause of death [50]

Table 2 Data availability for multiple cause analyses

Multiple cause data available by source and the total number of deaths available for each country and year range. Brazil, Mexico, South Africa, and the United States 

were analyzed by �rst administrative level, and New Zealand data were analyzed by Maori and Non-Maori ethnicities

Country Years Data source Deaths Location years

Austria 2001–2014 Austria Hospital Inpatient Discharges 461,538 14

Brazil 1999–2017 Brazil Mortality Information System 17,398,531 512

Brazil 2015–2016 Brazil Hospital Information System 294,461 52

Canada 1994–2009 Canada Discharge Abstract Database 38,405 16

Colombia 1998–2017 Colombia Vital Statistics 3,676,540 20

Georgia 2014–2014 Georgia Hospital Data 1,066 1

Italy 2003–2015 Italy Civil Registration Multiple Causes of Death 7,640,383 13

Italy 2003–2018 Italy—Friuli-Venezia Giulia Multiple Causes of Death Data 112,555 16

Italy 2005–2016 Italy Hospital Inpatient Discharges 2,385,430 12

Mexico 2003–2005 Mexico Ministry of Health Hospital Discharges 59,597 64

Mexico 2007–2009 Mexico Secretariat of Health Hospital Discharges 108,985 96

Mexico 2009–2016 Mexico Vital Registration—Multiple Causes of Death 4,473,427 256

New Zealand 2000–2015 New Zealand National Minimum Dataset 152,725 32

South Africa 1997–2016 South Africa Vital Registration—Causes of Death 4,696,348 180

Taiwan (Province of China) 2008–2017 Taiwan Vital Registration—Multiple Causes of Death 1,237,304 10

United States of America 1980–2010 United States National Hospital Discharge Survey 180,802 31

United States of America 1980–2016 United States NVSS Custom Mortality Data 68,133,196 1,887

United States of America 2003–2008 United States State Inpatient Databases 1,847,569 70
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of multiple cause data availability increases, so does our 

preference for this method over the others presented in 

this manuscript.

Intermediate causes of death

A variety of methods have been previously used to 

account for intermediate causes incorrectly listed as 

the UCoD, including multinomial regression, Bayes-

ian regression, and coarsened exact matching [39–42]. 

We have built on these analyses, and the methods pre-

sented here include two key innovations introduced 

in GBD 2019 and further developed in GBD 2020: (1) 

determining a set of plausible underlying causes from 

multiple cause data, rather than relying on literature 

reviews or expert opinion, and (2) increasing general-

izability across all GBD-estimated locations. In GBD 

2019, the analysis described in the following para-

graphs was introduced to inform the redistribution of 

deaths incorrectly coded to the following intermedi-

ate causes: sepsis; embolism (pulmonary and arterial); 

heart failure (left, right, and unspecified); acute kidney 

injury; hepatic failure; acute respiratory failure; pneu-

monitis; and unspecified central nervous system dis-

orders. In GBD 2020, this list was expanded to include 

gastrointestinal bleeding; chronic respiratory failure; 

peritonitis; fluid, electrolyte, and acid–base disorders; 

arrhythmia; pneumothorax; alcoholic hepatic failure; 

amyloidosis; cachexia; osteomyelitis; plegia; atheroscle-

rosis; empyema; hypertension; shock, cardiac arrest, 

and coma; and renal failure.

First, death certificates with a non-garbage UCoD were 

mapped to corresponding GBD causes and tagged indi-

cating presence of the intermediate cause of interest by 

ICD code (ICD codes for each intermediate cause can 

be found in Additional file  1: Figure  8). For all afore-

mentioned intermediate causes except sepsis, Part I and 

Part II of the death certificate were included for analy-

sis. Records were then aggregated by UCoD, age group, 

sex, year, location, and intermediate cause presence. �e 

proportion of intermediate cause-related deaths was cal-

culated by dividing the number of intermediate cause-

related deaths by total deaths for each demographic 

group.

Second, we determined the set of the most plausible 

underlying causes, separately for each intermediate cause. 

A key feature of redistribution is the selection of the most 

likely underlying causes of death. Our first approach used 

all underlying causes appearing in the multiple cause 

data; however, this resulted in arbitrarily small propor-

tions, e.g., 0.00068% of pulmonary embolism-related 

deaths due to diphtheria in high-income countries among 

males between the ages of 15 and 29. To avoid artificial 

redistribution results, we performed a two-step process 

to trim the list of underlying causes that will serve as 

redistribution targets for the garbage coded deaths. First, 

we keep the underlying causes comprising 80% of deaths 

in the multiple cause data. �en, a least absolute shrink-

age and selection operator (LASSO) regression is used on 

only the response variable (proportion of intermediate-

cause-related deaths) and the underlying causes compris-

ing the bottom 20% of deaths [43]. LASSO adds a penalty, 

tuned by adjusting the lambda parameter, equal to the 

absolute value of the magnitude of the coefficients, such 

that the coefficients on many of the underlying causes 

were reduced to zero and could be empirically excluded. 

