
An abridged version of this paper appeared in the proceedings of
Public-Key Cryptography — PKC 2015 (March 30 – April 1, Maryland, USA)
Springer Berlin Heidelberg, LNCS 9020, pages 332–352, http://dx.doi.org/10.1007/978-3-662-46447-2_15.

Public-Key Encryption Indistinguishable
Under Plaintext-Checkable Attacks

Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

ENS, CNRS, INRIA, and PSL Research University, Paris, France

Abstract. Indistinguishability under chosen-ciphertext attack (IND-CCA) is now considered the de
facto security notion for public-key encryption. However, this sometimes offers a stronger security
guarantee than what is needed. In this paper, we consider a weaker security notion, termed indistin-
guishability under plaintext-checking attacks (IND-PCA), in which the adversary has only access to
an oracle indicating whether or not a given ciphertext encrypts a given message. After formalizing
this notion, we design a new public-key encryption scheme satisfying it. The new scheme is a variant
of the Cramer-Shoup encryption scheme with shorter ciphertexts. Its security is also based on the
plain Decisional Diffie-Hellman (DDH) assumption. Additionally, the algebraic properties of the new
scheme allow proving plaintext knowledge using Groth-Sahai non-interactive zero-knowledge proofs
or smooth projective hash functions. Finally, as a concrete application, we show that, for many
password-based authenticated key exchange (PAKE) schemes in the Bellare-Pointcheval-Rogaway
security model, we can safely replace the underlying IND-CCA encryption schemes with our new
IND-PCA one. By doing so, we reduce the overall communication complexity of these protocols and
obtain the most efficient PAKE schemes to date based on plain DDH.

Keywords. encryption scheme, password-authenticated key exchange

1 Introduction

Public-key encryption (PKE) is one of the most fundamental primitives in cryptography, allowing
users to exchange messages privately without the need for pre-established secrets. The basic
security notion for (probabilistic) public-key encryption is indistinguishability of encryptions under
chosen-plaintext attacks (IND-CPA) [GM84], also known as semantic security. Informally speaking,
this notion states that any passive adversary capable of eavesdropping on the communication
between two parties should not be able to obtain any information about the encrypted messages.

While IND-CPA security may suffice for certain applications, it does not provide any guarantee
against active attacks, in which the adversary may modify existing ciphertexts or inject new ones
into the communication and obtain information about the decrypted messages. In fact, as shown
by Bleichenbacher [Ble98] in his attack against RSA PKCS #1, one can sometimes break an
existing PKE scheme simply by knowing whether an existing ciphertext is valid or not.

In order to address the problem of active attacks, several notions of security have been proposed,
such as indistinguishability under non-adaptive chosen-ciphertext attack (IND-CCA1) [NY90],
indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2 or IND-CCA) [RS92],
non-malleability under chosen-plaintext attack (NM-CPA) or adaptive chosen-ciphertext attack
(NM-CCA) [DDN91,DDN00]. Among these, as shown by Bellare et al. [BDPR98], the IND-CCA notion
is the strongest one and implies all of the other ones. Unlike the IND-CPA notion, the IND-CCA
security notion states that the adversary should not be capable of learning any information about
the underlying message of a given ciphertext even when given access to the decryption of other
ciphertexts of its choice.

1.1 Indistinguishabiliy under Plaintext-Checkable Attacks

Even though IND-CCA is now considered the de facto security notion for public-key encryption, the
security guarantee that it offers is sometimes stronger than what is needed by certain applications.
Since stronger security guarantees usually result in a loss of efficiency, different security goals, such

c© IACR 2015.

http://dx.doi.org/10.1007/978-3-662-46447-2_15

2

as oneway-ness, and different attack capabilities, such as plaintext-checkable attacks [OP01], have
been considered as alternatives to the IND-CCA security notion. While in oneway-ness, the goal
of the adversary is to recover the underlying encrypted message, in plaintext-checkable attacks,
the adversary is given access to a plaintext-checking oracle that answers, on a given pair (m, c),
whether c encrypts m or not.

In this paper, we first revisit the notion of oneway-ness under plaintext-checkable attacks
(OW-PCA) by Okamoto and Pointcheval [OP01] and describe an indistinguishability-based variant
for it. In the new notion, termed indistinguishability under plaintext-checkable attacks (IND-PCA),
the adversary should not be able to learn any information about an encrypted message even
when given access to a plaintext-checking oracle. As we show in Section 2, the new notion is also
equivalent to the IND-CCA notion when the message space is small (polynomial in the security
parameter) since it is possible to enumerate all the possible messages in this case.

1.2 A new IND-PCA encryption scheme

After defining the IND-PCA notion, our first main contribution is to design a new public-key
encryption scheme which formally meets the new notion. The new scheme is a more efficient
variant of the Cramer-Shoup encryption scheme [CS98], whose ciphertext consists of only 3 group
elements. Like the Cramer-Shoup encryption scheme, the security of new scheme is also based on
the plain Decisional Diffie-Hellman (DDH) assumption [NR97].

