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,e pandemic of COVID-19 has posed a severe challenge to the traditional on-site centralized development projects; people
therefore have to share data in a group by the cloud storage server and develop projects at home. ,e cloud server is un-
trustworthy, although it supplies the powerful computing capability and abundant storage space; so far wide research has been
proposed to verify data integrity. ,erefore, how to leverage the cloud server and ensure the integrity of the data (especially the
encrypted data) stored on the remote cloud devices remains an issue for the clients. To address this issue, we utilize the technique
of homomorphic hash function to implement reencryption ciphertext blocks and introduce a certificateless signature scheme for
the integrity verification of encrypted data shared within a group. A detailed challenge-and-response game represents that the
proposed scheme can preserve encrypted data blocks integrity against the internal/external attacker and malicious cloud service
servers. We give the theoretical and experimental performance analysis of the scheme and exhibit that the scheme is efficient
and practical.

1. Introduction

To date, cloud storage service has been an efficient paradigm
for storing and sharing data information and a cooperation
platform for staff to collaborate in many companies. Once a
project manager can upload tasks to the server, each project
participant can access, download, and modify the corre-
sponding files through the network without any geo-
graphical restriction. Especially with the travel restrictions
caused by the COVID-19 pandemic, people can only stay in
their own homes and work through the Internet; thereby the
use of cloud services for task cooperation and sharing has
become particularly important. In the real world, Dropbox
for Business [1], TortoiseSVN [2], and Google Drive already
have become cloud service platforms for employees to share
and collaborate online.

However, the prerequisite for this type of application to
facilitate many company staff to work together is whether
the cloud server provider (CSP) can make sure that the data
is retained intact. In the field of cloud services, there is a

multitude of inevitable internal and external attacks [3], as a
slice of examples, the failure of software or hardware, illegal
access, and deliberate deletion or corruption of the out-
sourced data, resulting in unreliable cloud services. Owing to
the existence of these above attacks, the integrity of data is
destroyed, which will inevitably reduce the availability and
storage significance of data. ,is paper focuses on the in-
tegrity of data stored in the cloud.

For decades, to address the integrity verification of data,
an army of studies on remote data integrity checking have
been proposed by papers [4–16], and these schemes give
efficient approaches to verify the integrity of outsourced data
on cloud server without downloading them. However, all the
above solutions are focused on the integrity auditing for
individual data without involving the situation of sharing
data in a group. How to verify the integrity of the shared data
in a group is an interesting and essential task in the cloud
server, which is also another item for the cloud service.

Remote data integrity verification is a technology that,
for the data stored in the virtual cloud server, there is no
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need to download the entire file locally to check the integrity
of data. When a project with data attached to it is uploaded
to a cloud server and shared among multiple engineers,
some new challenges emerge and these challenges cannot be
solved well with existing individual data integrity verifica-
tion solutions. According to the above scenario, the project
with data attached is divided into blocks and sent to the
engineers of the project group, and different engineers will
output different block tags in the same block. When a block
is modified by the engineers of the project group, the new
block tags will be regenerated. In a project group, all en-
gineers will either online or offline compile their tasks, but
no matter which kind they are required to store the results of
the day’s tasks in the cloud server and generate block tags for
checking. To ensure that each engineer is honest to compile
the project with the given data, the project manager must act
as a verifier to verify the integrity of the data from time to
time. When the verifier wants to audit the integrity of raw
data, it needs to aggregate all tags with the engineer’s identity
information.,e process of verification is more complicated
and brings a significant volume of calculation [17–24]; these
protocols thereby are not valid for the case of data sharing in
a group.

When the data is shared among the engineers in the
project group, also other challenges appear where some
engineers in the groupmaybe withdraw from the group due
to some special circumstances, such as being transferred to
another project group or misbehaving. As a result of the
above situations, the tags generated by the revoked user are
invalid and need to be renewed by the other legitimate
members. In addition, the data in the shared group also
needs to be updated frequently, which also leads the tags to
be changed constantly. For security reasons, if the identity
of an engineer is revoked, all data as well as the corre-
sponding tags, which belong to the revoked members
previously, still have to be renewed by the existing user in
the group. According to common sense, when an engineer
exits the project, then its task will be transferred to other
engineers, and its identity information in the project will be
revoked; that is, its public/private key for participating in
the project will become invalid. Considering the fact that
the shared data is not stored on local devices, the traditional
way is to download all data previously generated by the
revoked engineer and ask an existing engineer to renew the
tags and finally upload the new tags to the cloud server
again. ,is operation can safely transfer the task to the
engineer existing in the task, but it may significantly in-
crease the existing engineer communication cost and
calculation resources, especially when a considerable vol-
ume of the blocks needs to frequently change and update.
To overcome the above drawbacks, the execution of the
verification operations should be outsourced to CSP in-
stead of execution by the existing engineers. Besides, in-
tegrity verification of shared data can be verified not only
by the members of the shared data group but also by ev-
eryone who wants to leverage the data blocks in the cloud
service. As a result, it is of tremendous significance that the
scheme to be proposed can meet the public verification
with the help of CSP.

At present, plenty of integrity verification schemes for
shared data in this group have been put forward. Most of
them [25–29] focus on the PKI technology based on the
trustworthiness of certificate authority (CA), where it is
difficult to find a trusted CA. Others are identity-based
[28, 30] remote data integrity verification protocols, which
rely on the private key generator (PKG) to generate all
private keys. However, this approach suffers from a key
escrow problem. ,erefore, how to efficiently verify the
integrity of outsourced data in a shared group by a public
verifier and transfer the revoked members’ data to existing
members without downloading the data from the cloud
service, as well as solving the key escrow and certificate
management issues, is a challenging task.

Reviewing the existing protocol solutions, we mainly
focus on the integrity verification for the encrypted shared
data in a group. In this paper, we assume that there is an
encrypted business project, which is divided into numerous
encrypted subprojects, and it needs plenty of engineers to
participate in development. A project manager, who invites
the engineers to a temporary project group, takes charge of
the system parameters and encrypts the raw project. ,en
the project blocks encrypted with public keys of specified
members in the group are uploaded to the cloud service so
that the engineers within the group can modify and upload
subprojects compiled online or offline. If this is a big project
with plenty of engineers in the project group, there are some
issues to be addressed efficiently, for example, the integrity
verification after legitimate changes to subprojects under
development, the members revocation problem, and the
entry of new members.

1.1. Contributions. To overcome the disadvantages of pre-
vious schemes and address the aforementioned issues, we
propose a new remote data possession checking scheme for
encrypted shared data group. ,e contributions of the
proposed scheme are presented as follows:

(i) We propose a new remote data possession checking
scheme to audit encrypted shared data in each
group, in which the certificateless public key system
is utilized as an underlying encryption mechanism,
and the homomorphism hash approach is used to
regenerate the ciphertext to improve the efficiency
of member revocation scheme.

(ii) We then construct a public auditing scheme for
verifying the integrity of encrypted data in the cloud
service provider based on the corresponding cer-
tificateless authentication tag aggregation.

(iii) We design a ciphertext conversion scheme which
leverages a homomorphic hash function to convert
the ciphertext of the revoked member into the ci-
phertext of the existing member. ,e scheme has
been implemented and the results are more efficient
compared to state-of-the-art protocols.

(iv) We have proven the security of the proposed
scheme which is based on the stability of CDH and
DL assumptions by simulating a challenge-and-
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response game involving two players: a challenger
and an adversary.

1.2. Organization. ,e rest of this paper is organized as
follows. Section 2 discusses the prior work done in verifying
the integrity of group shared data. Section 3 introduces the
preliminaries and Section 4 defines the problem statement
which includes system model, design goals, outline of the
scheme, and the secure model. ,e detailed construction of
our scheme is presented in Section 5. ,e proposed scheme
is simulated and a challenge-and-response secure model is
formalized in Section 6, and we assess the efficiency of the
proposed scheme in Section 7 based on the computation cost
of tag generation and verification, communication cost
analysis, and vocation analysis compared with the existing
schemes.,e conclusion of this paper is presented in Section
8.

2. Related Work

Since Deswarte et al. [4] first proposed a scheme for checking
the integrity of data stored on remote virtual cloud servers;
so far, a number of auditing schemes have been proposed.
Among the proposed schemes, they can be generally divided
into two directions: Provable Data Possession (PDP) [5] and
Proofs of Retrievability (POR) [23].

,e PDP scheme is proposed by Ateniese et al. [5] based
on RSA signature and sampling strategies to improve the
efficiency of integrity checking without retrieving the whole
file. However, there is a limitation for this scheme; that is, it
is only suitable for the auditing of static data files. To
overcome this limitation, Ateniese et al. [31] presented the
revised version of PDP based on symmetric encryption to
efficiently address the dynamic checking issues instead of
handling the insertion operation. Erway et al. [18] gave a
dynamic provable data possession (DPDP) scheme, which
supports full data dynamic operations to solve the insertion
operation and improve the verification efficiency by
leveraging the authenticated skip list.