Related dimension reduction techniques, such as ridge 

and elastic net regressions, may reduce coefficients, but 

do not push them to zero, and were therefore not used. 

�e lambda parameter was chosen based on minimiza-

tion of the cross-validated sum of squared residuals, with 

10 folds. �e R package “glmnet” was used [44].

After determining the most plausible set of underlying 

causes for each intermediate cause, we then constructed 

a predictive model. �e proportion of deaths related to 

the intermediate cause of interest was estimated using a 

generalized linear model with binomial response and link 

logit (Eq. 2) using the R package “lme4” [45]

where: Yi = the proportion of deaths related to the inter-

mediate cause of interest.

Where the distribution of random variable Yi is bino-

mial, with ni number of observations and probability 

of an intermediate cause-related death πi for each age, 

sex, location, year, and underlying cause group i . β0 is 

the global intercept, β1 is the effect of X covariates, βage 

and βsex are the categorical covariates for age group and 

sex, and γunderlying cause is the random effect on UCoD. 

Separate models were run for each intermediate cause of 

interest, and each set of covariates is listed in the Addi-

tional file  1 (Additional file  1: Figure  9), with the most 

common being Healthcare Access and Quality Index 

(HAQ Index). �e HAQ Index is a measure of amena-

ble mortality informed by mortality rates for a set of 32 

causes which should not be fatal given adequate medical 

treatment [46].

A step-by-step example is given below for sepsis 

(Eq. 3). Referenced below as “sepsis fraction,” proportions 

were extrapolated for all GBD locations using the above 

(2)

Yi ∼ B(ni,πi)

logit(πi) = β0 + β1 · X + βage + βsex + γunderlying cause
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Eq.  2 and multiplied by GBD 2019 estimated cause-

specific deaths to calculate the number of intermediate 

cause-related deaths for each age, sex, location, year, and 

underlying cause (step 1 in Eq.  3, below). Intermediate 

cause-related deaths were then summed to calculate the 

total intermediate cause-related deaths across all under-

lying causes (Eq. 3, step 2). Lastly, we calculated the cause 

fraction for each intermediate cause, with total interme-

diate‐cause-related deaths as the denominator, by age, 

sex, location, year, and GBD cause (Eq. 3, step 3).

where “sepsis fraction” was estimated from the model 

shown in Eq. 2 and a, s, l, y, c denote a given age group, 

sex, location, year, and UCoD, respectively.

�e resulting proportions from Eq. 3, step 3 were used 

as inputs to redistribution (Fig. 1). Results from the mul-

tiple cause analysis for pulmonary embolism (Additional 

file 1: Figure 10) and unspecified heart failure (Additional 

file 1: Figure 11) are shown in the Additional file 1.

Unspeci�ed injuries: X59 and Y34

Deaths due to injury are described in the ICD by codes 

specific to the external cause (e.g., motor vehicle crash) 

and for the injury diagnosis (e.g., injury to head), also 

referred to as nature of injury codes [47]. �ough it is 

often easier to identify the nature of injury of a deceased 

person than the factor that caused the injury, a detailed 

(3)

1. sepsis deathsa,s,l,y,c=sepsis fractiona,s,l,y,c ∗ GBDdeathsa,s,l,y,c

2. total sepsis deathsa,s,l,y =

∑

c

sepsis deathsa,s,l,y,c

3. proportion of sepsis to redistributea,s,l,y,c =

sepsis deathsa,s,l,y,c

total sepsis deathsa,s,l,y

external injury code is required for correctly assigning 

the UCoD [48]. Two common non-specific codes for 

external causes of mortality are exposure to unspeci-

fied factors (X59 in ICD-10) and unspecified event of 

undetermined intent (Y34 in ICD-10) [49]. �ese codes 

comprise 2.5% of all garbage-coded deaths and 8.1% of 

total injuries deaths in ICD-10 VR. To identify propor-

tions and plausible underlying causes for these deaths, we 

employed a multi-step approach that uses the combina-

tion of nature of injury codes in the causal chain in multi-

ple cause data Fig. 2.

First, death certificates in multiple cause data with the 

garbage code of interest or a GBD injuries cause as the 

UCoD were selected. �e detailed nature of injury codes 

in the causal chain of these death certificates were col-

lapsed to 37 custom groups of diagnostically related ICD 

Codes (Additional file  1: Figure  12). For each death, we 

then identified combinations of nature of injury codes 

appearing in the chain according to these custom groups. 

�e top 95% of combinations were then used to derive 

preliminary cause, age, sex, year, and location-specific 

redistribution proportions. �ese proportions were 

derived based on the probability of a given combination 

being coded to an X59/Y34-related garbage code or a 

GBD injuries cause and then summed for all combina-

tions. An example is given below for X59 (Eq. 4):

(4)

1. P(combinationj |UCoDX59) =
#of combinationj deaths|UCoDX59

∑m
j=0

(#of combinationj deaths|UCoDX59)

2. P(GBD injuries causei|combinationj) =

# of UCoDGBD injuries causei deaths|combinationj
∑n

i=0

(

# of UCoDGBD injuries causei deaths|combinationj
)

3. redistribution proportionGBD injuries causei =

m
∑

j=0

(

P(combinationj|UCoDX59
)

∗

P(GBD injuries causei|combinationj))
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where:  combinationj = a given nature of injury code com-

bination in the causal chain; UCoD X59 = a death with 

X59 coded as the UCoD; UCoD GBD injuries  causei = a 

death with a given GBD injuries cause i coded as the 

UCoD.

