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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The importance of sampling from globally representative populations has been well estab-

lished in human genomics. In human microbiome research, however, we lack a full under-

standing of the global distribution of sampling in research studies. This information is crucial

to better understand global patterns of microbiome-associated diseases and to extend the

health benefits of this research to all populations. Here, we analyze the country of origin of

all 444,829 human microbiome samples that are available from the world’s 3 largest geno-

mic data repositories, including the Sequence Read Archive (SRA). The samples are from

2,592 studies of 19 body sites, including 220,017 samples of the gut microbiome. We show

that more than 71% of samples with a known origin come from Europe, the United States,

and Canada, including 46.8% from the US alone, despite the country representing only

4.3% of the global population. We also find that central and southern Asia is the most under-

represented region: Countries such as India, Pakistan, and Bangladesh account for more

than a quarter of the world population but make up only 1.8% of human microbiome sam-

ples. These results demonstrate a critical need to ensure more global representation of par-

ticipants in microbiome studies.

Background

A growing body of research shows that the human microbiome has broad relevance to human

health and disease. However, identifying the specific connections between the microbiome

and human health requires a broad survey of both human populations and their most com-

mon health conditions. Even among healthy individuals, human microbiome composition

varies between populations in ways that are still being uncovered: Geography and geographic

relocation has been found to have an influence on microbiome composition [1–3], as have

host genetic variation and ethnicity [4–6]. Diet [7], lifestyle [8], and patterns in antibiotic use

[9] have all been linked to microbiome composition, with other studies considering the influ-

ence of locational factors such as pollution [10]. Even within countries, interacting factors

such as income, race, and education have critical impacts on health outcomes that could be

mediated by the human microbiome [11]. Some microbiome studies have specifically collected
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and compared data from global sites [12,13], but large gaps and disparities still exist in which

microbiomes are being studied on a global scale. The human microbiome has been linked to a

growing number of social, medical, and economic factors not directly related to host genetics,

which reinforces the urgent need to evaluate the microbiomes of many populations [11,14].

Other genomics fields have developed similar gaps, in which disproportionate attention is

paid to the majority populations of wealthy countries: Genome-wide association studies

(GWASs), for example, have been primarily conducted in populations with European ancestry

[15,16]. As a result, polygenic risk scores (PRSs) from these studies have poorer accuracy when

applied to non-European groups, limiting the possible benefits of this research—including

personalized medicine, early disease screening, and risk prediction—to European-descended

populations [17–19]. There has been a concerted effort in genomics to include non-European

individuals in GWAS studies, concurrent with calls to build research infrastructure and capac-

ity globally [16]. It is likewise critical to identify underrepresented populations and locations

in both genomics and microbiome research; otherwise, the benefits of host–microbiome

research may only extend to a subset of the global population.

To investigate the geographic distribution of microbiome studies, we used metadata on all

human microbiome datasets in the BioSample database, which includes metadata describing

samples in the Sequence Read Archive (SRA), DNA Data Bank of Japan, and European Nucle-

otide Archive [20]. Our data include the country of origin and time of release for more than

444,000 samples, including both 16S amplicon sequencing and shotgun metagenomic

sequencing, released over the last 11 years. These samples from the 3 largest genomic databases

represent a large majority of all human microbiome samples that have been published.

Results

We downloaded metadata for 444,829 human microbiome samples across 19 body sites and

2,592 studies. These data are available from the BioSample database maintained by the

National Center for Biotechnology Information (NCBI), which includes metadata describing

raw sequencing data deposited in multiple international repositories, including SRA [21].

While sample-level genomic sequencing data are uploaded to SRA, information such as geo-

graphic origin is saved separately to an entry in the BioSample database. BioSamples can be

tagged with any number of “attributes,” including 485 standardized fields documented by

NCBI [22]; we downloaded all attributes for all these samples. We used a Python script to load

this metadata into a PostgreSQL database, where the information was aggregated using sample

metadata such as country of origin and time of publication (see Materials and methods).