In addition to being quite efficient, the new scheme can also be used with Groth-Sahai Non-
Interactive Zero-Knowledge Proofs [GS08] and smooth projective hash functions (SPHF) [CS02],
for proving plaintext knowledge. To illustrate this fact, we design two different constructions of
SPHFs for the new scheme, each providing a different security-efficiency trade-off.

Since IND-PCA implies IND-CCA for short messages, the new scheme can also replace IND-CCA
schemes in applications where the message space is small. This is the case, for instance, when
bits have to be encrypted as in [ACP09].

1.3 Applications to PAKE

Password-only authenticated key exchange (PAKE) protocols allow users to establish a secure
channel over a public, possibly adversarially controlled, network, with the help of a simple
password. After proposing the new scheme, our second main contribution is to show that, for
many PAKE protocols in the Bellare-Pointcheval-Rogaway (BPR) security model [BPR00], one
can safely replace the underlying IND-CCA encryption schemes with an IND-PCA one. In particular,
we revisit the frameworks by Gennaro and Lindell [GL03], by Groce and Katz [GK10], and
by Katz and Vaikuntanathan [KV11], and show that one can replace the underlying IND-CCA
encryption schemes in their constructions with an IND-PCA encryption scheme. In all of these
cases, we were able to reduce the overall communication complexity of the original protocols by
at least one group element.

More precisely, in the case of the Gennaro-Lindell framework [GL03], which is a generalization
of the PAKE scheme by Katz, Ostrovsky, and Yung [KOY01], we were able to obtain a quite
clean 2-flow protocol with 9 group elements in total, instead of a 3-flow protocol with 8 group
elements in [KMTG05] or 10 group elements in [KOY03,Gen08,KOY09]. The security of the new
scheme is based on the DDH in the underlying group and assumes a trusted common reference
string (CRS). In addition to avoiding the use of IND-CCA encryption schemes, our instantiation
also avoids the use of one-time signatures and message authentication codes. Although it was
already known that one of the two ciphertexts could be generated using an IND-CPA encryption
scheme [CHK+05,KMTG05,AP06], in the 3-flow protocol, IND-CCA security was always required
for the generation of the other ciphertext in all concrete instantiations of the KOY/GL framework.

In the case of the Groce-Katz (GK) framework [GK10], which is a generalization of the PAKE
scheme by Jiang and Gong [JG04] that additionally provides mutual authentication, we were

3

able to obtain a scheme with a total communication complexity of 7 group elements by using
an IND-PCA encryption scheme to generate the second flow, instead of the original 8 when using
the Cramer-Shoup IND-CCA encryption in the second flow. Moreover, in cases where mutual
authentication is not needed, one could further improve the overall efficiency of these protocols by
removing the third flow. The resulting scheme would only have 2 flows and require the exchange of
6 group elements in total. The security of the new scheme is based on the plain DDH assumption
and on the security of the underlying pseudorandom number generator and assumes a trusted
CRS.

Finally, in the case of Katz-Vaikuntanathan (KV) framework [KV11], we were able to obtain
a PAKE scheme with a total communication complexity of 10 group elements instead of the
current 12 in [BBC+13b]. As in [KV11, BBC+13b], our new scheme only has a single round
of communication and assumes a trusted CRS. Its security proof is based on the plain DDH
assumption.

1.4 Organization

Section 2 recalls standard definitions for public-key encryption and smooth projective hash
proof functions (SPHFs) and describes some of the most classic instantiations of these primitives.
Section 3 introduces our new IND-PCA encryption scheme and the associated SPHFs along with
its security proof. The new scheme is a variant of the Cramer-Shoup encryption scheme [CS98]
with shorter ciphertexts. Section 4 presents the security models for password-based authenticated
key exchange (PAKE) used in our security proofs. Section 5 describes three PAKE constructions
based on the frameworks by Gennaro and Lindell [GL03], by Groce and Katz [GK10], and by
Katz and Vaikuntanathan [KV11].

This version repairs a mistake in the GL–PAKE, section 5.2, thanks to a remark from Yu Yu.
Our previous version was using an IND-CPA encryption scheme ES′ instead of an IND-PCA scheme.
This is only possible in the three-flow variant, with an additional one-time signature. We thus
have updated the efficiency bounds. But the most efficient constructions remain the GK–SPOKE
with 6 group elements in two flows, and the KV–SPOKE with 10 group elements in a single round
of communication, both under the sole DDH assumption.

1.5 Publication Note

This version repairs a mistake in the GL–PAKE, section 5.2, thanks to a remark from Yu Yu.
Our previous version was using an IND-CPA encryption scheme ES′ instead of an IND-PCA scheme.
This is only possible in the three-flow variant, with an additional one-time signature. We thus
have updated the efficiency bounds. But the most efficient constructions remain the GK–SPOKE
with 6 group elements in two flows, and the KV–SPOKE with 10 group elements in a single round
of communication, both under the sole DDH assumption.