�ese proportions are based on the specific pattern of 

injuries in country-years with multiple cause data; they 

are preliminary and can only be applied to multiple cause 

data to estimate the fraction of each injury cause that are 

coded to X59 or Y34. We applied these cause-, age-, sex-, 

year-, and location-specific redistribution proportions on 

the data where X59 or Y34 was the UCoD to get the num-

ber of unspecified injuries deaths “attributable” to each 

GBD injuries cause. �en, for each GBD injuries cause 

in the multiple cause data, we calculated the fraction of 

redistributed garbage-coded injuries deaths over the frac-

tion of total injuries deaths for that cause and modeled 

this intermediate cause fraction using a mixed effects 

linear regression (Eq. 2), same as that used for interme-

diate causes. As described in detail above for analyzing 

intermediate causes, unspecified injuries fractions were 

multiplied by CoD results from the previous GBD round, 

summed across all GBD injuries causes, and final redis-

tribution proportions were calculated separately for X59 

(Additional file  1: Figure  13) and Y34 (Additional file  1: 

Figure  14) by age, sex, location, year, and GBD injuries 

cause for use in all CoD data. Results from this analysis 

are shown in the Additional file 1. An additional, separate 

example of using multiple cause data to redistribute mis-

classification of accidental poisoning can be found in the 

Additional file 1 (Additional file 1: Figure 15).

Negative correlation

While multiple cause analysis is the preferred method of 

determining underlying cause targets and proportions 

for garbage codes, this method is not possible for class 4, 

the most specific garbage-coded deaths (e.g., malignant 

neoplasm of ill-defined digestive organs). �is is because 

a death certificate would never include a more detailed 

ICD code nested within a less detailed code; for example 

“malignant neoplasm of ill-defined digestive organs” and 

“liver cancer”. In these instances of class 4 garbage, there 

is a noticeable inverse relationship between the garbage-

coded death and its plausible underlying causes of death, 

i.e., as the number of garbage-coded deaths increases, 

the number of deaths due to plausible underlying causes 

decreases. �us, we use a negative correlation method 

to determine how to redistribute these deaths (Fig.  1). 

First described by Ahern et al. [50] for the redistribution 

of unspecified heart failure, this method assumes that 

with improvements in coding practices, more deaths are 

assigned to the plausible underlying cause(s) and fewer 

to the corresponding garbage codes. �e detailed meth-

ods for negative correlation redistribution have been 

described elsewhere [2]. In GBD 2019, the core methods 

for negative correlation redistribution were revisited, and 

a slightly different approach was adopted to redistribute 

deaths attributed to unspecified diabetes, unspecified 

stroke, and malignant neoplasm without specification of 

site. Using unspecified stroke as an example, these meth-

ods are summarized in brief here.

�e corresponding plausible underlying causes of 

death for unspecified stroke are assumed a priori to be 

the subtypes ischemic stroke, intracerebral stroke, and 

subarachnoid stroke. Shown in Eq.  5 below, we assume 

the logit-transformed proportion of each stroke subtype 

(out of all non-garbage-coded stroke deaths), µi, can be 

modeled linearly as a function of covariates predictive of 

stroke mortality, β1Xi , with intercept β0 for each age, sex, 

location, and year group i.

In an ideal world, the method would conclude after the 

aforementioned regression (Eq. 5). In practice, however, 

we noticed bias in the residuals with respect to the pro-

portion of unspecified stroke in all stroke related deaths. 

To account for these biases, we apply an adjustment, 

which is made in two steps. First, residuals from the 

regression (Eq. 5) are calculated and regressed against the 

logit-transformed proportion of deaths coded to unspeci-

fied stroke in order to identify any trend present between 

the residuals and the proportion of deaths garbage-

coded to unspecified stroke. Second, the adjustment 

is calculated using the slope of this regression line, and 

the difference between the value of the residuals when 

no deaths are garbage-coded to unspecified stroke and 

at the observed proportion of deaths coded to unspeci-

fied stroke (Eq. 6). Ideally, the proportion of unspecified 

stroke would not influence the model and regressing the 

residuals against the proportion of unspecified stroke 

would show little correlation with a slope near 0. �e 

adjustment would then be quite small. However, stronger 

correlation between the residuals and the proportion of 

unspecified stroke results in a larger adjustment being 

necessary.

where: i = each age, sex, location, year group; 

residualsi = difference in observed and predicted values 

from model fit in Eq.  5 (the regression line);  β1 = slope 

of the relationship between residualsi and logit(GC) ; 

(5)
logit Xi ∼ N

(

µi, σ
2
)

µi = β0 + β1Xi

(6)

1. residualsi = β0 + β1 ∗ logit(GC)i

2. adjustmenti = β1 ∗ logit(NoGC) − β1 ∗ logit(GC)i
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β0 = y-intercept; logit(GC)i = logit-transformed propor-

tion of all stroke-related deaths coded to unspecified 

stroke; logit(NoGC) = y-intercept (in logit space) where 

all deaths are coded to specific stroke subtype (i.e., no 

deaths are coded to unspecified stroke).