As expected, we found that the number of human microbiome samples with publicly avail-

able data has been increasing over time, from 3 microbiome samples in 2010 to 123,302 in

2020, the first year in which more than 100,000 human microbiome samples were released (S1

Fig). Although there were microbiome studies conducted prior to 2010, that was the first year

of the BioSample database, which all depositors must now use if they submit sequencing data

to the SRA. The most commonly used attribute in this subset of samples is the geographic ori-

gin of the sample [22], which is available for 99.5% of samples (S1 Table). Using this attribute,

we were able to determine the country of origin for 382,711 (86%) human microbiome sam-

ples (Fig 1A), which originated in 115 different countries. We found that 178,960 samples

(40.2%) were from the US, almost 5 times more than any other country (Table 1). China has

the next most samples, with 36,162 (8.1%), followed by the United Kingdom, Denmark, Aus-

tralia, and the Netherlands. China is the only Asian country in the top 14; the first South

American country is Chile, in 16th place with 3,616 samples (0.8%). Malawi is the first African

country, in 19th place with 3,052 samples (0.7%).
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We also evaluated patterns specific to body sites. The number of countries represented in

each body site is roughly proportional to the number of overall samples, with the most fre-

quently sampled body site, the human gut, also holding data from the most countries, 96

(Table 2). This number drops quickly, however: For example, there are 44 countries repre-

sented in the skin microbiome category, and only 22 in the nasopharyngeal microbiome. Even

if we consider only the 115 countries that appear in this dataset, it appears most body sites

exclude most countries. When we consider body sites per country, rather than countries per

body site, we can also evaluate the best characterized country-level microbiomes: China has

samples in 17 of the 19 body sites, the most of any country (S3 Table), followed by the US with

16. The first South American country on the list, Brazil, has only 9, and South Africa, the first

African country, appears in 8 body sites. Next, we used these data to assess country-level pat-

terns at the 5 most prevalent body sites: the gut, mouth, skin, vagina, and lung (S2 Table). The

US has the most samples in all 5. The skin microbiome category differs notably from the over-

all top 10: Although the US and China again appear at the top, the remainder of the top 10

includes Chile, Bangladesh, Papua New Guinea, Hong Kong, India, Puerto Rico, Australia,

and Peru. However, this is also the body site with the most lopsided difference between the US

and the rest of the world: The US total (19,706 samples) is 12.6 times that of the number 2

country, China (1,562 samples), and more than 50 times that of the 10th country, Peru (391

samples).

To examine patterns of under- and overrepresentation of countries, we compared human

microbiome sample counts to each country’s population, according to United Nations

Fig 1. Global microbiome representation. (a) Total samples by country. The color of each country indicates the total number of

samples originating in that country using a log10 scale. (b) Relative representation by country. The color of each country indicates its

representation in human microbiome datasets, relative to its share of world population. Red colors mark countries that are

overrepresented relative to their population, and blue colors mark countries that are underrepresented. Countries with zero samples in

the dataset are marked with dark blue. (c) Cumulative microbiome samples by world region. The x-axis indicates the year, and the y-axis

indicates the cumulative microbiome samples available at the end of that year. Colors indicate the cumulative microbiome samples from

each of the world regions specified in the legend. The colored bar to the right of the plot indicates the share of the world population

living in each of the regions using the same colors. (d) Proportion of annual samples. The x-axis indicates the year, and the y-axis

indicates the proportion of samples from each world region published in that year. Colors correspond to the world regions shown in

panel C. The data and code needed to generate this figure can be found at https://doi.org/10.5281/zenodo.5351179. All maps are based

on public domain Natural Earth data; the base layer is available for download at https://www.naturalearthdata.com/http//www.

naturalearthdata.com/download/50m/cultural/ne_50m_admin_0_countries.zip.

https://doi.org/10.1371/journal.pbio.3001536.g001
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estimates for 2020 [23]. The US is dramatically overrepresented relative to its population:

Although the country has about 4.3% of the global population, 40.2% of human microbiome

samples originate there. Proportionally, Denmark is the most overrepresented country, with

11,497 samples from a country of about 5.8 million people (Fig 1B). Of the 235 countries and

territories included in the United Nations population estimates, 120 have zero human micro-

biome samples available in these public databases.