1.6 Related Work on PAKE

Unlike MAC-based or signature-based authenticated key exchange protocols, which usually require
a special-purpose hardware capable of storing high-entropy secret keys or certified public-keys,
PAKE protocols only require the knowledge of easily memorizable password. This setting was
first proposed by Bellovin and Merritt in 1992 [BM92], who also proposed a candidate protocol,
known as the Encrypted Key Exchange (EKE) protocol. Though their protocol had no formal
security proofs, it became the basis of several follow-up works (e.g., [BM93,Luc97,Jab97,STW95])
due to its simplicity. In a nutshell, their protocol can be seen as an encrypted version of the
Diffie-Hellman key exchange protocol [DH76], where the password is used as the encryption key.

Due to the low entropy of passwords, the problem of modeling the security of PAKE schemes
is not straightforward as these protocols are always subject to online dictionary attacks. In

4

these attacks, the attacker can simply guess the value of the password among the set of possible
values (i.e., the dictionary) and then verify whether its guess was correct by interacting with the
system. While these attacks are unavoidable, their damage can be mitigated by using appropriate
organizational restrictions such as limiting the number of failed login attempts.

The first ones to propose security models for PAKE schemes were Bellare, Pointcheval, and
Rogaway (BPR) [BPR00] and Boyko, MacKenzie, and Patel (BMP) [BMP00]. While the BPR
security model was based on the game-based security model by Bellare and Rogaway for secure
key distribution [BR95], the BMP security model was based on the simulation-based model by
Shoup for authenticated key exchange [Sho99]. In addition to introducing new security models
for PAKE schemes, Bellare, Pointcheval, and Rogaway [BPR00] and Boyko, MacKenzie, and
Patel [BMP00] also proved the security of certain variants of the EKE schemes in idealized models
such as the ideal-cipher and the random-oracle models. These results were soon improved in a
series of works [Mac02,BCP03,BCP04,AP05]. Unfortunately, the use of idealized models in the
security proof of these schemes is a very strong assumption as these models are known not to be
sound [CGH98,Nie02,GK03,BBP04].

The first PAKE protocols to be proven secure in the standard model were proposed by Katz,
Ostrovsky, and Yung (KOY) [KOY01] based on the DDH assumption and by Goldreich and
Lindell [GL01] based on general assumptions. While the KOY protocol assumed the existence of
a trusted CRS, the work of Goldreich and Lindell did not assume any trusted setup assumption.
Due to its efficiency, the KOY protocol soon became the basis of several other protocols, starting
with the work of Gennaro and Lindell (GL) [GL03] who abstracted and generalized it using the
notion of smooth projective hash functions (SPHFs), introduced by Cramer and Shoup [CS02],
and followed by many others [JG04,CHK+05,KMTG05,BGS06,AP06,Gen08,ACP09,GK10].

Among the different extensions that were proposed, the work of Canetti et al. [CHK+05]
was the first to consider security in the universal composability (UC) framework [Can01]. While
they showed that a variant of the KOY/GL protocol could realize the new security model,
their protocol required several rounds of communication and was only known to be secure
against static adversaries. To get around these limitations, several other constructions have been
proposed [ACP09,KV11,BBC+13b,ABB+13] achieving adaptive security and/or better round
complexity.

In the BPR model, the PAKE protocol by Gennaro [Gen08], which relies on MACs instead
of one-time signatures, and the KOY/GL variants proposed by [CHK+05,KMTG05,AP06] are
among the most efficient protocols. Moreover, as shown by [KOY03,KOY09], these protocols were
shown to even achieve a weak flavor of forward secrecy. The framework by Groce and Katz [GK10]
based on the Jiang-Gong PAKE [JG04] also yields very efficient protocols in the BPR model, but
they additionally make use of pseudorandom number generators.

2 Public-Key Encryption

2.1 Definition

A (labeled) public-key encryption scheme is defined by three algorithms:

– KG(1K) generates a key pair: a public key pk and a secret key sk;
– Enc`(pk,M ; r) encrypts the message M under the key pk with label `, using the random

coins r;
– Dec`(sk, C) decrypts the ciphertext C, using the secret key sk, with label `.

The correctness requires that for all key pairs (pk, sk), all labels `, all random coins r and all
messages M ,

Dec`(sk,Enc`(pk,M ; r)) =M.