�is adjustment is added to the initially estimated 

proportion of a given stroke subtype generated by Eq. 5, 

bringing it closer to the true proportion of a world with-

out garbage coding. Proportions are normalized by age, 

sex, location, and year.

Since the residuals are modeled on logit(GC%), it is 

not possible to calculate the adjustment for GC% = 0%. 

Instead, we used GC% = 1% to represent the counterfac-

tual of “no garbage.” �e same methods are applied to the 

redistribution of unspecified diabetes and malignant neo-

plasm without specification of site. We therefore com-

bine two approaches—descriptive linear modeling with 

covariates explanatory of mortality and an adjustment 

for coding practices—to produce improved estimates as 

compared to previous GBD cycles.

Impairments

�e GBD defines impairments as domains of health 

loss that are a consequence of multiple underlying 

causes, rather than underlying causes of death them-

selves [2]. Anaemia, for example, can occur as the result 

of chronic kidney disease or malaria, but is not consid-

ered the UCoD. Due to the difficulty in identifying a 

single underlying cause for impairments, neither a mul-

tiple cause analysis nor the negative correlation method 

is possible, and instead we rely on the non-fatal burden 

estimation process of GBD [2]. �e resulting years lived 

with disability (YLDs) [2] are used to calculate redistri-

bution proportions and to determine a plausible set of 

underlying causes of death for impairments (Fig. 1).

Plausible underlying causes are restricted to causes that 

have years of life lost (YLLs) attributed to them rather 

than exclusively YLDs, i.e. causes from which a per-

son can conceivably die. Proportions are calculated by 

dividing the number of cause-specific YLDs for a given 

impairment by the sum of YLDs across all causes for 

each age group, sex, location, and year. Locations with 

a star rating > 3 have country-specific proportions, while 

countries with a star rating ≤ 3 are assigned region-level 

proportions. GBD 2020 redistribution of anemia and 

pelvic inflammatory disease relied on the results of the 

non-fatal GBD 2019 estimation process. Proportions and 

underlying causes are then used as inputs to redistribute 

garbage-coded CoD data (Fig. 1). In the GBD 2020 study, 

0.4% of garbage-coded deaths across all years were incor-

rectly assigned to impairments, rather than to the appro-

priate UCoD, prior to redistribution (Table 1).

Proportional redistribution

Unlike the other processes outlined above, where we use 

external data sources to define a set of proportions for 

redistribution, proportional redistribution reallocates 
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reallocated separately for each age, sex, location, and year of cause of death data
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Fig. 4 Percentage of major, class 1 and 2 (a), and class 3 and 4 garbage (b) in VR data in 2015 or closest available year, all ages, both sexes

Fig. 4 continued
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garbage-coded deaths to be directly proportional to the 

distribution of plausible underlying causes of death in the 

non-garbage-coded deaths in the CoD data, separately by 

age group, sex, location, and year, as shown in Fig. 3.

�e key assumption of proportional redistribution is 

that garbage coding is independent of underlying cause: 

every underlying cause targeted by proportional redis-

tribution for a given garbage code is equally likely to 

be miscoded. We use this method when the distribu-

tion of non-garbage-coded deaths is plausible and there 

are enough non-garbage-coded deaths to inform the 

post-redistribution cause pattern (Fig.  1). Proportional 

redistribution is only used for the least specific class 1 

garbage-coded deaths, e.g., “all ill-defined,” the set of 

plausible causes includes all non-garbage-coded deaths 

in the data. Whereas for more detailed class 3 garbage 

codes, e.g., unspecified upper respiratory infections, the 

set of underlying causes is determined a priori based 

on clinical knowledge. Proportional redistribution was 

used for 11.6% of all ICD-9 and -10 coded VR deaths and 

39.6% of garbage-coded deaths in CoD data from 1980 to 

2019 (Table 1).

Role of the funding source

�e funders of the study had no role in study design, data 

collection, data analysis, data interpretation, or writing 

of the report. �e corresponding author had full access 

to all the data in the study and final responsibility for the 

decision to submit for publication.