To gain a better understanding of global representation in microbiome research, we

grouped countries using the 8 United Nations Sustainable Development Goals regions [24].

We found that 71.2% of samples with a known location come from Europe and Northern

America, a region that holds only 14.3% of the world’s population (Table 3). Proportionally,

Australia/New Zealand has the most lopsided presence in the database: The region’s 30.3 mil-

lion people is 0.4% of the population, but accounts for 3.1% of samples (Fig 1C). Central/

Southern Asia is the most underrepresented region: It holds 25.8% of the population but

makes up only 1.8% of microbiome samples. Northern Africa and Western Asia are the next

most underrepresented regions, followed by sub-Saharan Africa, which is home to 14.0% of

the world’s population but is the source of 4.2% of human microbiome samples. These propor-

tions indicate that a person in Europe or Northern America is roughly 14 times more likely to

be studied in a microbiome project than someone from sub-Saharan Africa. The 47 countries

on the United Nations list of “least developed countries” account for about 14% of the world’s

population [25], but 3.4% of microbiome samples; 29 of those countries have no samples at all

(S4 Table). We also found that, although samples from Europe and Northern America are

overrepresented, in recent years, there is more representation for samples from other regions,

most prominently eastern and southeastern Asia (Fig 1D).

Table 1. Samples per country.

Position Country Samples Share

1 US 178,960 40.2%

Unknown 62,118 14.0%

2 China 36,162 8.1%

3 UK 16,076 3.6%

4 Denmark 11,497 2.6%

5 Australia 9,266 2.1%

6 the Netherlands 9,173 2.1%

7 Canada 8,829 2.0%

8 Finland 7,855 1.8%

9 Italy 6,265 1.4%

10 Germany 5,531 1.2%

11 Spain 5,517 1.2%

12 Sweden 5,248 1.2%

13 Israel 4,831 1.1%

14 New Zealand 4,354 1.0%

15 Japan 4,298 1.0%

16 Chile 3,616 0.8%

17 Bangladesh 3,502 0.8%

18 France 3,402 0.8%

19 Malawi 3,052 0.7%

20 India 2,997 0.7%

Rest of world 52,280 11.8%

https://doi.org/10.1371/journal.pbio.3001536.t001
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Discussion

Our results show that the global distribution of human microbiome sampling is heavily skewed

toward North American and European populations, both in total samples (Fig 1A) and in

samples adjusted for population (Fig 1B). The US is by far the greatest contributor to the data-

base (Table 1), although this is slowly beginning to change as other countries’ contributions

grow (Fig 1D). This neglect of most of the world’s population represents a disparity in micro-

biome research that could limit the health benefits of microbiome research to those countries

and populations whose microbiomes have been extensively sampled and studied. Since only a

subset of the world’s populations are currently being studied, the associations between the

microbiome and disease may not hold in undersampled populations [26,27]. For example,

Gupta and colleagues identified several differences in the microbiome of healthy individuals

from various geographic locations and lifestyles across the globe; without a consistent

“healthy” microbiome across global populations, identifying microbiome–disease associations

is nearly impossible [26]. He and colleagues also found that microbiome-based models for pre-

dicting metabolic disease failed when applied to populations outside of the geographical loca-

tion in which they were developed [27]. Additionally, by only sampling a subset of the global

population, the diseases studied in the context of the microbiome are limited to diseases which

impact that subset. Helminth parasite infections, for example, are common in tropical and

subtropical regions of the world, but rare in North American and European populations.

Table 2. Samples by body site. Each row indicates a body site related to the human microbiome. The “Samples” col-

umn indicates the total number of samples categorized under each body site, and the “Countries” column indicates the

number of unique countries with at least 1 sample in that category. Samples without a known country are included in

the sample count, but not the country count. Body sites map directly to categories defined in the NCBI Taxonomy

Browser; see S5 Table for a list of category IDs combined for each body site.