The main security notion is the so-called indistinguishability of ciphertexts, depicted in Fig. 1, in
which the adversary chooses two messages M0 and M1 and a label `∗ (FIND phase), and then has

5

Expind−bES,A (K)
CTXT← empty list
(pk, sk)← KG(K)
(`∗,M0,M1)← A(FIND : pk, ORACLE(·))
C∗ ← Enc`

∗
(pk,Mb)

b′ ← A(GUESS : C∗, ORACLE(·))
if (`∗, C∗) ∈ CTXT then return 0
else return b′

Fig. 1. Indistinguishability Security Notions for Labeled Public-Key Encryption (IND-CPA when ORACLE =⊥,
IND-PCA when ORACLE = OPCA, and IND-CCA when ORACLE = OCCA)

IND-CPA IND-PCA IND-CCA

for small messages
6

counter-example: ElGamal

Fig. 2. Relations between IND-CPA, IND-PCA, and IND-CCA (normal arrows are implications, strike out arrows are
separations)

to guess which of the two has been encrypted in the challenge ciphertext C∗ = Enc`
∗
(pk,Mb; r)

for a random bit b (GUESS phase). The adversary has access to an oracle ORACLE which may
update some list of forbidden challenges CTXT, and it wins if and only if he guessed correctly
the bit b (i.e., it outputs b′ = b) and (`∗, C∗) is not in CTXT. The advantages are:

AdvindES (A) = Pr[Expind−1ES,A (K) = 1]− Pr[Expind−0ES,A (K) = 1]

AdvindES (t, q) = max
A≤t,q

{AdvindES (A)},

where A ≤ t, q are adversaries running within time t and asking at most q queries to ORACLE.
Depending on the definition of ORACLE, one gets three different security notions:

– if ORACLE =⊥, the adversary just has access to the public key, and one gets the IND-CPA
notion, CPA meaning Chosen-Plaintext Attack ;

– if ORACLE(`, C) = OCCA(`, C) outputs the decryption of C under the label ` (Dec`(sk, C)) and
adds (`, C) to CTXT, one gets the IND-CCA notion, CCA meaning Chosen-Ciphertext Attack ;

– if ORACLE(`, C,M) = OPCA(`, C,M) just answers whether the decryption of C under the
label ` is M 6=⊥ and adds (`, C) to CTXT, one gets the IND-PCA notion, PCA meaning
Plaintext-Checking Attack, as proposed in [OP01].

2.2 Relations with the IND-CPA and IND-CCA Security Notions

It is well known that IND-CCA implies IND-CPA (i.e., an encryption scheme IND-CCA-secure is
IND-CPA-secure), and it is clear that IND-PCA implies IND-CPA. Let us now show that relations
between IND-CPA, IND-PCA, IND-CCA are as depicted in Fig. 2. In all this paper, when we speak
of small messages, we mean that it is possible to enumerate all the possible messages (i.e., the
message space has a cardinal polynomial in the security parameter).

IND-CCA =⇒ IND-PCA. One just has to remark that the OPCA oracle can be simulated by the
OCCA oracle, and the restrictions are compatible (the same list CTXT will be generated): given a
query (`,M,C) to the OPCA oracle, the simulator can simply ask for (`, C) to the OCCA oracle.
This perfectly simulates the OPCA oracle.

6

IND-PCA =⇒ IND-CCA, for Small Messages. In case of small messages for the encryption
scheme, we remark that the OCCA oracle can be simulated by the OPCA oracle, and the restrictions
are compatible too: given a query (`, C) to the OCCA oracle, the simulator can simply ask for
(`,M,C) to the OPCA oracle, for all the messages M (we insist that by small messages, we mean
we can enumerate them in polynomial time). If no message M matches, the simulator outputs ⊥,
otherwise it outputs the unique matching message (since the encryption is perfectly binding, at
most one message can match). This perfectly simulates the OCCA oracle.

2.3 Classical Schemes

ElGamal Encryption Scheme [ElG84]. The ElGamal (EG) encryption scheme is defined as
follows, in a cyclic group G of prime order p, with a generator g:

– EG.KG(1K) generates the secret key sk = x
$← Zp and the public key pk = y = gx;

– EG.Enc(pk = y,M ; r), for a group element M ∈ G and a scalar r ∈ Zp, generates the
ciphertext C = (u = gr, e = yrM);

– EG.Dec(sk = x,C = (u, e)) computes M = e/ux.

This encryption scheme is well-known to be IND-CPA under the DDH assumption, which states
that it is hard to distinguish a Diffie-Hellman tuple (ga, gb, gab) from a random tuple (ga, gb, gc),
for random scalars a, b, c $← Zq:

Adv
ind-cpa
EG (t) ≤ Advddh

G (t).

Cramer-Shoup Encryption Scheme [CS98]. The labeled Cramer-Shoup (CS) encryption
scheme is defined as follows, in a cyclic group G of prime order p, with two generators g1, g2,
together with a hash function HCS randomly drawn from a collision-resistant1 hash function
family H from the set {0, 1}∗ ×G2 to the set G\{1}:

– CS.KG(1K) generates the secret key sk = (s, a, b, a′, b′)
$← Zp and the public key pk = (h =

gs1, c = ga1g
b
2, d = ga

′
1 g

b′
2);

– CS.Enc`(pk = (h, c, d),M ; r), for a label `, a group element M ∈ G and a scalar r ∈
Zp, generates the ciphertext C = (u1 = gr1, u2 = gr2, e = hrM,v = (cdξ)r), where ξ =
HCS(`, u1, u2, e);

– CS.Dec`(sk = (s, a, b, a′, b′), C = (u1, u2, e, v)) first checks whether v = ua+ξa
′

1 · ub+ξb
′

2 , for
ξ = HCS(`, u1, u2, e). If the equality holds, it outputs M = e/us1, otherwise it outputs ⊥.