To support fully dynamic data, Wang et al. [32], Erway
et al. [18], and Zhu et al. [33] successively proposed schemes
to construct auditing mechanisms supporting fully dynamic
data, respectively. To realize public verification and dynamic
data operation, Liu et al. [34] gave a dynamic public auditing
scheme based on the Merkle Hash Tree (MHT), in which the
block tags are generated by the data owners, and this incurs
the increase of communication and calculation cost. To
overcome this drawback, a scheme [35] to solve the heavy
calculation burden on the data owner side at the expense of
data owner’s privacy has been proposed, in which both tag
generation and integrity verification are implemented by the
cloud server. ,e issue of privacy-preserving in public
auditing has been addressed, in which the data blocks are
blinded by a data owner before generating signatures by the
third party [36]. In another related research, to avoid the
certificate management problem of PKI, some PDP schemes
based on Identity-Based Signature (IBS) [37, 38] were
proposed.,emajor problem of IBS is the key escrow, which

is solved by a certificateless-based signatures PDP scheme
[39].

Similar to PDP, the POR is another approach introduced
by Juels et al. [23] to audit the integrity of remote data stored
on the cloud service. An improved POR scheme is given by
Wang et al. [10] to authenticate block tags, in which a se-
curity proof is revised in their previous work. Based on the
previous works of Erway et al. [18] and Ateniese et al. [5], a
generic framework DPOR is proposed by Etemad et al. [40]
to store call updated information in the logs. Apart from the
aforementioned protocols, some other publicly verifiable
protocols are published. Hao et al. [41] gave a public veri-
fication without including a TPA, and Shen et al. [42] solved
the loss of private key for auditing issue. Wu et al. [43]
introduced a time encapsulated POR protocol that could
check the integrity of data and timestamp by verifier.

All schemes mentioned above mainly devote them-
selves to verifying the integrity of individual data. Since
Wang et al. [44] proposed a scheme for auditing the in-
tegrity of data shared in a group in 2012, a succession of
verification schemes for sharing data in a group have been
proposed [7, 26–29, 45]. Among these schemes,
[26, 27, 29, 45] represented PDP schemes for group data
based on the signatures, respectively, and all of these
schemes are more or less deficient in efficiency and rev-
ocation. To solve the multiuser modification problem of
blocks, [28] based on PKI mechanism proposed a PDP
scheme of polynomial authentication tags, which led to a
heavy burden of certificate management. Recently, Li et al.
[7] based on certificateless mechanism proposed a public
integrity checking of group shared data on cloud storage,
which changes the data tags of the revoked member into the
existing member’s tags. However, the data within the group
in the scheme is all plaintext, which cannot satisfy the
situation that the shared data in the group is ciphertext.
According to all references mentioned above, although
there are numerous schemes that can solve the problems of
user adding and revocation in a shared group, on the
premise of integrity auditing, there is no verification re-
search on the integrity of encrypted data in a shared group.
,erefore, we devote to designing a scheme for the integrity
verification of encrypted data group in cloud service, which
not only satisfies the member addition and revocation but
also decreases the computational burden of challenge proof
on the client side with the help of CSP.

3. Preliminaries

3.1. Bilinear Maps. Let G1 and G2 be two multiplicative
cyclic groups of prime order p, and let g be a generator ofG1.
A bilinear map e: G1 × G1⟶ G2 has the following
properties:

(1) Computability: there exists an efficient algorithm to
compute map e.

(2) Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp,
e(ua, vb) � e(u, v)ab.

(3) Nondegeneracy: there exists a point g such that
e(g, g)≠ 1.
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3.2. Complexity Assumptions. In our scheme, the security is
based on the following security assumptions.

Definition 1 (Computational Diffie-Hellman (CHE) Prob-
lem). Let a, b ∈ Zp

∗; given the tuple g, ga, gb ∈ G1 as input,
output gab ∈ G1.

Assumption 2 (Computational Diffie-Hellman (CHE)). For
any probabilistic polynomial time (PPT) algorithmA,
Pr[A(g, ga, gb)⟶ gab] is negligible, where g, ga, gb←G1.

Definition 3 (Discrete Logarithm (DL) Problem). Let g be a
generator of G1; given the tuple (g, ga) as input, output
a ∈ Zp

∗.

Assumption 4 (Discrete Logarithm (DL)). For any proba-
bilistic polynomial time (PPT) algorithmA,
Pr[A(g, ga⟶ (a))] is negligible, wherea←Zp

∗.

3.3. HomomorphicHash Function. For a finite field Fn and a
multiplicative group Zp of orderp, a family of homomorphic
hash functions are a collectionH � hi: Fn⟶ Zq􏽮 􏽯, where i

is the index yielded by an efficient algorithm. A homo-
morphic hash function [46] consists of the following
properties:

(1) One way: given x ∈ Fn and an index i, there is no
polynomial time adversary which can find a hi

− 1(x).
(2) Collision resistance: given an index i, it is hard

(computationally infeasible) to find two vectors
x, y ∈ Fn(x ≠ y) for which hi(x) � hi(y).

(3) Homomorphism: given an index i and any
x, y ∈ Fn(x ≠ y) hi(x ∘ y) � hi(x) ∘ hi(y), “∘” is either
a “·” or a “+.”

4. Problem Statement

In this section, we show the system model and secure model
and illustrate the design goals and the outline of our pro-
posed scheme.

4.1. System Model. Similar to [7, 27, 29], we combine the
cloud architecture with an example of sharing and devel-
oping encrypted files by the staffs of a company that are in
the same group or department.,e systemmodel consists of
three major entities: project group (i.e., members involved in
the project), cloud service provider (CSP), and public ver-
ifier, and the relationship and the interaction situation
among them are represented in Figure 1.

Project group consists of a volume of project members
and a project manager that rents the cloud service platform.
In the given example, a project manager is the original owner
of the project file and takes charge of dividing the file into
encrypted blocks, system parameters generation, member
joining/revocation, and sharing the blocks in the project
group through a cloud service provider. All project members
can access, download, and modify the specified, encrypted
data blocks.

Cloud service provider offers a wealth of storage services
and powerful computing abilities by charging a certain fee.
Referring to the research in [7], CSP can honestly implement
the scheme but may try to gain the content of stored files and
return an incorrect result to the verifier to get some extra
benefits. ,erefore, we assume that the CSP is semitrusted,
encrypting all file blocks stored in the CSP, and generate tags
corresponding to the project members.

,e verifier can be any member of the project group that
checks the integrity of encrypted data blocks kept in the CSP.
Once a verifier sends an integrity auditing request, the CSP
generates and returns the verification information. ,e
verifier then checks the correctness of the auditing proof and
reports the verification result.

4.2. Design Goals. To efficiently and securely verify shared
encrypted data with a volume of members in a project group,
our proposed scheme should be designed to achieve the
following properties:

(i) Correctness: Based on the challenged proof gen-
eration, the verifier is able to correctly detect the
integrity of challenging blocks.

(ii) Unforgeability: Only the specified member in the
project group can yield valid verification informa-
tion on the encrypted data blocks.

(iii) Identity privacy: During the integrity of auditing,
the CSP cannot distinguish the identity of tag
generator on each randomly picked block in the
shared project group.

(iv) Tag-updating: When the identity of some members
in the project group is revoked or new members are
added, the corresponding ciphertext tags should be
updated efficiently and securely.

(v) Verifiability: Random verifier is able to verify the
integrity of ciphertext attached tags by the chal-
lenged proof calculated by the CSP.

4.3. Outline of the Scheme. ,e scheme consists of eight
steps:

(1) Setup(1κ)⟶ (params, msk): Taking a security
parameter κ as input, the project manager imple-
ments this step and outputs the master key msk and
all system parameters params.

(2) PartialKeyGen (IDi, params, msk)⟶ (Di): Tak-
ing the member’s identity IDi, the master key msk,
and the parameters params as input, the project
manager executes this step and outputs member ui’s
partial key Di.

(3) KeyGen(Di, params)⟶ (sski, spki): Taking the
member’s partial key Di and the parameters params

as input, the project member runs this step and
returns pairing private/public key (sski, spki).

(4) Encrypt(mi, spki)⟶ (σi): Taking the file blocks mi

and member’s public key spki as input, the project
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manager executes this step and generates a ciphertext
σi.

(5) TagGen(σ i, sski)⟶ (Ti): Taking the ciphertext σi

and a private sski as input, the project member le-
verages this step to generate a tag Ti attached to the
ciphertext block σi when uploading to CSP.