Results
�e percentage of garbage-coded deaths out of all deaths 

in VR data varied widely across locations and by garbage 

code class. In VR data for the year 2015 (or the most 

recent year available by location), for example, deaths 

coded to major (class 1 or 2) garbage codes spanned 

a wider range across locations (from a low of 3.7% to a 

high of 67.3%) compared to the percentage of deaths 

coded to more detailed (class 3 and 4) garbage codes, 

which ranged from 2.4% to 34.6% (Fig.  4). Additional 

stratification of the percentage of garbage-coded deaths 

for each class is presented in the Additional file 1 (Addi-

tional file  1: Figure  16). Results in Fig.  4 are shown for 

the year 2015 in order to maximize the data availability 

across locations because the overall level of garbage cod-

ing does not change substantially over time (Additional 

file  1: Figure  5). �ere is also substantial subnational 

variation in the proportion of deaths coded to class 1 or 

2 garbage codes. In 2015, subnational variation was larg-

est in Russia, from 5.1% in Jewish autonomous oblast to 

27.7% in Rostov oblast, and in Brazil, ranging from 8.5% 

in Espírito Santo to 29.5% in Bahia. Some countries, such 

as Japan, Norway, and the UK, had very little variation in 

proportion of deaths coded to class 1 or 2 garbage codes, 

compared to countries with relatively more variation, 

such as the Philippines.

�e portion of age-standardized deaths coded to major 

garbage, out of all deaths, decreases as a location’s Socio-

Demographic Index (SDI) increases (Fig.  5). �e SDI 

value serves as an indicator of development status and 

is a value between 0 and 1 calculated from three com-

ponents: fertility rate, income per capita, and average 

educational attainment. More information on the SDI 

and how it is calculated is described elsewhere [33]. �is 

relationship between SDI and age-standardized major 

garbage is true at the global level and in each GBD super-

region, although it is less pronounced in some regions, 

such as sub-Saharan Africa. Using the age-standardized, 

rather than all-age, proportion of major garbage as a met-

ric is more useful for inter-country comparisons because 

the percentage of garbage-coded deaths is often higher in 

locations with larger elderly populations.

In addition to geographic variation, the garbage codes 

that comprise the most deaths vary across age groups. 

In those under 1  year of age in 2015, unspecified lower 

respiratory infections accounted for the largest propor-

tion of garbage-coded deaths, out of all garbage-coded 

deaths, for both males and females (Fig.  6), compared 

to unspecified stroke for both sexes in the 50 to 79 age 

range. �ere was also some variation by sex and age: in 
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Fig. 5 Age-standardised proportion of major garbage vs. SDI by 
location and year, 1980–2019. The dashed black line represents the 
global trend
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those aged 80 and over, most garbage-coded deaths were 

attributable to unspecified lower respiratory infections 

in males, compared to unspecified stroke in females. 

While Fig. 6 depicts the most frequent garbage codes at 

the global level, there is notable variation in garbage code 

prevalence by location. More information on country-

specific leading garbage codes can be found in the Addi-

tional file 1 (Additional file 1: Figure 17). Similar to Fig. 4, 

results in both Fig. 6 and the following Fig. 7 are shown 

for the year 2015 in order to maximize the data availabil-

ity across locations.

�e process of redistribution affects the number of 

deaths assigned to different causes, the cause fraction, 

and the corresponding mortality rates. �e effect of 

redistribution can be large, and results in changes in the 

rankings of the top causes of death by location, age, and 

sex. At the national level, redistribution of garbage codes 

can substantially change the rankings of the top 10, 20, 

and 50 causes of death. Figure 7 highlights the change in 

ranking by total deaths of the top 20 underlying causes 

before and after redistribution for Brazil, France, Japan, 

and the US in 2015, combined for all age groups and both 

sexes. �ese four countries were selected for illustrative 

purposes, and underlying cause rankings for all other 

countries and territories estimated by GBD can be found 

in Additional file 1: Figure 18. In Brazil, France, and the 

US, there were large increases in the rank of ischemic 

stroke after redistribution, from 31st to second, ninth 

to fourth, and 28th to fifth, respectively. Deaths due to 

diabetes mellitus type 2 increased 4.0-fold in the US and 

10.6-fold in Brazil after redistribution. Notably, in Japan, 

Alzheimer’s disease and other dementias rose from the 

ninth-ranked UCoD to the first in terms of number of 

deaths. In Japan, large increases in the rank of deaths due 

to influenza, pneumococcal pneumonia, and other lower 

respiratory infections occurred. Of our exemplars, the US 

is the only country shown where redistribution resulted 

in a large increase in the rank of drug use disorders, with 

opioid use disorders jumping in rank from  141st to 16th 

following redistribution. France was the only country 

of the four to have an injuries-related cause move into 

the top 10 after redistribution, with deaths due to falls 

ranked sixth, increasing from 7,590 assigned deaths to 

18,247 assigned deaths in 2015.

Discussion
We have described the four methods for redistributing 

garbage-coded VR deaths in the GBD: (1) multiple cause 

analysis, (2) negative correlation, (3) impairments, and (4) 

proportional redistribution (Fig. 1). Overall, the methods 

introduced here reflect an improvement in empiricism of 

redistribution methods; for less-detailed garbage, rather 

than relying on a priori selection of plausible underlying 

causes and proportions, we have sought out alternative 

methods and data sources. Notably, this study provides 

the first in-depth explanation of the incorporation of 

Fig. 6 Stacked bar chart of the top four garbage codes, by percentage of all garbage-coded deaths, for ICD-10 VR data in 2015 by age and sex
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multiple cause data to inform redistribution for 32.2% of 

garbage-coded deaths in GBD 2020 (Table 1).