This encryption scheme is well-known to be IND-CCA under the DDH assumption and the collision-
resistance of the hash function family:

Advind-ccaCS (t, qd) ≤ 2Advddh
G (t) + Succcoll

H (t) + 3qd/p,

where qd is the number of queries to the OCCA oracle.

Remark 1. A family H of hash functions from a set X to a set Y is said (t, ε)-collision-resistant
if for any adversary A running within time t, on a random element H $← H, its probability to
output x 6= x′ such that H(x) = H(x′) is bounded by ε. We denote Succcoll

H (t) the best success
probability any adversary can get within time t.
1 Second-preimage resistance is actually sufficient.

7

2.4 Smooth Projective Hash Functions

Projective hash function families were first introduced by Cramer and Shoup [CS02]. Here we use
the formalization from [BBC+13b]: Let X be the domain of these functions and let L be a certain
subset of this domain (a language). A key property of these functions is that, for words C in L,
their values can be computed by using either a secret hashing key hk or a public projection key
hp but with a witness w of the fact that C is indeed in L. More precisely, a smooth projective
hash function (SPHF) over L ⊆ X is defined by four algorithms.

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk, L, C) outputs the hash value from the hashing key, for any word C ∈ X;
– ProjHash(hp, L, C,w) outputs the hash value from the projection key hp, and the witness w,

for a word C ∈ L.

On the one hand, the correctness of the SPHF assures that if C ∈ L with w a witness of this fact,
then Hash(hk, L, C) = ProjHash(hp, L, C,w). On the other hand, the security is defined through
the smoothness, which guarantees that, if C 6∈ L, Hash(hk, L, C) is statistically indistinguishable
from a random element, even knowing hp.

Note that HashKG and ProjKG can just depend partially on L (i.e., can only depend on
a superset L̂): we then note HashKG(L̂) and ProjKG(hk, L̂, C). In addition, if ProjKG does not
depend on C, and satisfies a slightly stronger smoothness property (called adaptive smoothness,
which holds even if C is chosen after hp), we say the SPHF is a KVSPHF. Otherwise, it is said to
be a GLSPHF. A KVSPHF is stronger than a GLSPHF (in particular, a KVSPHF is a GLSPHF),
and some applications require KVSPHF.

More precisely, if ProjKG does not use C and, if for any function from the set of projection keys
to X \ L, on the probability space hk

$← HashKG(L), hp ← ProjKG(hk, L,⊥), the distributions
{(hp, H) | H ← Hash(hk, L, C)} and {(hp, H) | H $← Π} are ε-close, where Π is the output
set of the hash function, then the SPHF is an ε-smooth KVSPHF. If ProjKG uses C (or not)
and if, for any C 6∈ L, on the probability space hk

$← HashKG(L), hp ← ProjKG(hk, L, C), the
distributions {(hp, H) | H ← Hash(hk, L, C)} and {(hp, H) | H $← Π} are ε-close, then the SPHF
is an ε-smooth GLSPHF. See [BBC+13b] for more details on GLSPHF and KVSPHF.

Let us now recall SPHFs for the ElGamal and Cramer-Shoup encryption schemes, proposed
in [CS02,GL03,BBC+13b].

ElGamal Encryption Scheme. EG admits an efficient KVSPHF for the language LM = {C |
∃r, C = EG.Enc(pk,M ; r)}, with L = G2 the superset of the ciphertexts:

hk = HashKG(L) = (α, β)
$← Z2

p hp = ProjKG(hk, L,⊥) = gαyβ

H = Hash(hk, LM , C) = uα(e/M)β H ′ = ProjHash(hp, LM , C, r) = hpr

Cramer-Shoup Encryption Scheme. CS admits an efficient GLSPHF for the language L`M =
{C | ∃r, C = CS.Enc`(pk,M ; r)}, with L the superset of the ciphertexts:

hk = HashKG(L) = (α, β, γ, δ)
$← Z4

p hp = ProjKG(hk, L, C) = gα1 g
β
2h

γ(cdξ)δ

H = Hash(hk, L`M , C) = uα1u
β
2 (e/M)γvδ H ′ = ProjHash(hp, L`M , C, r) = hpr,

where ξ = HCS(`, u1, u2, e).

8

CS also admits an efficient KVSPHF for the language L`M [BBC+13b]:

hk = HashKG(L) = (α1, α2, β, γ, δ)
$← Z5

p

hp = ProjKG(hk, L, C) = (hp1 = gα1
1 gβ2h

γcδ, hp2 = gα2
1 dδ)

H = Hash(hk, L`M , C) = uα1+ξα2
1 uβ2 (e/M)γvδ

H ′ = ProjHash(hp, L`M , C, r) = (hp1hp
ξ
2)
r,

where ξ = HCS(`, u1, u2, e).