(6) Challenge(c)⟶ (chal, Fi d): Taking the count of
challenged block c as input, the verifier runs this step
to output a challenge information chal appending
the block name Fi d for the integrity querying of the
data file.

(7) ProofGen (chal, F∗, Ti|i ∈ n􏼈 􏼉)⟶ P: Taking the
challenge information chal, the challenged encrypted
block set F∗, and tag set Ti|i ∈ n􏼈 􏼉 as input, CSP runs
this step and responds with the integrity proof P.

(8) Verify Proof(P, chal, params)⟶ 0, 1: Taking the
integrity proof P, the challenge information chal,
and the public parameters params as input, the
verifier implements this step and returns 1 if result P

passes the verification; otherwise, it returns 0.

Note that, in addition to the above steps, there are two other
steps: JoinGen andRevGen. Step JoinGen is executed by the
project members, which invites some other members who are
not in the project group, and step RevGen is also implemented
by the project members, and the procedure is divided into two
scenarios depending on whether the revoked member has
invited members to participate in the project group.

4.4. SecureModel. Since the certificateless cryptography [47]
is the underlay of our new scheme, and referring to the

security model of data integrity auditing protocols repre-
sented in papers [30, 39, 48], we consider the security re-
quirement and adversary model of the encrypted shared
scheme against a fully-adaptive chosen ciphertext attacker
(IND-CCA) [47, 49] which involves a challengerC and four
types of adversaries, namely ,A1,A2,A3, andA4. Among the
four adversary types, although adversaries A1 andA2 both
execute the tag-forge attacks, they have different attack
capabilities. Type A3 implements the ciphertext integrity
proof attack to cheat the verifier, and type A4 tries to
generate a forgery of regenerated ciphertext and passes the
verification of ciphertext receiver.We give the four following
games to illustrate the security model in detail.

4.4.1. Setup. ,ere are two parties, adversary Ai for Ai and
challenger C that keeps the private keys and the master key
security and sends the public system parameters toAi.
Challenger C interacts with adversary Aj for j ∈ 1, 2{ } in
this game. In order to generate a forgery of tag in a security
game, Aj needs to execute the following different queries:
hash query, key query, public key query, public key re-
placement, encryption query, and tag query.

4.4.2. Common Queries. Aj gives the polynomial times
different queries to C which responds to the following
queries:

(1) Hash query is adaptively made by Aj and the hash
values are responded by C.

(2) Key query is adaptively run byAj to submit different
target identity ID (first running the step
PartialKeyGen byC for ID if necessary) to C for
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querying the key, and then a key pairing for ID is
responded toAj by C performing the step KeyGen.

(3) Encrypt query is adaptively implemented by Aj to
submit different plaintext m to C, and then a ci-
phertext σ with both the randomly picked value r

and the public key spkID is responded to Aj by C.
(4) Tag query is adaptively executed by Aj to query the

tag of any ciphertext block σ with the corresponding
member’s identity ID, and then a tag Tag is returned
by C running the step TagGen.

4.4.3. Game1. In this game, adversary A1 not only executes
the CommonQueries above but also runs the following
specialized queries:

(1) Partial key query: is adaptively implemented by A1
to submit different target identity ID to C, and then
the partial key for the ID is responded to A1 by C

running the step PartialKeyGen.
(2) Public key replacement: According to the assumed

capability of A1, it can replace the public key sskI D

of any ID with random value sskID
′ multiple times if

necessary.

4.4.4. Forgery. Eventually, there are two scenarios on the
forgery tag Tag′ output by adversary A1. One is that A1
outputs a forgery tag Tag′ for the ciphertext block σ
encrypted by the public keysskI D, and the tag is generated
with the public key sskID′ and the identity ID′.,e other one
is thatA1 outputs a forgery tag Tag′ for ciphertext block σ′
encrypted by public key sskID′ , and the tag is generated with
the public key sskID′ and the identity ID′. In both scenarios,
such adversaryA1 does not have access to the master key of
system, but it can request the public key and has the ca-
pability to replace the member’s public key and make the tag
queries for all identities of its random choice. However, ifA1
wants to win the game, there are several natural restrictions
on adversary A1 as discussed below:

(1) A1 cannot request a query on the private key for
identity ID′ at any time.

(2) A1 cannot both query the partial key for ID′ and
substitute the public key of identity ID′ at the same
time.

(3) A1 cannot make a tag query for the encrypted target
data block σ′ with the identityID′ and the public key
sskID′ .

(4) In addition to the above limitations,A1 can forge a valid
tag for the encrypted data block σ′ with the identity ID′
and the public key sskID′ , and it also can forge a valid tag
for the ciphertext block σ encrypted with the legitimate
public key sskI D, where the tag is generated by the
replaced public key sskID′ and the identity ID′.

4.4.5. Game2. In this game, adversary A2 only executes the
CommonQueries above and then forges the tag Tag′ for the
ciphertext σ′ with the identity ID′.

4.4.6. Forgery. In this process of forgery, adversary A2 is
unable to replace the member’s public key, but it has the
capability to access the master key of system. However, there
are also two scenarios on the forgery tag Tag′ output by
adversary A2. One is thatA2 outputs a forgery tag Tag′ for
ciphertext block σ encrypted by the public key sskI D, and
the tag is generated with the public key sskID′ and the
identity ID′. ,e other one is that A2 outputs a forgery tag
Tag′ for ciphertext block σ′ encrypted by public key sskID′ ,
and the tag is generated with the public key sskID′ and the
identity ID′. In addition, if A2 wants to win the game, it is
subject to the following restrictions:

(1) A2 can neither query the private key nor replace the
public key for ID′ at any point.

(2) A2 cannot make a tag query for the encrypted target
data block σ′ with the identity ID′.

(3) In addition to the above limitations, A2 can forge a
valid tag Tag′ for the encrypted data block σ′ with
the identityID′, as well as the legitimate public key
sskI D.

Definition 5. ,e scheme is semantically secure against the
single tag forged attack of the ciphertext block if adversary
A1 or A2 in polynomial probability time has a negligible
advantage to win Game 1 and Game 2.

4.4.7. Game3. In terms of Definition 5, an adversary cannot
forge a legitimate label for a single ciphertext block without
accessing the right private key. In this game, we consider that
adversary A3 that acts as the untrusted CSP in the system
attempts to persuade the verifier to pass the integrity ver-
ification of corrupted data. Inspired by [7], challenger C

plays two roles, that is, the honest CSP and an integrity
checker, and the operation of Game 3 is executed as follows:

Tag query:,e target tuple (ID, m) is adaptively selected
by A3 and sent to C, which responds with the querying tag
which is generated with the ciphertext σ and the identity ID

by the step TagGen.
Challenge: Challenger C, which acts as the verifier,

generates and sends a random challenge information chal to
A3, which is requested to respond with the corresponding
data possession proof P for chal.

Forgery: Once receiving the challenge information chal,
A3 acts as the CSP, generates a proof P, and responds toC.
,e premise forA3 to win the game is that the miscalculated
block information in proof P can pass the integrity verifi-
cation successfully.

Definition 6. ,e scheme is semantically secure against
forging the integrity proof on incorrect data if adversaryA3
in polynomial probability time has a negligible advantage to
win Game 3.

4.4.8. Game4. In this game, the specified member acts as
adversary A4 that interacts with challenger C. Here, the
revokedmember and CSP are regarded as the trusted parties.
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If the reencrypted data has been corrupted,A4 tries to cheat
the verifier that the tag generated by reencrypted data can
pass the integrity verification. In terms of Definitions 5 and
6, we know that any adversary cannot pass the tag verifi-
cation on a single block without accessing the private key
and correct data. ,erefore, the focus of this game is on
whether adversary A4 can forge the integrity proof of
reencrypted data to pass the verification. Inspired by [7, 29],
challenger C plays two roles, that is, the honest CSP and a
revokedmember, and the operation of Game 4 is executed as
follows:

Reencrypt key query:A4 adaptively picks an identity ID

and submits it to challengerC for querying the reencrypting
key of ID. C runs the reencrypting key subroutine in step
RevGen and returns the reencrypting key rA↔C.

Tag query: ,e target tuple (σ, ID) is adaptively selected
byA4 and sent toC for querying the tag for the reencrypting
ciphertext σ′. According to the step RevGen,C responds the
tag generated by ciphertext σ′ and ID to adversaryA4.

4.4.9. Forgery. Eventually,A4 outputs a forgery tag Tag′ for
the target ciphertext σ with the identity ID.

Definition 7. ,e scheme is semantically secure against
forging the integrity proof without both correct identity and
reencryption key if adversary A4 in polynomial probability
time has a negligible advantage to win the aforementioned
Game 4.