Body site Samples Countries

Gut 220,017 96

Human metagenome� 69,697 58

Oral 47,798 63

Skin 36,593 44

Vaginal 17,784 31

Lung 17,307 30

Nasopharyngeal 15,646 22

Feces 6,858 13

Reproductive system 3,180 6

Blood 2,707 9

Saliva 2,503 15

Milk 2,060 9

Urinary tract 1,187 4

Tracheal 520 2

Sputum 364 3

Eye 359 8

Semen 203 3

Bile 45 2

Skeleton 1 1

�Samples under the “human metagenome” label refer to an NCBI category that does not specify a particular body

site.

NCBI, National Center for Biotechnology Information.

https://doi.org/10.1371/journal.pbio.3001536.t002
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Undersampling of the microbiota from populations where these infections are common has

led to a lack of clear understanding of the role of the microbiome in helminth colonization

and resistance [28].

To ensure greater global equity in the benefits of microbiome research, many stakeholders

—funders, researchers, and journals, to name a few—should consider how to ethically priori-

tize and incentivize improved global representation of microbiome samples, as they have

begun to do in genomics with efforts such as the H3Africa initiative [29]. Others have also

highlighted opportunities for growth in the microbiome field, such as developing infrastruc-

ture and processes in low-resource settings [30,31], building more comprehensive microbial

reference databases, and pursuing more flexible and affordable sequencing technologies [32].

Importantly, this approach should be grounded in benefitting the populations and communi-

ties sampled, rather than simply using these microbiomes as a tool to improve health in North

American and European countries [33,34]. Ongoing discussion of “helicopter research” (e.g.,

[35]) sheds light on ethical objections to “solving” research disparities with what essentially

becomes charity, rather than collaboration: Researchers from wealthy countries obtain funding

to do research in developing countries, “helicopter in” to collect data, then leave to publish

their papers [36]. The result is more data from that country, but as part of a project that may

not address the problems and priorities of the country under study. Local researchers, if they

are consulted at all, may be excluded from authorship on the papers that are then hidden

behind paywalls, written in a language they may not speak—part of much broader issues in sci-

entific communication [37,38]. Researchers from the so-called “Global North” (as we are)

would benefit from deferring to experienced scientists in these countries to find out how to

avoid common extractive tropes in imbalanced collaborations (e.g., [35,39]). Research and dis-

cussion in other fields may also help scientists trying to build more inclusive research projects:

Although there are no easy answers, essays in applied ecology [40–42], ocean science [43], bot-

any [44], geography [45,46], and conservation [47], among many others, deal with the

Table 3. Samples and population by region.

Region Samples 2020 population (estimated, in

thousands)

% of

samples

% of samples (known

location)

% of

population

Representation

proportion�

Europe and Northern

America

272,544 1,116,506 61.3% 71.2% 14.3% 4.97

Eastern and Southeastern

Asia

49,007 2,346,709 11.0% 12.8% 30.1% 0.43

Sub-Saharan Africa 18,651 1,094,366 4.2% 4.9% 14.0% 0.35

Latin America and the

Caribbean

15,264 653,962 3.4% 4.0% 8.4% 0.49

Australia/New Zealand 13,620 30,322 3.1% 3.6% 0.4% 9.14

Central and Southern Asia 6,685 2,014,709 1.5% 1.7% 25.8% 0.07

Northern Africa and

Western Asia

5,621 525,869 1.3% 1.5% 6.7% 0.22

Oceania 1,178 12,356 0.3% 0.3% 0.2% 1.94

Unknown 62,259 14.0%

Least developed countries 15,254 1,057,438 3.4% 4.0% 13.6% 0.29

Rest of world 367,457 6,737,361 82.6% 96.0% 86.4% 1.11

Unknown 62,118 14.0%

�Representation proportion calculated by dividing a regions percentage of known samples by its percentage of population.

https://doi.org/10.1371/journal.pbio.3001536.t003
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hallmarks and dangers of colonial science [48] and how researchers can change their approach

to knowledge production.