3 The Short Cramer-Shoup Encryption Scheme

The labeled Short Cramer-Shoup (SCS) encryption scheme is a variant of the above Cramer-Shoup
encryption scheme, but with one less element. It is defined as follows, in a cyclic group G of
prime order p, with a generator g, together with a hash function HSCS randomly drawn from a
collision-resistant2 hash function family H from the set {0, 1}∗ ×G2 to the set G\{1}:

– SCS.KG(1K) generates the secret key sk = (s, a, b, a′, b′)
$← Zp and the public key pk = (h =

gs, c = gahb, d = ga
′
hb
′
);

– SCS.Enc`(pk = (h, c, d),M ; r), for a label `, a group element M ∈ G and a scalar r ∈ Zp,
generates the ciphertext C = (u = gr, e = hrM,v = (cdξ)r), where ξ = HSCS(`, u, e);

– SCS.Dec`(sk = (s, a, b, a′, b′), C = (u, e, v)) first computes M = e/us and checks whether
v = ua+ξa

′
(e/M)b+ξb

′ , for ξ = HSCS(`, u, e). If the equality holds, it outputs M , otherwise it
outputs ⊥.

We show below it is IND-PCA under the DDH and the collision-resistance assumptions:

Adv
ind-pca
SCS (t) ≤ Advddh

G (t) + Succcoll
H (t) + 2(qp + 1)/p,

where qp is the number of queries to the OPCA oracle. But before that, we build a GLSPHF and a
KVSPHF for the SCS scheme.

Remark 2. When no SPHF is needed, the ciphertext can be shortened by replacing the group
element v = (cdξ)r, by a K-bit string, using a randomness extractor Ext: v = Ext((cdξ)r). The
security proof is similar, as v is basically only used to ensure that the ciphertext is well-formed.
The resulting ciphertexts consist of 2 group elements and a K-bit string (for any plaintext which
can be encoded in a group element), which is shorter than the ciphertexts from the Kurosawa-
Desmedt IND-CCA encryption scheme [KD04,GS04] which consist of 2 group elements and at least
K+ |m| bits, where |m| is the number of bits of the plaintext. Formally and more generally, if the
extractor Ext outputs a `-bit string, for this variant SCS′ of our scheme, we have

Adv
ind-pca
SCS′

(t) ≤ Advddh
G (t) + Succcoll

H (t) + 2(qp + 1) · (Advext-rndExt (t) + 1/2`),

where Advext-rndExt (t) is the best advantage that an adversary running in time t can have in
distinguishing Ext(h) (with h a random group element in G) from a random bit string of ` bits.

3.1 Smooth Projective Hash Functions

Let us now define smooth projective hash functions. We use the formalization from [BBC+13b] to
explain where these SPHFs come from. The reader not acquainted with it may skip the definitions
via matrix/vectors and just look at the resulting GLSPHF and KVSPHF.
2 Second-preimage resistance is actually enough, as for the original Cramer-Shoup encryption scheme.

9

GLSPHF. The following matrix and vectors lead to an SPHF for the language L`M = {C | ∃r,
C = SCS.Enc`(pk,M ; r)}, with L the superset of the ciphertexts:

Γ (C) =
(
g h cdξ

) λ = (r)
λ · Γ = (gr, hr, (cdξ)r)
Θ(C) = (u, e/M, v)

where ξ = HSCS(`, u, e). The matrix Γ depends on ξ, and thus on the word C. Hence, this is a
GLSPHF:

hk = HashKG(L) = (α, β, γ)
$← Z3

p hp = ProjKG(hk, L, C) = gαhβ(cdξ)γ

H = Hash(hk, L`M , C) = uα(e/M)βvγ H ′ = ProjHash(hp, L`M , C, r) = hpr

KVSPHF. We could also use the following matrix and vectors:

Γ (C) =

(
g 1 h c
1 g 1 d

) λ = (r)
λ · Γ = (gr, gξr, hr, (cdξ)r)
Θ(C) = (u, uξ, e/M, v)

where ξ = HSCS(`, u, e). The matrix Γ does not depend anymore on ξ, nor on the word C in
general. Hence, this is a KVSPHF:

hk = HashKG(L) = (α1, α2, β, γ)
$← Z4

p

hp = ProjKG(hk, L, C) = (hp1 = gα1hβcγ , hp1 = gα2dγ)

H = Hash(hk, L`M , C) = uα1+α2ξ(e/M)βvγ

H ′ = ProjHash(hp, L`M , C, r) = (hp1hp
ξ
2)
r

3.2 IND-PCA Security Proof

Let us now prove the IND-CPA security as advertised at the beginning of this section. We first
recall the security game in Game G0, and present a series of indistinguishable games to show the
advantage of the adversary is negligible [BR04,Sho04].