5. Our Scheme

Without loss of generality, there is a project manager named
u0 in the group which is in charge of the generation of system
parameters and other engineers’ partial secret keys. Suppose
that the project F is divided into n project blocks as the
following M � (m1, m2, · · · , mn). u0 invites z engineers in
one group to execute this project, and each engineer ui has a
unique identity represented as IDi for 1≤ i≤ z. In order to
keep the security of each block, all project blocks stored on
the CSP should be encrypted by the public key of the
corresponding developing engineer; namely,
C∗ � (σ1, σ2, · · · , σn), in which σi represents the ciphertext of
ith subproject mi. ,e scheme consists of the following steps:

Setup(1κ): u0 takes as input a security parameterκ and
outputs the public parameters including two multiplicative
cyclic groups G1 and G2 and a bilinear map
e: G1 × G1⟶ G2, where the orders of G1 and G2 are both
the big prime q and g is a generator of G1. It sets two
collision-resistant hash functions H1: 0, 1{ }∗ ⟶ G∗1
andH2: 0, 1{ }∗ ⟶ G∗1 . Two pseudorandom generators π
and ϕ are selected, where π: Z∗q × 1, 2, · · · , n{ }⟶ Z∗q and
ϕ: Z∗q × 1, 2, · · · , n{ }⟶ 1, 2, · · · , n{ } are used to generate the
pseudorandom value and pseudorandom permutation, re-
spectively. u0 selects a master key msk � s ∈ Z∗q and cal-
culates the public key P0 � gs. All the parameters
params � (q, g,G1,G2, e, P0, H1, H2, ϕ, π) are published.

PartialKeyGen: When receiving the identity IDi of the
participant engineer ui, the project manager u0 returns Di �

H1(IDi)
s by secure channel as the partial private key of ui.

KeyGen: IDi randomly selects secret value xi ∈ Z∗q as a
partial private key and constructs IDi’s private/public key
pairs (sski, spki) as sski � 〈Di

xi , xi〉 and spki � 〈Xi, Yi〉,
where Xi � gxi and Yi � P0

xi .
Encrypt: ,e project manager u0 randomly picks a value

ri ∈ Z∗q and encrypts l project blocks (engineer ui could be
assigned l project blocks) mi1

, · · · , mil
􏽮 􏽯 into σi1

, · · · , σil
􏽮 􏽯

leveraging ui’s public key spki and uploads them to the CSP,
where mij

∈ Zq, σij
� 〈σij1, σij2〉 forσij1 � mij

⊕H2(e(H1
(IDi), Yi)

ri )), σij2 � gri ), andj ∈ (1, l). Note that u0 only
executes this step once, encrypting the corresponding
project blocks by utilizing every engineer’s public key, and
later this step is mainly implemented by the engineers in-
volved in the project.

TagGen: Since each block has a unique file name Fi d, a
tag will be generated for all the encrypting blocks of file F.
Suppose that the project engineer ui wants to generate tags
for each uploaded encrypted block σi

′. It randomly picks a
parameter ri

′ ∈ Z∗q (1≤ i≤ z), first encrypts its developed
project blocks mik

′(1≤ k≤ l) into σik
′ � 〈σik1
′, σik2
′〉, and then

generates tags Tik
� (H2(ωik

) · σik2
′)xi · Di

σik1
′ for the cipher-

texts, whereωik
� Fidk

����n
����ik. ,en, project engineer ui up-

loads σik
′, Tik

|k ∈ (1, l)􏽮 􏽯 to the CSP. ,en, the CSP utilizes
the public parameters and the data provided by the user to
construct an (1) to check the correctness of all ui’s tags:

e 􏽙
l

k�1
Tik

, g⎛⎝ ⎞⎠ � e σi2′( 􏼁
l
· 􏽙

l

k�1
H2 ωik

􏼐 􏼑􏼐 􏼑, Xi
⎛⎝ ⎞⎠ · e H1 IDi( 􏼁( 􏼁

􏽘
k�1l σik1
′, P0

⎛⎝ ⎞⎠, (1)

where σi2′ � gxi .
Challenge: Anyone as a verifier can check the integrity of

group data stored in CSP. ,e verifier randomly picks the
challenged block count c(1≤ c≤ n) and two val-
uesk1, k2 ∈ Z∗q . ,en the challenged information
chal � (c, k1, k2) appending the file name Fi d is sent to CSP.

ProofGen: Once the CSP receives chal � (c, k1, k2), the
challenge information set I � (vi

′, ai)􏼈 􏼉 is calculated, in which

ai � π(k1, i) is the regenerated parameter by the pseudo-
random generatorπ, and the subset vi

′|i ∈ (1, c)􏼈 􏼉 (for
vi
′ � ϕ(k2, i)) of 1, 2, · · · , n{ } is a new index permutation of
challenge block regenerated by the pseudorandom gen-
eratorϕ. Without loss of generality, suppose that the chal-
lenge block set consists of encrypted blocks σv1′

, σv2′
, · · · , σvc

′
and letC denote σv1′

, σv2′
, · · · , σvc

′􏽮 􏽯. Let the challenge block
subsets Cl1

� σv1
, · · · , σvj

􏼚 􏼛, Cl2
� σvj+1

, · · · , σvt
􏼚 􏼛 · · ·, Cl

z′
�
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σvu+1
, · · · , σvc

􏽮 􏽯 belong to engineers ul1
, ul2

, · · ·, ul
z′
, respec-

tively, where the permutation v1, · · · , vj, · · · , vu+1, · · · , vc􏽮 􏽯 is
the rearrangement of permutation v1′, v2′, · · · , vc

′􏼈 􏼉. We can
obtain C � Cl1

∪Cl2
∪ · · · ∪Cl

z′
and Clk
∩Cl

k′
� ∅ for k≠ k′,

where the set l1, l2, · · · , lz′􏼈 􏼉 is the subset of
permutation 1, 2, · · · , z{ } and |Cl1

| + |Cl2
| + · · · + |Cl

z′
| � c.

,e CSP calculates two sets T � T1, · · · , Tz′􏼈 􏼉 and
F � F1, · · · , Fz′􏼈 􏼉, where Tk � 􏽑vj∈Clk

Tvj

aj and

Fk � 􏽐vj∈Clk

aj σvj1
′. Finally, the proof P � (T, F) is sent to the

verifier.
VerifyProof: Upon receiving proof P, the verifier

utilizes the precalculated values set (vi
′, ai)􏼈 􏼉 to generate a set

of challenge blocks. According to the tag generation rules,
the verifier obtains ωvi

to generate all the tags Tvi

ai of
participating challenge blocks. ,en it takes all above proof
information as input to check whether (2) holds, where
lk′ � |Clk

|:

e 􏽙
z′

k�1
Tk, g⎛⎝ ⎞⎠ � 􏽙

z′

k�1
e 􏽑

vj∈Clk

H2 ωvj
􏼒 􏼓 · σvj2

′􏼒 􏼓
lk′

􏼠 􏼡, Xlk

aj⎛⎝⎛⎝ ⎞⎠ · e 􏽑
z′

k�1
H1 IDlk

􏼐 􏼑
Fk

, P0􏼠 􏼡. (2)

If this equation holds, it outputs either 1 (”accept“) or 0
(”reject“). ,e correctness of this scheme can be checked by
the following equality:

e 􏽙
z′

k�1
Tk, g⎛⎝ ⎞⎠ � 􏽙

z′

k�1
e Tk, g( 􏼁 � 􏽑

z′

k�1
e 􏽙

vj∈Ck

Tvj

aj , g⎛⎜⎝ ⎞⎟⎠ � 􏽙
z′

k�1
e 􏽙

vj∈Clk

H2 ωvj
􏼒 􏼓 · σvj2

′􏼒 􏼓
xvj

· Dvj

σik1
′

􏼒 􏼓
aj

, g⎛⎜⎜⎝ ⎞⎟⎟⎠

� 􏽙
z′

k�1
e 􏽙

vj∈Clk

H2 ωvj
􏼒 􏼓

xvj
aj

· σvj2
′ xvj

aj􏼒 􏼓, g⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝

· e 􏽙
vj∈Clk

Dvj

σik1
′aj , g⎛⎜⎜⎝ ⎞⎟⎟⎠ �

l′
k
�(Clk

)

􏽙

z′

k�1
e 􏽙

vj∈Clk

H2 ωvj
􏼒 􏼓 · σvj2

′ lk′􏼒 􏼓, g
xvj

aj⎛⎜⎜⎝ ⎞⎟⎟⎠

· e H1 IDvj
􏼒 􏼓

􏽘 σik1
′aj

, P0
⎛⎝ ⎞⎠

� 􏽙
z′

k�1
e 􏽙

vj∈Clk

H2 ωvj
􏼒 􏼓 · σvj2

′􏼒 􏼓
lk′

􏼠 􏼡, Xlk

aj⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠ · e 􏽙
z′

k�1
H1 IDlk

􏼐 􏼑
Fk

, P0
⎛⎝ ⎞⎠.