�e change in ranking among the top 20 underlying 

causes of death by number of deaths before and after 

redistribution highlights the necessity of redistribu-

tion of garbage-coded deaths to understand a country’s 

actual cause-specific mortality pattern (Fig.  7). �is fig-

ure also captures the effects of misdiagnosis corrections, 

a process outside the scope of this paper that has been 

described previously [3]. Redistribution is not the ideal 

solution for the problem of garbage-coded deaths, how-

ever: ultimately, higher-quality CoD data in all locations 

is needed to provide accurate information on mortality 

patterns and inform public health decision making.

Interventions to increase the quality of cause of death 

coding must be context-specific. We have shown that the 

proportion of major garbage has not varied dramatically 

over time (Additional file 1: Figure 5), but rather by SDI, 

with countries with lower SDI having higher proportions 

of age-standardized garbage (Fig.  5). When contrasting 

the proportion of major garbage versus more detailed 

garbage codes, however, there is substantial intra- and 

inter-country variation (Fig.  4). �ese deaths coded to 

classes 1 and 2 have the most substantial health policy 

Leading causes Before Redistribution Deaths Deaths

1 Ischemic heart disease 110961.0 145018.61

2 Chronic obstructive pulmonary disease 42041.0 64893.2

3 Physical violence by firearm 40456.0 64271.91

4 Tracheal, bronchus, and lung cancer 26582.0 58551.18

5 Cirrhosis and other chronic liver diseases 23206.0 53297.31

6 Alzheimer's disease and other dementias 21284.0 52673.3

7 Urinary tract infections and interstitial nephritis 17720.0 47123.47

8 Hypertensive heart disease 16836.0 40999.3

9 Colon and rectum cancer 16684.0 33109.7

10 Breast cancer 15605.0 31607.64

11 Intracerebral hemorrhage 15519.0 25988.96

12 Prostate cancer 14451.0 23078.47

13 Stomach cancer 14248.0 22164.52

14 Falls 12395.0 20682.26

15 Motorcyclist road injuries 11508.0 19130.18

16 HIV/AIDS resulting in other diseases 10989.0 18734.28

17 Motor vehicle road injuries 9941.0 17772.69

18 Pancreatic cancer 9440.0 16714.99

19 Self-harm by other specified means 9426.0 15709.7

20 Brain and central nervous system cancer 9180.0 13913.08

31 Ischemic stroke

36 Diabetes mellitus type 2

54 Other cardiomyopathy

Leading causes After Redistribution

1 Ischemic heart disease

2 Ischemic stroke

3 Other lower respiratory infections

4 Chronic obstructive pulmonary disease

5 Diabetes mellitus type 2

6 Alzheimer's disease and other dementias

7 Physical violence by firearm

8 Intracerebral hemorrhage

9 Tracheal, bronchus, and lung cancer

10 Cirrhosis and other chronic liver diseases

11 Hypertensive heart disease

12 Colon and rectum cancer

13 Stomach cancer

14 Urinary tract infections and interstitial nephritis 

15 Breast cancer

16 Prostate cancer

17 Falls

18 Other cardiomyopathy

19 Motorcyclist road injuries

20 Motor vehicle road injuries

21 HIV/AIDS resulting in other diseases

23 Pancreatic cancer

24 Self-harm by other specified means

27 Brain and central nervous system cancer89 Other lower respiratory infections

Panel  a - Brazil

Fig. 7 Leading 20 causes of death for Brazil (a), France (b), Japan (c), and the United States (d) in 2015 for all ages and both sexes combined. The 
left-hand column is data before redistribution compared to data after redistribution in the right-hand column. Causes are connected by arrows 
before and after redistribution. Infectious diseases are shown in red, non-communicable diseases in blue, and injuries in green. This figure also 
captures additional corrections applied prior to redistribution, namely adjustments made for the misdiagnosis of Parkinson’s, atrial fibrillation, and 
Alzheimer’s disease and other dementias not discussed in detail in this paper (Additional file 1: Figure 1). Additionally, only real underlying causes 
are included in this figure. For that reason, one will not see "Garbage Code" listed in the deaths prior to redistribution
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implications, as they can mislead policy makers on the 

overall mortality composition in a population, as well 

as on the importance of various leading causes of death 

within a disease category [35]. Deaths coded to classes 

3 and 4 can hamper prevention and treatment efforts 

because they do not distinguish between subtypes of a 

disease. National-level policy interventions have been 

shown to increase death registration (including ascer-

tainment of a CoD) [51]. Specifically, enhanced training 

efforts led by the Bloomberg Data for Health Initiative, 

where physicians and instructors leading ICD-compli-

ant certification courses received targeted training, has 

dramatically improved the number of correctly filled 

out death certificates in locations including the Philip-

pines, Sri Lanka, and Peru [52]. Such interventions have 

decreased the number of deaths coded to class 1, 2, or 

3 garbage; however, reducing deaths coded to the most 

specific, class 4 garbage often requires more expen-

sive medical technology. Diagnosis of ischemic versus 

hemorrhagic stroke, for example, requires computed 

tomography scanners, which are often unavailable in 

low-resource settings [53].