The reasons for, and solutions to, global disparities in scientific research go far beyond the

scope of this paper, and indeed of the microbiome field. There are broader issues of global

representation in science that we and others have discussed, for example, in terms of author-

ship [49], language [37], and the makeup of editorial boards [40]. The complex history and

current conditions driving these disparities requires a comprehensive assessment of global

sociopolitical factors that we, as biologists based in North America, are not able to fully

address. However, the necessity of such an assessment as a way to solve these problems illus-

trates an important possible reason that these problems continue to perpetuate. Most micro-

biome researchers are not trained in social or political science and lack the appropriate tools to

assess and address these problems. The more intentional inclusion of social scientists in micro-

biome projects may help address not only country-level imbalances, but also remediate harm-

ful conventions used to deal with other issues like race [50].

Despite ongoing challenges, there have been several recent success stories of microbiome

initiatives set in, driven by, and focused on countries and populations who have been histori-

cally left out of microbiome research. One such example is the recently convened Microbiome

Task Force from the H3Africa Consortium; their goals are to harmonize and perform meta-

analyses of microbiome data from H3Africa, build capacity and knowledge sharing among

members, and provide data analysis support to researchers [51]. The Pan-African Bioinfor-

matics Network (H3ABioNet), which has worked extensively in genomics research capacity

building in Africa, also recently hosted a hackathon wherein they began work on a data portal

for African microbiome samples [52]. In South America, the Brazilian Microbiome project

and the recently proposed Ecuadorian Microbiome project both seek to advance microbiome

research capacity in their respective countries and create local infrastructure to support these

goals [53,54]. Initiatives such as H3Africa’s African Collaborative Center for Microbiome and

Genomics Research (ACCME) [55] may be ideally positioned to make progress in these trends,

although as research activity grows in these underrepresented countries, using public metadata

may become a less viable measure of these disparities: ACCME’s 2 existing microbiome publi-

cations, for example, do not have information about data availability [56,57], and ongoing dis-

cussions about issues such as data sovereignty [58] raise important questions about whether

making data publicly available is a just and sustainable approach to biomedical research in

countries or populations with comparatively little power in the global research ecosystem [59–

61].

There are several limitations to our study. Metadata quality is the primary hurdle in charac-

terizing samples [62]: For example, our results suggest that data for some microbiome samples

are misclassified as “Homo sapiens” data rather than “human metagenome” data, which

makes them much more difficult to locate. As a result, some of the countries listed here with

zero samples do have microbiome studies that were either submitted to databases that are chal-

lenging to access in bulk (e.g., Zenodo) or mislabeled in the SRA. However, the number of

these misclassified samples is likely to be minor, and given the magnitude of differences

observed in our study, this is unlikely to affect our main results (see Materials and methods).

It is also possible that not all samples identified as human in this study are indeed from

humans and could, for example, include studies using human gut microbiota transferred into

mice. We also did not evaluate differences in host phenotypic information: Most samples are

missing even basic information such as sex (77% missing) and age (79% missing), and the

most prevalent tag indicating host health status, “host_disease,” is only available for 7.8% of

samples (S1 Table). Consequently, we do not have sufficient information to draw conclusions

about differences in geographic distribution between “healthy” and “disease” samples.
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Although disease-specific analysis is beyond the scope of our dataset, it would be interesting to

investigate differences in the types of microbiome studies, and the questions they ask, on a

global scale: If the human microbiome is generally understudied in a given country, it is likely

that diseases prevalent in that country may also be lacking information about microbiome

associations. We have also limited our database search to 3 databases (SRA, DNA Data Bank

of Japan, and European Nucleotide Archive); it is possible that different patterns of global

representation are present in other databases, such as MG-RAST [63] and gcMeta [64],

although they are orders of magnitude smaller than the NCBI holdings. In addition, as it has

been estimated that 20% of microbiome papers do not have publicly available data [65], our

study only examines the subset of microbiome studies that also shared their data in the largest

international repositories.