(3)

5.1. Invite to Join. If engineer ui invites another engineer uj

to participate in its subproject, ui first sends an identity
concatenation IDj

�����IDi to u0, and then u0 responds a partial
private key Dji � H1(IDj||IDi)

s to uj by secure channel. uj

randomly chooses xji ∈ Zq
∗ to generate its secure key sskji �

〈Dji
xji , xji〉 and public key spkji � 〈Xji, Yji〉, where Xji �

gxji and Yji � P0
xji .

While uj successfully joins the project and wants to
editui’s some block (named mik

′), the specified file ciphertext
block σik1

′ needs to converted to a block encrypted by uj’s
public key. ,e reencryption key ri↔j is generated and the
ciphertext σik1

′ turns into σjik1
′ which is encrypted by uj’s

private key and parameter ri randomly picked by u0. Note
that the reencryption key ri↔j is bidirectional; that is, it can
be utilized to transfer the ciphertext from uj to u0 and vice
versa.

JoinGen(IDi, IDj)⟶ (ri↔j): When receiving the
identity IDj, ui calculates the reencryption key
ri↔j � H2(e(H1(IDi), Yi)

ri⊕e(H1(IDj

����IDi), Yji)
ri ) and

sends it touj. ,en uj calculates ciphertext σjik1
′ for block mik

′

as σjik1
′ � σik1
′⊕ri↔j � mik

′⊕H2 (e(H1(IDi), Yi)
ri )⊕H2(e(H1

(IDi), Yi)
ri⊕e (H1(IDj

����IDi), Yji)
ri ) � mij
′⊕H2(e(H1 (IDi),

Yi)
ri )⊕(H2(e(H1(IDi), Yi))

ri )⊕H2(e(H1(IDj

����IDi),

Yji)
ri ) � mik
′⊕H2(e(H1(IDj

����IDi), Yji)
ri ) � mik

′⊕H2(e(Dji
xji ,

g
ri ))..

5.2. Revoke a Participant. Once an engineer ui leaves the
project, the project manager u0 should claim the private/
public key pairings of u0 to be invalid. At the same time, the
contents consisting of the ciphertext, tags, and so forth of the
file block associated with the revoked engineer ui are also
changed. Otherwise, there are some secure risks on the
ciphertext and tags which are executed by ui; thereby the
integrity of the ciphertext cannot be checked either. In this
process, there are two situations to be considered: one is that
the revoked user ui has invited engineers in the project, and,
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in this case, any inviter (named uj) can be required to replace
the tag and ciphertext of the revoked user. In the other case,
ui does not invite any users to participate in the project, so
the project manager needs to convert the ciphertext and tags
for ui. We represent the detailed implementation as follows:

RevGen: Assume that ui is the revoked project member,
and uj is the member who continues the project in place of
ui. In this section, CSP is used to check the correctness of
regenerated tags by uj. In addition, suppose that ui, uj, and
CSP are all online simultaneously during this procedure.

Without loss of generality, let member uj as a specified
recipient take charge of all blocks of the revoked engineerui.
ui utilizes the step JoinGen to regenerate the ciphertext of uj,
and the block tag is yielded by uj.

(1) ui calculates ri↔j and sends it to uj, where
ri↔j � H2(e(H1(IDi), Yi)

ri⊕e(H1(IDj) · Yj)
ri )).

(2) Leveraging the key ri↔j, uj calculates σjk1
′ � ri↔j

⊕σik1
′ � mik
′⊕(H2e(H1(IDj), Yj)

ri )

andσjk2
′ � σik2
′ � gri and publishes the regenerated

ciphertext σjk
′ � 〈σjk1

′, σjk2
′〉 of block mik

′ for 1≤ k≤ l.
,en, uj calculates the tag Tjk

� (H2(ωjk
) · σjk2
′)xj ·

Dj
σjk1
′ to CSP forωjk

� Fidk

����n
����ik.

(3) While receiving the tuple (σjk
′, Tjk

), CSP verifies (1) to
ensure the validity of the tags.

6. Security Proof

In this section, we give the secure proof of the proposed
scheme via the following properties.

6.1. Security Analysis

Theorem 1. If a polynomial probability time adversary A1
has an advantageε to win Game 1 described in Section 4.4
within time t after executing the most qH1

Hash-1 queries, qK

key queries, qR Public Key Replace, qE encryption queries, and
qH2

Hash-2 queries and requesting at most qT times tag
queries, then there exists a (ε′, t)-simulator B that can
address the CDH problem with (ε′ ≥ ε/((1 + qp + qT) · e))

t′ ≤ t + (qH1
+ qp + 3qK + 3qH2

+ 2qTte + 3tmqT + qR + qE),
where one exponentiation costs time te onG1, one scalar
multiplication operation costs time tm inG1, and e is the base
of natural logarithm.

Proof. On input (g, ga, gb) in G1, if adversary A1 is able to
forge a tag with the identityI D and the replaced public key
in Game 1, then algorithmB has capability to address CDH
problem; that is, it can calculategab. Given g, ga, and gb,
simulator B simulates each step of interaction with A as
follows:

Setup. A1 launches a query-respond game. B sets P0 �

ga with the master key a which is security picked and then
outputs and returns the system parameters
params � (q, g,G1,G2, e, P0, H1, H2,ϕ, π) to A1.

Hash-1 Query. A1 adaptively requests the Hash-1 query
results for any identity ID∗ in terms of its capability. In order
to facilitate the management of all the query results, B

establishes a tuple list L1 � (I D, r, Q, τ){ } to record all query
data. If a certain ID∗ has been recorded in the list,B directly
returns its corresponding tuple (ID∗, r∗, Q∗, τ∗) to A1.
Otherwise, B selects a random value r∗ ∈ Zq

∗ and tosses a
coin τ ∈ 0, 1{ }. Assume that the coin represents 1 with a
probability of c, and vice versa, 1 − c. If τ shows 0, B sets
Q∗ � H1(ID∗) � gr∗ ∈ G1; if τ shows 1, B

setsQ∗ � H1(ID∗) � (gb)r∗ ∈ G1. ,en the result Q∗ is
returned to A1 and the tuple (ID∗, Q∗, ∗ , ∗ ) is inserted to
list L1, where the symbol ∗ indicates that the position is
empty and has no value, which may be generated in a
subsequent query.

Partial key query. In order to obtain the partial key of any
identity ID∗,A1 adaptively implements partial key query.B
firstly checks whetherID∗ corresponding tuple
(ID∗, r∗, Q∗, τ∗) exists in L1. If not, B executes the Hash-1
query and inserts the result in L1. Notably, another new tuple
list L2 is established byB to manage the newly queried data
during this process, where L2 � (ID, DID, spkI D,􏼈

sskI D, σI D)}. If τ shows 1 in L1, B returns⊥ for ID∗ and
then records the tuple value (ID∗,⊥, ∗, ∗, ∗) in L2. Oth-
erwise, B responds the partial key query as follows.

(1) If ID∗ is stored in listL2, B checks whether the
location of DID∗ is a symbol⊥ or not. If it is not⊥,B
returns it directly toA. Otherwise,B reexecutes the
coin tossing step in Hash-1 query. When the coin
tosses τ � 0, B returns the value DID∗ � (Q∗)a �

gar∗ to A1 and then updates the values Q∗, τ in L1,
andDID∗ in L2 on the corresponding identity ID∗,
respectively; otherwise, τ � 1, and B aborts.

(2) If ID∗ is not stored in list L2,B determines the value
of DID∗ according to τ in list L1. If τ � 0, B returns
DID∗ � gar∗ to A1; otherwise, τ � 1, and B aborts.

Note that the tuple in L1 and L2 has such a characteristic:
the value of τ in the tuple (I D, Q, r, τ) of L1 corresponding
to the tuple (I D,⊥, ∗ , ∗ , ∗ ) of L2 is 1; the value of τ in the
tuple (I D, Q, r, τ) of L1 corresponding to the tuple
(I D, DID∗ , spkID∗ , sskID∗ , σID∗ ) inL2 is 0.

Key query. A1 adaptively requests the key query for any
identityID∗. B searches list L2 for the tuple
(I D, DID∗ , spkID∗ , sskID∗ , σID∗ ).