�e methods described here have a number of limita-

tions. First, the scope of this paper has been limited to 

countries sharing VR data for use in the GBD; countries 

without color in Fig.  4 are therefore excluded from the 

methods presented here. Second, for the multiple cause 

analysis, the primary explanatory variable in the majority 

of the models which is used to predict the proportion of 

intermediate-cause-related deaths for all GBD-estimated 

locations is the HAQ Index. �e inclusion of additional 

explanatory covariates, additional sources of multiple 

cause data to support these covariates, and empirical 

covariate selection is crucial for strengthening the pre-

dictive validity of estimates. �ird, the multiple cause 

analysis has circular dependencies, as the proportions 

used to redistribute garbage-coded deaths rely on GBD 

cause-specific mortality estimates. If, for example, our 

Leading causes Before Redistribution Deaths Leading causes After Redistribution Deaths

1 Alzheimer's disease and other dementias 1 Ischemic heart disease42045.0 56841.71

2 Ischemic heart disease 2 Alzheimer's disease and other dementias33422.0 43216.43

3 Tracheal, bronchus, and lung cancer 3 Tracheal, bronchus, and lung cancer32214.0 41351.15

4 Colon and rectum cancer 4 Ischemic stroke17930.0 28096.33

5 Breast cancer 5 Colon and rectum cancer12434.0 24568.04

6 Pancreatic cancer 6 Falls10760.0 18247.2

7 Chronic obstructive pulmonary disease 7 Breast cancer9509.0 15722.89

8 Prostate cancer 8 Chronic obstructive pulmonary disease8751.0 15706.37

9 Ischemic stroke 9 Pancreatic cancer8074.0 13781.56

10 Atrial fibrillation and flutter 10 Diabetes mellitus type 28016.0 12468.18

11 Cirrhosis and other chronic liver diseases 11 Intracerebral hemorrhage7759.0 11744.09

12 Falls 12 Prostate cancer7590.0 11700.5

13 Self-harm by other specified means 13 Influenza7241.0 10903.62

14 Liver cancer 14 Cirrhosis and other chronic liver diseases6729.0 10051.38

15 Intracerebral hemorrhage 15 Hypertensive heart disease6641.0 8962.05

16 Parkinson's disease 16 Atrial fibrillation and flutter6089.0 8930.62

17 Bladder cancer 17 Self-harm by other specified means5557.0 8815.07

18 Other cardiovascular and circulatory diseases (internal) 18 Non-rheumatic calcific aortic valve disease4786.0 8614.11

19 Non-rheumatic calcific aortic valve disease 19 Other cardiovascular and circulatory diseases (internal)4756.0 8208.4

20 Hypertensive heart disease 20 Liver cancer4578.0 8160.85

21 Parkinson's disease25 Diabetes mellitus type 2

22 Bladder cancer43 Influenza

Panel  b - France

Fig. 7 continued
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redistribution proportions for unspecified heart fail-

ure overestimate mortality due to a given CoD, then the 

overall level of estimated mortality will increase for that 

cause, and this effect will continue to be perpetuated in 

subsequent GBD rounds. Solutions to reduce the circu-

larity in generation of results are being explored. Fourth, 

in the case of proportional redistribution, we make a 

strong assumption that the assignment of garbage is inde-

pendent from the underlying cause. We hope to improve 

this method in the future, with the incorporation of data 

where death certificates are linked with hospital admis-

sions. Lastly, we want to acknowledge that the term “gar-

bage” codes may be viewed as punitive; renaming has 

been discussed within the GBD; however, for this manu-

script we have opted to maintain it to be consistent with 

other publications on this topic.

In addition to continually seeking out additional mul-

tiple cause of death data, we are currently working to 

improve the methods used to redistribute unspecified 

injuries X59 and Y34 garbage codes. We are in the pro-

cess of implementing machine-learning algorithms to 

improve upon the algebra-based method described above 

for generating cause-, age-, sex-, and year-specific redis-

tribution proportions for X59 and Y34. Furthermore, we 

would like to align our measure of data quality with the 

Leading causes Before Redistribution Deaths Leading causes After Redistribution Deaths