Game G0: The adversary A is given a public key pk = (h = gs, c = gahb, d = ga
′
hb
′
), generated

with the secret key sk = (s, a, b, a′, b′)
$← Z5

p, as well as an unlimited access to an OPCA oracle
with input a tuple (`,M,C) that consists of a ciphertext C and an alleged plaintext M
with the label `. This oracle answers whether C really encrypts M or not. At some point,
the adversary outputs a label `∗ and two message M0 and M1, and receives the encryption
C∗ = (u∗, e∗, v∗) of Mδ with the label `∗. After more calls to the OPCA oracle, the adversary
outputs a bit δ′, its guess on the bit δ. Note that the adversary is not allowed to query the
OPCA oracle on any tuple (`∗,M,C∗).
More precisely, C∗ is generated with a random scalar r∗ $← Zp, as C∗ = (u∗ = gr

∗
, e∗ =

hr
∗
Mδ, v

∗ = (cdξ
∗
)r
∗
), where ξ∗ = HSCS(`

∗, u∗, e∗). The OPCA oracle, on input (`,M,C =
(u, e, v)), unless (`, C) = (`∗, C∗), checks both equations: e ?= usM and v ?= ua+ξa

′ ·(e/M)b+ξb
′ ,

for ξ = HSCS(`, u, e). Then, AdvG0(A) = Adv
ind-pca
SCS (A).

Game G1: In this game, we reject all queries (`,M,C = (u, e, v)) to the OPCA oracle, where
(`, u, e) 6= (`∗, u∗, e∗) but ξ∗ = ξ. This game is computationally indistinguishable from the
previous one under the collision-resistance of HSCS: |AdvG1(A) − AdvG0(A)| ≤ Succcoll

H (t),
where t is approximately the running time of A.

Game G2: We first simplify the simulation of the OPCA oracle: it just checks the second equation:
v ?= ua+ξa

′ · (e/M)b+ξb
′ , for ξ = HSCS(`, u, e), so that we do not need to know s in this game

anymore. It can only make a difference if this equation is satisfied while the first was not:

10

this means that e = us
′
M and v = ua+ξa

′ · (e/M)b+ξb
′ , for ξ = HSCS(`, u, e), with h = gs and

∆s = s′ − s 6= 0.
However, we can see that the probability for v to satisfy the above equation while e does
not is negligible (actually upper-bounded by 1/p) since a, a′, b, b′ are unknown. See a more
complex case in Game G6, where even more information is available to the adversary. One
thus gets |AdvG2(A) − AdvG1(A)| ≤ qp/p, where qp is the number of queries to the OPCA

oracle.
Game G3: We are now given a Diffie-Hellman tuple (g,X = gx, Y = gy, Z = gz), with z = xy.

We set h← X (which means that s = x), but let the rest of the setup as before: a, b, a′, b′ $← Zp
and δ $← {0, 1}. This is possible since we do not know s anymore since Game G2. For the
challenge ciphertext, we set u∗ ← Y (which means that r∗ = y) and e∗ ← ZMδ. For
v∗, since we do not know r∗, we use the verification equation: v∗ ← Y a+ξ∗a′ · Zb+ξ∗b′ , for
ξ∗ = HSCS(`

∗, u∗, e∗). Since z = xy, we have a perfect simulation of v∗ as in the previous
game, hence AdvG3(A) = AdvG2(A):

v∗ = gy(a+ξ
∗a′)+xy(b+ξ∗b′) = (g(a+xb) · gξ∗(a′+xb′))y = ((gahb) · (ga′hb′)ξ∗)y = (cdξ

∗
)r
∗
.

Game G4: We are now given a random tuple (g,X = gx, Y = gy, Z = gz), with z independently
chosen. The simulation is the same as in the previous game: |AdvG4(A) − AdvG3(A)| ≤
Advddh(t), where t is essentially the running time of the adversary A.

Game G5: We now choose z uniformly at random in Zp \ {xy} instead of Zp. This game is
statistically indistinguishable from the previous one. Hence we have: |AdvG5(A)−AdvG4(A)| ≤
1/p.

Game G6: We now randomly choose g $← G, and x, y, z
$← Zp (with z 6= xy) to define the

random tuple (g,X = gx, Y = gy, Z = gz) as in the previous game, but with the knowledge
of the exponents. We thus know again s = x. We can go back with the full simulation of the
OPCA oracle: it additionally checks whether e = usM or not. It can again make a difference
if this equation is not satisfied while the other one was: this means that e = us