(1) If the tuple (I D, DID∗ , spkID∗ , sskID∗ , σID∗) is stored
in L2, B first checks whether the position of DID∗ is
⊥ or not. IfDID∗ � ⊥, B turns to execute Hash-1
query and partial key query in turn. Otherwise, B
checks whether the position of spkID∗ in this tuple is
the symbol ∗ . If spkID∗ � ∗ , B selects xID∗ ∈ Zq

∗

at random and setssskID∗ � 〈DID∗
xID∗ , xID∗〉 and

spkID∗ � 〈XID∗ , YID∗〉 � 〈gxID∗ , P0
xID∗ 〉. B updates

the tuple (I D, DID∗ , ∗ , ∗ , ∗ ) into L2 and sends the
key pairing (spkID∗ , sskID∗ ) to A1.

(2) If the tuple (I D, DID∗ , spkID∗ , sskID∗ , σID∗) is not
stored in L2, B turns to execute Hash-1 query and
partial key query in turn. Once the value ofDID∗ has
been obtained after the Hash-1 query and partial key
query, B randomly selectsxID∗ ∈ Zq

∗ and sets
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sskID∗ � 〈DID∗
xID∗ , xID∗〉 and spkID∗ � 〈XID∗ ,

YID∗〉 � 〈gxID∗ , P0
xID∗ 〉. B inserts the tuple

(I D, DID∗ , spkID∗ , sskID∗ , σID∗) into L2 and returns
(spkID∗ , sskID∗ ) to A1. On the other hand, if
DID∗ � ⊥, the tuple (ID,⊥, ∗, ∗, ∗) is inserted
intoL2, and B aborts.

Public Key Replace. According to the assumption, ad-
versary A1 has capability to replace the public key. A1
adaptively implements the Public Key Replace for the target
memberID∗ with the substitution public key spkID∗

′.

(1) If the tuple (ID∗, DID∗ , spkID∗ , sskID∗ , ∗ ) is stored
inL2, B modifies the tuple as
(ID∗, DID∗ , spkID∗

′, ∗ , ∗ ) in terms of A1’s request,
where spkID∗

′ � (XID∗
′, YID∗
′).

(2) If the tuple (ID∗, DID∗ , spkID∗ , sskID∗ , ∗ ) is not
contained inL2, B adds the tuple
(ID∗, ∗ , spkID∗

′, ∗ , ∗ ) to L2 in terms ofA1’s re-
quest, where spkID∗

′ � (XID∗
′, YID∗
′).

Hash-2 query. In order to facilitate the management of
Hash-2 query, a list L3 � (VI D, σID2

,ωI D, λ, h)􏽮 􏽯 is still
established by B to record the participating tuple. As re-
quired, A1 runs the Hash-2 query on the identity ID∗,
partial public key YID∗ , and Hash-1 query Q∗. B randomly
picks a tuple value (λ∗, h∗) and calculates
VID∗ � H2(e(Q∗, YID∗

′)λ
∗
), σID2

∗� gλ∗ , and H2(ωID∗) � gh∗

and then sends VID∗ , σID2
∗ and H2(ωID∗) to A1. ,e new

tuple (VID∗ , σID2
∗,ωID∗ , λ

∗, h∗) is added in L3.
Encrypt query. For any plaintext m, A1 adaptively re-

quests the encrypt query with identityID∗.B searches list L2
for the tuple(ID∗, DID∗ , spkID∗ , sskID∗ , σID∗). If the tuple
(ID∗, DID∗ , spkID∗ , sskID∗ , σID∗ ) is stored in L2, B returns
σID∗ directly toA1. Otherwise, whether the tuple is
(ID∗,⊥, ∗, ∗ ,∗ ) or (ID∗, ∗ , spkID∗

′, ∗ ,∗ ), B calculates
the ciphertext σID∗

′ with the replaced key spkID∗
′, in which

σID∗
′ � (σID1

∗′, σID2
∗′) andσID1

∗′ � mID∗⊕VID∗ . ,en,B updates
the tuple (I D,⊥, spkID∗

′, ∗, σID∗
′) and

(ID∗, ∗ , spkID∗
′,∗ , σID∗

′) in L2, respectively.
Tag query. A1 adaptively requests the tag on any

identityID∗ and plaintext block mID∗ by submitting the
result ofσID∗ . Based on the result of tossing the coin in L1; if
τ∗ � 1, B aborts. Otherwise, based on the values of
H2(ωID∗) in L3 and both DID∗ andσID∗ inL2, B generates
the tag for the tuple (DID∗ , σID∗ , H2(ωID∗ )) by step TagGen

and returns it to A1.
Forgery. Eventually, a forgery tag T′, which is relevant to

plaintext m′ on the identityID′ with the public key spkID′ , is
forged by A1. If τ � 0, B aborts. Otherwise, based on the
aforementioned operations, B holds the following values:
H1(ID′) � (gb)r′ , σID2′

� gλ′ , P0 � ga, and H2(ωID′) � gh′ ,
σID1′

, andXID′ , and then it can output
gab � (T′/XID′

λ+h)(1/(r′σ
ID′ )) solving the proposed CDH

problem.
Analysis. Now, we analyze the probability that B can

guess the correct query of the target data block by simulating
operation. Similar to the analysis and proof of [48, 50], B
only halts two queries on partial key query and tag query;
therefore the probability of B implementing the queries is

higher than (1 − c)qp+qT . Assume that the probability of
occurrence of output of the right value of gab for B is
ε · c · (1 − c)qp+qT .

Let

ε′ � ε · c · (1 − c). (4)

In order to find the minimum value of ε′, let us take the
derivatives of both sides of (4) with respect to c:

dε′
dc

�
d ε · c · (1 − c)

qp+qT( 􏼁

dc

� ε · (1 − c)
qp+qT − ε · c · qp + qT􏼐 􏼑 · (1 − c)

qp+qT− 1

� ε · (1 − c)
qp+qT− 1

· 1 − c · qp + qT + 1􏼐 􏼑􏽨 􏽩.

(5)

Replace dε′/dc � 0; that is,

ε · (1 − c)
qp+qT− 1

· 1 − c · qp + qT + 1􏼐 􏼑􏽨 􏽩. (6)

We can obtain copt � 1/(1 + qp + qT). ,ereby (4)
becomes

ε′ � ε · c · (1 − c)
qp+qT ≥ ε ·

1
1 + qp + qT

· 1 −
1

1 + qp + qT

􏼠 􏼡

qp+qT

.

(7)

According to the formula limit
n⟶∞

(1 + (1/n))n � e for
n ∈ N, equation (7) becomes

ε′ ≥ ε/ 1 + qp + qT􏼐 􏼑 · e􏼐 􏼑. (8)

Further, simulator B can solve the CDH problem in
polynomial time t′ which satisfies t′ ≤ t + (qH1

+ qp + 3qK +

3qH2
)te+ (3tm+2te) · qT + qR + qE. □

Theorem 2. If a PPTadversaryA2 has an advantageε to win
Game 2 described in Section 4.4 within time t after imple-
menting the mostqH1

Hash-1 queries, qK key queries, qE

encryption queries, and qH2
Hash-2 queries and requesting at

most qT times tag queries, then there exists a (ε′, t)-simulator
B that can address the CDH problem
withε′ ≥ (ε/((1 + qK + qT + qE) · e)), t′ ≤ t + (qH1

+

qp + 3qK + 3qH2
) · te + (3tm + 2te) · qT + qR+ qE, where one

exponentiation costs time te onG1, one scalar multiplication
operation costs time tm in G1, and e is base of natural
logarithm.

Proof. On input (g, ga, gb) inG1, the CDH algorithmB has
capability to simulate a data-integrity-verifying security
game and output gab by interacting with adversaryA2 as
follows:

Setup.B chooses the master keys at random and outputs
the system parametersparams. ,en, both s andparams are
returned to A2 by B.

Hash-1 query. A2 requests the Hash-1 query results for
any identityID∗ in terms of its capability. A tuple list L1 �

(I D, Q, r){ } is established to record all query data byB. If a
certain ID∗ has been stored in L1, B returns (ga)r∗ to A2.
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Otherwise,B selects a random value r∗ ∈ Zq
∗ and responds

to A2 with Q∗ � (ga)r∗ and then stores (ID∗, Q∗, r∗) in L1.
Key query. According to the assumption that adversary

A2 has an ability to access the master keys, it directly ini-
tiates the key query of the public/private key pairing
(spkI D, sskI D). A list L2 � (I D,{ spkI D, sskI D, σI D, τ)} is
established by B for recording the results of key query.