Samples collected from the same host could occur in longitudinal studies or datasets in

which biological replicates were submitted as separate BioSamples, a pattern that is difficult to

evaluate across multiple studies that may identify subjects differently, if at all. If longitudinal

studies happen more frequently in some regions than others, it is possible that the reported

proportions of samples between countries could differ from the proportions of human sub-

jects. However, given the differences in sample numbers between countries, this is unlikely to

change the main results from our study. Moreover, since we are using sample collection as a

proxy for investment in microbiome research in a given country, the identity of the subject

may not be as relevant—indeed, it is likely more costly to perform a longitudinal study with

subject follow-up than it is to recruit more subjects for a single sample each. Still, if longitudi-

nal sampling is more common in studies in North America and Europe (which seems likely,

given the extensive infrastructure and funding required for following patients long term), it is

possible that the gap between the “Global North” and the rest of the world in terms of micro-

biome sampling is smaller than our results suggest, if we were to count subjects rather than

samples. However, given the magnitude of the difference between countries in our study, we

do not believe repeated sampling from the same individuals in the Global North alone can

account for such drastic disparities in sample numbers.

To conclude, we analyzed the geographic origins of almost a half-million samples from the

largest genomic repositories in the world. We find evidence that the human microbiome field

may be encountering some of the same flaws that arose in human genomics [66,67], in which

much of the world is excluded and progress is focused on the priorities of the wealthy. The

field would benefit from a more global perspective on investigating the human microbiome’s

relationship to health and disease.

Materials and methods

A list of samples was exported from the NCBI BioSample database (https://www.ncbi.nlm.nih.

gov/biosample) using the search string “txid408170[Organism] AND biosample sra[filter]

AND “public”[filter],” which requests all samples classified under the “human gut metagen-

ome” category in the NCBI Taxonomy (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/

wwwtax.cgi). The resulting sample IDs and all associated tags were loaded into a PostgreSQL

database. We repeated this for all categories described as human metagenomes (Table 2). We

note that the term “human gut metagenome” does not describe the sequencing technique used

to generate the microbiome data, including shotgun metagenomics and amplicon sequencing

—specifically, 301,700 samples (72.0%) are associated with sequencing runs that list the library

strategy as “AMPLICON.”

We then looked in other NCBI categories nested beneath the “organismal metagenomes”

category that were not explicitly labeled “human” but were likely to contain some human
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samples [68]. We downloaded the metadata for samples classified under any NCBI category

that was the “generic” version of a human one we had already collected—the “blood metagen-

ome” category is the generic version of the “human blood metagenome” category, for example

(S5 Table). We downloaded all sample data for any generic categories that had at least 1,000

samples, then evaluated the metadata to find which samples indicated they were taken from a

human host. To do this, we used the value of the “host_taxid” field or, if that was blank, the

value of “host,” to create a putative “host” value, and manually flagged any that explicitly indi-

cated the sample was from a human—references to “human” or “Homo sapiens,” for example,

or if the host included words such as “patient” or “crew member” and did not indicate another

species. We evaluated 4,395 unique “host” values for 173,038 samples and found 501 values

assigned to 29,934 samples (17.3%) that indicated the host was a human. These were also

included in the analysis. The sample data were collected between April and June 2021; to mini-

mize the effect of collecting some body sites after others, only samples dated prior to 2021

were included here.

We then used the NCBI eUtils API to find “runs” associated with each sample, so we could

ensure all the BioSamples were associated with actual sequencing data. In the NCBI system,

“runs” are the entities associated with sequencing data. We also used this API to obtain infor-

mation on publication date, library strategy, and the dates on which samples became publicly

available. This resulted in a collection of 444,829 samples across 19 body sites (Table 2) after

removing several hundred samples that were missing dates or sequencing data.