1 Tracheal, bronchus, and lung cancer 1 Alzheimer's disease and other dementias75305.0 141017.03

2 Ischemic heart disease 2 Ischemic heart disease72048.0 113624.62

3 Ischemic stroke 3 Tracheal, bronchus, and lung cancer64924.0 86210.68

4 Colon and rectum cancer 4 Ischemic stroke50555.0 82407.27

5 Stomach cancer 5 Colon and rectum cancer47107.0 62150.02

6 Intracerebral hemorrhage 6 Stomach cancer32662.0 58642.38

7 Pancreatic cancer 7 Influenza32027.0 44801.87

8 Liver cancer 8 Other lower respiratory infections28657.0 42454.79

9 Alzheimer's disease and other dementias 9 Intracerebral hemorrhage25109.0 39325.86

10 Self-harm by other specified means 10 Pancreatic cancer23068.0 35925.22

11 Gallbladder and biliary tract cancer 11 Liver cancer18240.0 32589.55

12 Cirrhosis and other chronic liver diseases 12 Chronic obstructive pulmonary disease17218.0 26393.34

13 Interstitial lung disease and pulmonary sarcoidosis 13 Self-harm by other specified means17101.0 26027.49

14 Aortic aneurysm 14 Chronic kidney disease16965.0 23027.65

15 Chronic obstructive pulmonary disease 15 Cirrhosis and other chronic liver diseases15820.0 21814.56

16 Chronic kidney disease 16 Gallbladder and biliary tract cancer15813.0 21087.26

17 Breast cancer 17 Interstitial lung disease and pulmonary sarcoidosis13825.0 19736.54

18 Subarachnoid hemorrhage 18 Aortic aneurysm12722.0 19714.06

19 Esophageal cancer 19 Pneumococcal pneumonia11789.0 18651.1

20 Prostate cancer 20 Parkinson's disease11365.0 16264.77

21 Breast cancer28 Parkinson's disease

22 Subarachnoid hemorrhage54 Influenza

23 Esophageal cancer63 Other lower respiratory infections

26 Prostate cancer100 Pneumococcal pneumonia

Panel  c - Japan

Fig. 7 continued
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more comprehensive Vital Statistics Performance Index 

(VSPI). While VSPI and the current star ranking of data 

quality both incorporate measures of completeness and 

proportion of garbage-coded deaths, VSPI includes addi-

tional measures such as proportion of deaths without age 

or sex detail and timeliness of data reporting. Producing 

VSPI as a data quality indicator would also align the GBD 

with other efforts to produce comparable metrics of data 

quality [54]. Lastly, we welcome future collaborations to 

analyze country-specific explanations behind many of the 

descriptive analyses produced here.

Conclusions
In an ideal world, CoD certification and coding prac-

tices would be consistent and accurate across space 

and time, and there would be no need for garbage 

code redistribution. In the absence of such standard-

ized practices, the GBD uses redistribution methods 

on garbage-coded deaths in order to provide the most 

comprehensive set of cause of death-specific mortality 

estimates and enable precision in public health decision 

making. �ese methods continue to be updated and 

improved as new strategies and data sources become 

available.

Leading causes Before Redistribution Deaths Leading causes After Redistribution Deaths

1 Ischemic heart disease 1 Ischemic heart disease366790.0 467944.94

2 Alzheimer's disease and other dementias 2 Alzheimer's disease and other dementias245661.0 194246.74

3 Tracheal, bronchus, and lung cancer 3 Chronic obstructive pulmonary disease154584.0 182063.69

4 Chronic obstructive pulmonary disease 4 Tracheal, bronchus, and lung cancer149964.0 178196.28

5 Colon and rectum cancer 5 Ischemic stroke53419.0 99290.33

6 Cirrhosis and other chronic liver diseases 6 Colon and rectum cancer51687.0 71346.1

7 Breast cancer 7 Cirrhosis and other chronic liver diseases42072.0 63925.3

8 Hypertensive heart disease 8 Diabetes mellitus type 241694.0 61778.32

9 Pancreatic cancer 9 Hypertensive heart disease41649.0 56087.0

10 Falls 10 Intracerebral hemorrhage33382.0 55905.19

11 Chronic kidney disease 11 Breast cancer30376.0 50543.8

12 Prostate cancer 12 Pancreatic cancer28912.0 49967.7

13 Parkinson's disease 13 Falls27795.0 43273.13

14 Intracerebral hemorrhage 14 Chronic kidney disease26034.0 40449.25

15 Motor vehicle road injuries 15 Prostate cancer25417.0 38013.01

16 Atrial fibrillation and flutter 16 Opioid use disorders23859.0 36519.37

17 Self-harm by other specified means 17 Influenza22042.0 34509.87

18 Self-harm by firearm 18 Chronic kidney disease due to hypertension22017.0 32471.02

19 Endocrine, metabolic, blood, and immune disorders 19 Parkinson's disease19548.0 30331.54

20 Interstitial lung disease and pulmonary sarcoidosis 20 Atrial fibrillation and flutter19427.0 29866.56

21 Motor vehicle road injuries22 Chronic kidney disease due to hypertension

25 Self-harm by other specified means26 Diabetes mellitus type 2

28 Self-harm by firearm28 Ischemic stroke

29 Endocrine, metabolic, blood, and immune disorders59 Influenza

30 Interstitial lung disease and pulmonary sarcoidosis141 Opioid use disorders

Panel  d - United States of America

Fig. 7 continued
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