(1) If ID∗ is not stored in list L2,B picks a value of x∗ at
random and tosses a coinτ ∈ 0, 1{ }. Let c denote the
probability of τ∗ � 0; thus 1 − c represents the
probability of τ∗ � 1. If τ∗ � 1, B sets sskID∗ �

〈(Q∗)x∗ , x∗〉 and spkID∗ � 〈XID∗ , YID∗〉 � 〈(gb)x∗ ,

gsx∗〉 and inserts (ID∗, spkID∗ , sskID∗ , ∗ , τ∗) into L2
but halts and returns ⊥. If τ∗ � 0, B sets sskID∗ �

〈(Q∗)x∗ , x∗〉 and spkID∗ � 〈XID∗ , YID∗〉 � 〈gx∗ ,

gsx∗〉 and records (ID∗, spkID∗ , sskID∗ , ∗ , τ∗) into
L2 and then returns x∗ to A1.

(2) If ID∗ is stored in listL2,B checks whether the value
of τ∗ is 1 or 0. If τ∗ � 1, B halts and returns⊥.
Otherwise, assuming that sskID∗ is already inL2, B
directly returns it to A2.

Notably, since A2 can access the master key to get the
private key, there is no partial key query.

Hash-2 query. As required,A2 runs the Hash-2 query for
the target value ωID∗ . In order to record the participating
tuple, B establishes a listL3 � (VI D, σID2

,ωI D, λ, h)􏽮 􏽯 for
Hash-2 query. If ωID∗ is stored in L3, B returns the value
H2(ωID∗) � gh∗ toA2. Otherwise,B randomly picks a tuple
value (λ∗, h∗) and calculates VID∗ � H2(e(Q∗, YID∗)

λ∗),
σID2

∗ � gλ∗ , andH2(ωID∗) � gh∗ and then returns H2(ωID∗)

to A2. ,e new tuple (VID∗ , σID2
∗,ωID∗ , λ

∗, h∗) is added
inL3.

Encrypt query. For any plaintext m, A1 adaptively re-
quests the encrypt query with identityID∗.B searches list L2
for the tuple(ID∗, spkID∗ , sskID∗ , σID∗ , τ∗).

(1) If the tuple (ID∗, spkID∗ , sskID∗ , σID∗ , τ∗) cannot be
found in listL2, B first requests the Hash-1 query
and key query until the tuple (ID∗, Q∗, r∗) and the
tossing coin value τ∗ become existent in L1 and L2,
respectively. ,en B calculates the

ciphertextσID1
∗ � mID∗⊕VID∗ and updates the tuple

(ID∗, spkID∗ , sskID∗ , σID∗ , τ∗) in L2, where
σID∗ � (σID1

∗, σID2
∗). If τ∗ � 1,B halts and returns⊥;

otherwise, B outputs σID∗ to A1.
(2) If the tuple (ID∗, spkID∗ , sskID∗ , σID∗ , τ∗) is stored in

L2 and τ∗ � 0, then B directly returns σID∗ to A1;
otherwise, B halts and returns⊥.

Tag query. For ciphertext σID∗ associated with plaintext
m∗, adversary A1 adaptively performs the tag query with
(ωID∗ , σID∗ , ID∗). B first checks the value of τ∗ in L2; if
τ∗ � 1, B halts and outputs⊥. Otherwise, based on the
values of ωID∗ in L3 and σID∗ in L2, B calculates DID∗ to
generate the tag for the tuple (ωID∗ , σID∗ , ID∗) by step
TagGen and then returns it to A2.

Forgery. Eventually, a forgery tag T′, which is relevant to
plaintext m′ on identityID′ with the private keysskID′ , is
forged by A2. If τ � 0, B halts and outputs⊥. Otherwise,
based on the aforementioned operations, B holds the fol-
lowing values: P0 � gs, H1(ID′) � gar′ , H2(ωID′) � gh′ ,
XID′ � gbx′ , and σID2′

� gλ′ , σID1′
, and then it can output

gab � (T′)1/((λ′+h′)x′r′sσ
ID1′

) solving the proposed CDH
problem.

Analysis. In this game, there are three times of aborting
for B on key query, encrypt query, and tag query. ,ereby,
the probability of B implementing the queries for A2
without abortion is higher than (1 − c)qK+qT+qE . ,us, the
probability of occurrence of output of the right value of gab

forB is ε′ ≥ ε · c · (1 − c)qK+qT+qE ≥ ε/((1 + qK + qT+ qE) · e).
Running time of algorithm B generating the forgery tag
ist′ ≤ t + (2qT + qK)te + (2qT + 2qH1

+ 4qK+ 3qH2
) · te+

qE. □

Theorem 3. As long as the DL assumption holds, the
probability that adversary A3 wins Game3, that is, to forge
the tag and pass the verification in the scheme, is compu-
tationally negligible.

Proof. If A3 wants to win the game, it has to generate the
forged integrity proof P′ � (T′, F′) according to the chal-
lenge informationchal � (c, k1, k2) and satisfy the following
equations with the nonnegligible probability:

e 􏽙

z′

k�1
T′k, g⎛⎝ ⎞⎠ � 􏽙

z′

k�1
e 􏽑

vj∈Clk

H2 ωvj
􏼒 􏼓􏼒 􏼓 · σvj2

′􏼒 􏼓
lk′

, Xlk

aj􏼠 􏼡⎛⎝⎛⎝ ⎞⎠ · e 􏽑
z′

k�1
H1 IDlk

􏼐 􏼑
F′k

, P0􏼠 􏼡, (9)

where z′ denotes the count of the group member partici-
pating in the challenge and lk′ represents the number of
encrypted data blocks participating in the challenge.

On the other hand, assuming that P � (T, F) is also a set
of legitimate integrity proofs generated according to chal-
lenge informationchal � (c, k1, k2), tuple P is also verified
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using the above equation; that is,

e(􏽙
z′

k�1
Tk, g) � 􏽙

z′

k�1
(e( 􏽙

vj∈Clk

(H2(ωvj
))

·(σvj2
′)lk′, Xlk

aj )) · e(􏽙
z′

k�1
H1(IDlk

)
Fk , P0)

. According to the rules of

Game3, the two different integrity proofs P′ andP generated,
respectively, by adversaryA3 and the legitimate member on
the same challenge information chal � (c, k1, k2) have the
following relationship: T � T′ and F≠F′. According to the
above inequality, we can get the same formula as that in [29]:
􏽑

z′
k�1 H1(IDk)F′k ≠ 􏽑

z′
k�1 H1(IDk)Fk . ,en we can get

􏽑
z′
k�1 H1(IDk)(F′k− Fk) � 1.
Randomly given αk ∈ Zq

∗ andh a generator ofG1,
H1(IDk) can be denoted asH1(IDk) � hαk . ,en we can get
an approach to solve the DL problem by turning above
formula into 1 � h􏽐

z′
k�1 αkΔFk ; that is, 􏽐

z′
k�1 αk(F′k − Fk) � 0.

In terms of the assumption in the game, there must be at
least one tuple (F′k, Fk) that satisfies F′k ≠Fk, and therefore
at least one of the corresponding αk is 0. Based on the
analysis of αk, there is at least one component
αk � 0(1≤ k≤ z′) in the vector (α1, α2, · · · , αz′), so the count
of vectors satisfying the condition is at most qz′− 1. Clearly,
we can find that the probability of 􏽐

z′
k�1 αk(F′k − Fk) � 0 is

less than qz′− 1/qz � 1/q, which is negligible for a large prime
q. We can find that the probability of solving the DL problem
is a nonnegligible probability 1 − 1/q; thereby adversary A3
wins Game3 at the negligible probability. □

Theorem 4. Ee adversary cannot pass the integrity proof by
leveraging forged ciphertext.

Proof: . If A4 wants to win the game, it tries to generate the
forged ciphertext σ′ � (σID1′

, σID2′
) with the forgery identity

ID′ and legitimate ciphertext σ in the revoke a participant
phase. Suppose that adversaryA4 generates its parameters
for its identity ID′ through the aforementioned games, for
example, H1(ID′), the private key sskID′ � 〈Dx′

ID′ , x′〉, the
public key spkID′ � 〈XID′ , YID′〉, andH2(ωID′). If the tag
generating by A4 utilizing these parameters still passes the
integrity proof by CSP, then adversaryA4 wins this game.
Otherwise, it fails.

(1) Assume that the revoked member ui calculates the
reencryption key ri↔j � H2(e(H1(IDi), Yi)

ri⊕
e(H1(IDj), Yj)

ri ) withA4’s identity ID′ and its
public key spkID′ and then returns ri↔j to A4.

(2) A4 calculates reencrypted ciphertext σID′ � (σID1′
,

σID2′
), where σID1′

� σi1
⊕ri↔j � mi⊕H2(e(H1(ID′),

YID′)
ri ) andσID2′

� σi2
� gri . ,enA4 randomly picks

xID′ as the partial key and outputs the forgery tag
TID′ � (H2(ωID′) · σID2′

)x′ · DID′
σ

ID1′ .