Representation proportions

To determine which countries were over- or underrepresented relative to their populations, we

obtained the 2020 population estimates for all countries as estimated by the United Nations

[23]. We used this to calculate 2 percentages for each country, one for the country’s share of the

global population and another for the country’s share of human microbiome samples. We then

calculated a representation index: For countries with a higher sample percentage than popula-

tion percentage, we divided the former by the latter to obtain a number indicating how many

times more samples are present than expected. For countries with a lower sample percentage

than population percentage, we took the negative reciprocal of this number, indicating (in nega-

tive numbers) the number one would have to multiply the sample count by to get the number

that would be proportionally representative. The interim result leaves overrepresented countries

with positive scores and underrepresented countries with negative scores. After removing the

scores for countries with 50 or fewer samples, we scaled the positive scores to fall between 0 and

100 and separately scaled the negative scores to fall between 0 and −100. We then plotted these

on the map using the “log 10” transformation to add more variation in the color coding for the

countries with middling scores. For the regional calculations (Fig 1C and 1D), we used top-

level classifications from the same United Nations document. Antarctica is not included in a

region, so those samples were added to the “Unknown” category for region-level calculations.

To better understand gaps in what data may be available outside of these large centralized

repositories evaluated here, we selected several countries with zero attributed samples and did

a literature search to determine whether human microbiome studies had been performed

there and, if so, where the data are stored. For example, we could not confirm any samples

available from Kazakhstan (population 18.7 million) in central Asia, but a human gut micro-

biome study from there was published in 2020 [69]; its raw sequencing data (but no pheno-

typic information) are available on Zenodo, a scientific data repository with many submissions

but no way of searching for samples or projects. Another Kazakhstan microbiome study [70] is

linked to publicly available sequencing data (BioProject PRJEB17632), but with incorrect
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metadata: Samples are classified as human sequencing data, rather than metagenomic, an issue

addressed directly in the SRA submission instructions [71]. IAU : PleasecheckwhethertheeditstothesentenceInaddition; geolocationmetadata:::arecorrect; andamendifnecessary:n addition, geolocation metadata

was submitted, but listed the country of origin as Germany, the location of the senior author

(and presumably the sequencing center), rather than Kazakhstan, and the geographical source

of the sample, as requested by NCBI [22], although instructions can differ between repositories

[62]. A study in Honduras (population 9.9 million) includes SRA data with accurate geoloca-

tion information (BioProject PRJEB31759), but the samples were again classified under

“Homo sapiens” rather than “human metagenome” [72].

Visualization

All figures were made using R and the ggplot2 package [73]. Maps use the Equal Earth projec-

tion [74] and the rnaturalearth R package [75].

Supporting information

S1 Fig. Samples per year. The x-axis indicates the year, and the y-axis indicates the number of

microbiome samples released in that year. Colors indicate the region of origin for each sample

and match the colors used in Fig 1C and 1D. The data and code needed to generate this figure

can be found at https://doi.org/10.5281/zenodo.5351179.

(TIF)

S1 Table. Samples per tag. Each row represents a single metadata field available for BioSample

entries. The “samples” column indicates how many samples have a value for that field.

(CSV)

S2 Table. Top 10 countries by body site. Each column holds a list of the 10 countries with the

most samples in a single body site. The “unknown” category is omitted here.

(CSV)

S3 Table. Samples per body site per country. This contains similar data to S2 Table, except

no countries or body sites are omitted. Each column is a single body site. Each row is a coun-

try, and each cell represents the number of samples from that country that appeared in that

body site.

(CSV)

S4 Table. Country-level data. Each row represents a single country or territory as defined by

the United Nations. There are 10 columns; see the Supporting information documentation for

a description of them.

(CSV)

S5 Table. NCBI Taxonomy IDs. Each row represents a single body site. The “human” column

indicates the ID used to identify samples explicitly labeled as human (e.g., “human gut meta-

genome”); the “generic” column indicates the ID used to identify samples not labeled as

human (e.g., “gut metagenome”). NCBI, National Center for Biotechnology Information.

(CSV)
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