,rough the aforementioned operations, the forgery tag
is generated by attacker A4. If the tag passes the integrity
proof, the equation e(TID′ , g) � e(H2(ωID′) · σID′2, XID′) ·

e(H1(ID′)σID′1 , P0) holds. However, ,eorems 1 and 2 have
pointed that the tag with the forged private/public key
pairing has a negligible probability to win Game1 and
Game2; thereby, without the real ciphertext reencrypted by

the legitimate private key, the adversary could output the
correct integrity proof only with negligible probability. □

7. Performance Analysis

In this section, we first show the computation and com-
munication cost of our scheme by theory and then represent
the experiment results of the scheme.

7.1. Computation Cost. In our scheme, the computation cost
is mainly concentrated on those operations that are com-
putationally complex and time-consuming, such as pairing
operation, exponentiation operation, and multiplication
operations. For the simplicity of presentation, we use symbols
Cp, Cexp, Cmul1

, andCmul2
to represent the cost of one pairing

operation in G1 × G1⟶ G2, one exponentiation operation
inG1, one multiplication in groupG1, and one multiplication
in groupG2, respectively. In addition, the computational
overhead of some other operations (such as pseudorandom
parameter selection, hash operation, addition, and pseudo-
random permutation) is negligible, so these operations are
not analyzed. Continue to leverage the above symbols, and let
n, z, c, andz′ denote the number of projects divided into
subprojects, members participating in the project, the chal-
lenge subprojects, and themembers involved in the challenge,
respectively. According to the processes of Encrypt and
TagGen, the computation costs for n data blocks
arez(Cp + 2Cexp) and n(2Cmul1

+ 2Cexp), respectively.
In the process of ProofGen, we ignore the generation

operation cost of challenge information chal and focus on the
proof information, so the computation cost of this procedure
iscCexp + (c − z′)Cmul1

. In this scheme, we also give the
computation cost on the revocation step RevGen for a member
of the project, in which the revoked member costs
2(Cp + Cexp), the specified recipient costs 2(Cexp + Cmul1

),
and the verification computation cost for the CSP is
(2l − 1)Cmul1

+ 3Cp + 2Cexp + Cmul2
. Table 1 shows the de-

tailed comparison of computation cost and data blocks types
among the scheme of papers [7, 39] and ours. As can be seen
from Table 1, in step TagGen, our scheme is one more Cmul1
than [7] and much less than [39]. After all, the cost of [39] is
related to the number of participants z′.,e cost amount of the
step ProofGen is the same as that of [7] but is less than that of
paper [39]. In addition, the stepVerifyProof is used to verify
the correctness of proof information and its computation cost
is(z′ + 2)Cp + (2c+z′ − 2)Cmul1

+ (c + 2z′)Cexp + z′Cmul2
,

and the costs of [7, 39] are 3Cp + (2c + z′) · Cexp + (2c +

z′)Cmul1
+ Cmul2

and (z′ + 2)Cp+ (c + z′)Cexp +

(c + 2z′)Cmul1
+ z′Cmul2

, respectively. Compared with the
schemes in [7, 39], the cost of our scheme is slightly higher.,e
reason is that our scheme performs tag generation, verification,
and update of ciphertext, and the computational cost is ob-
viously higher than that in literature.

7.2.CommunicationCost. In this scheme, the communication
cost mainly arises from the challenge information generation
phase and proof generation phase. To audit the integrity of the
data stored in the cloud service, a verifier sends the challenge
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information (c, k1, k2) to the CSP, and then proof P � (T, F)

is returned to the verifier by CSP.,e communication cost for
an integrity proof challenge is|n| + 2|q| bits, and the com-
munication cost of proof information response is
2(c + z′)|G1| + |n| + 2|q| bits, where |q| is the element length
in Zq and |n| is the length of the element in set 1, n{ }. In
addition, the communication cost for the revocation phase is
(2(l + 1)|G1|), where l is denotes the number of ciphertext
data blocks owned by the revoked member.

7.3. Experimental Results. In this experiment, we utilized the
Ubuntu Kylin 16.04 LTS (64-bit) operation system equipped
with the VMware Workstation 10 with Intel Core i7-8700
3.2GHz processor and 16 G RAM of the host computer with
Win10 operation system using C language to simulate the
scheme implementation environment. ,e Pairing Based
Cryptography (PBC) [51] library (version 0.5.14) has been
used to execute pairing steps and the Openssl library [52]
(version 1.1.1k) is deployed to implement two hash (SHA
256) operations. For the choice of experimental parameters,
we used the file params/a.param provided by PBC for type A
pairing and constructed a 256-bit order elliptic curve [53]
group of type A. To obtain more accurate results,all ex-
periments were run 50 times to get an average.

,e step Encrypt needs to execute two time-consuming
calculations, namely, pairing operation and exponentiation on
group G1, totally costing almost 602.024ms for 100 members.
We utilize the file with the size of 32 M for experimental
demonstration, so the total number of blocks is 106 which is
bounded by the order of the 256-bit group. Suppose that all
blocks are averagely distributed to project members; thereby
the number of members getting the blocks is 104. Figure 2
depicts the time cost result for the members varying from 1 to
100 to generate all ciphertext blocks.,rough observation, it is
found that the time consumption of encrypting operation is
proportional to the number of users. It takes 5.83ms for a
single member to encrypt all its data blocks, while all members
can accept the fact that it takes 602.02ms to encrypt all data
blocks. Moreover, the operation that all data blocks are clus-
tered together and encrypted only occurs at the beginning of
the project, in the distribution phase of the subproject.

Based on the cost of ciphertext generation, we now
evaluate the cost of tag generation experimentally. We still
leverage the 106 ciphertext blocks for the experiment. To carry
out the experiment demonstration, we utilize the participant
ciphertext number ranging from 105 to 106 with an increment
of 105 for each test. From the experimental results in Figure 3,

we can observe that the time consumption for tag generation
is linear with the increase of the number of blocks, and it takes
about 173.9 s to generate tags for all 106 blocks. As observing
the proposed scheme, the entire Encrypt and TagGen

processes are executed by only the project manager; thereby
the project members just need to download the ciphertext and
tags within the appointed time.

We set |q| � 256 bits, |n| � 20 bits, and z′ � 100 as in
previous work [39]. Based on the previous conclusions
[5, 7, 39], if 1% of all blocks are corrupted, 460 challenge
blocks picked randomly can achieve 99% error detection

Table 1: Comparison of computation cost.

Schemes Tag generation Proof generation Verification proof Data block type

Scheme in [39] (z′ + 1)·

(Cexp + Cmul1
)

cCexp + cCmul1 3Cp + (2c + z′)Cexp+

(2c + z′)Cmul1
+ Cmul2

Plaintext

Scheme in [7] 2Cexp + Cmul1
cCexp + (c − z′)Cmul1

(z′ + 2)Cp + (c + z′)Cexp

+(c + 2z′)Cmul1
+ z′Cmul2

Plaintext

Our scheme 2Cexp + 2Cmul1
cCexp + (c − z′)Cmul1

(z′ + 2)Cp + (c + 2z′)Cexp+

(2c + z′ − 2)Cmul1
+ z′Cmul2

Ciphertext
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probability and 300 challenge blocks chosen at random can
successfully achieve 95% malpractice detection probability.
In Figure 4, we can see that when the size of project group
varies from 500 to 1000 and the number of challenge
members ranges from 0 to 200, our scheme can achieve an
auditing task with the maximum verification time of 14.664 s
and 42KB by choosing c� 460.

8. Conclusion

In this paper, a remote encrypted data integrity auditing
scheme stored on a cloud service provider is presented. ,is
scheme addresses the integrity auditing issue for the
encrypted data which is shared with numerous members of a
group. In our scheme, the sponsor of a shared data group is
the project manager who is responsible for the initialization
of system parameters, the selection of partial private keys for
project members, and the generation of original ciphertext
blocks for subprojects. Meanwhile, with the help of certif-
icateless signature idea, the synchronization change between
the ciphertext block and the tag is realized, and the problem
of auditing the integrity of the ciphertext block is trans-
formed into an equation verification related to the tag.
,erefore, based on the above two measures, the key escrow
and certificate management in PKI naturally do not exist.
With regard to the revocation of the member, our scheme
utilizes the homomorphic hash function to transform the
ciphertexts of the revoked members into the ciphertexts of
the existing members without leaking the information of
ciphertext. Finally, the protocol has been proven secure to
satisfy adaptively selective the ciphertext attack assuming the
stability of CDH and DL in bilinear pairing. From the results
of the experiment, our scheme is efficient in both compu-
tation and communication cost and more secure in a shared
group in cloud storage.
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