′
M and

v = ua+ξa
′ · (e/M)b+ξb

′ , for ξ = HSCS(`, u, e), with h = gs and ∆s = s′ − s 6= 0.
First, if (`, u, e) = (`∗, u∗, e∗) but v 6= v∗, since that implies ξ = ξ∗, we can safely answer
negatively. We thus now have to deal with the cases (`, u, e) 6= (`∗, u∗, e∗), where ξ∗ 6= ξ
(since we have already dealt with collisions in ξ and ξ∗ in Game G1).
As in Game G2, we have to show that the probability for v to satisfy the above equation
while e does not is negligible since a, b, a′, b′ are unknown. This is a bit more subtle than in
Game G2, since more relations are available to the adversary. This proof would thus also
apply for the Game G2. Anyway, with the given relations, any v could be possible: a powerful
adversary might know, where u = gr and ∆z = z − xy,

c = gahb

d = ga
′
hb
′

v∗ = u∗a+ξ
∗a′ · (e∗/Mδ)

b+ξ∗b′

= gy(a+ξ
∗a′) · gz(b+ξ∗b′)

v = ua+ξa
′ · (e/M)b+ξb

′

= gr(a+ξa
′) · grs′(b+ξb′)



logg c = a+ s · b
logg d = a′ + s · b′
logg v

∗ = y · (a+ ξ∗a′) + z(b+ ξ∗b′)

= y · (logg c+ ξ∗ logg d) +∆z · (b+ ξ∗b′)

logg v = r · (a+ ξa′) + rs′(b+ ξb′)

= r · (logg c+ ξ logg d+∆s · (b+ ξb′))

This system can be turned into
logg c

logg d

logg v
∗ − y · (logg c+ ξ∗ logg d)

logg v − r · (logg c+ ξ logg d)

 =


1 0 s 0
0 1 0 s
0 0 ∆z ∆zξ

∗

0 0 r∆s r∆sξ

 ·


a
a′

b
b′


where the determinant is clearly ∆z∆s(ξ

∗ − ξ). Since we assumed z 6= xy, ∆z 6= 0, and no
collision on the hash function HSCS, the determinants are all non-zero, in which cases the

11

expected values for v are unpredictable, hence |AdvG6(A)− AdvG5(A)| ≤ qp/p, where qp is
the number of queries to the OPCA oracle.

Game G7: We now choose v∗ at random, independently of Y and Z.
To show this does not change anything, we first show that what A sees does never depend on
the four variables a, b, a′, b′, but only depends on α = a+ xb and β = a′ + xb′, except for v∗:
The only information A has from a, b, a′, b′ comes from the answers of the OPCA oracle, where
we first check that e ?= uxM and then, if that equality holds, that v ?= ua+ξa

′ · (e/M)b+ξb
′ . But

when e = uxM , ua+ξa′ · (e/M)b+ξb
′
= u(a+ξa

′)+x(b+ξb′) = u(a+xb)+ξ(a
′+xb′) = uα+ξβ , therefore

the second verification can be replaced by v ?= uα+ξβ , which only depends on α and β.
If we denote v∗ = gγ , we have γ = y(a+ ξ∗a) + z(b+ ξ∗b′), which is linearly independent of
α and β (when a, a′, b, b′ are unknowns) since z 6= xy, and so γ looks completely random to
the adversary, and so does v∗ too: AdvG7(A) = AdvG6(A).

Game G8: We now choose z uniformly at random in Zp instead of Zp \ {xy}. This game is
statistically indistinguishable from the previous one. Hence we have: |AdvG8(A)−AdvG7(A)| ≤
1/p.

Game G9: We now choose e∗ at random, independently of Z and Mδ.
To show this does not change anything either, we review the previous game:
– the simulator chooses random scalars x, y, z to define the random tuple (g,X = gx, Y =

gy, Z = gz), as well as random scalars α, β to define c = gα, d = gβ , and δ $← {0, 1};
– for the OPCA oracle on (`,M,C = (u, e, v)), one checks e ?= uxM and v ?= uα+ξβ, for
ξ = HSCS(`, u, e);

– for the challenge ciphertext, one sets u∗ ← Y , e∗ ← ZMδ, and v∗
$← G.

Since Z was used in e∗ only (and nowhere else), a random Z or a random e∗ are indistinguish-
able: AdvG9(A) = AdvG8(A). In addition, δ does not appear anywhere, hence AdvG9(A) = 0.

4 PAKE Security Models

In this section, we recall the BPR security model [BPR00] and the extension proposed by Abdalla,
Fouque, and Pointcheval (AFP) [AFP05]. Then, in the next section, we will present several
protocols secure in the basic BPR model, but also in the AFP model and with forward-secrecy.

4.1 The Bellare-Pointcheval-Rogaway Security Model

Users and Passwords. Each client C ∈ C holds a password πC , while each server S ∈ S holds
passwords πS,C for each client C.

Protocol Execution. The adversary A can create several concurrent instances U i of each user
U ∈ C ∪ S, and can interact with them via the following oracle queries:

– Execute(Ci, Sj): this query models a passive attack in which the adversary eavesdrops on
honest executions between a client instance Ci and a server instance Sj . The output of this
query consists of the messages that are exchanged during an honest execution of the protocol
between Ci and Sj (i.e., the transcript of the protocol);

– Send(U i,M): this query models an active attack, in which the adversary may intercept a
message and modify it, create a new message, or simply replay or forward an existing message,
to the user instance U i. The output of this query is the message that U i would generate after
receiving M . A specific message Start can be sent to a client, in the name of a server, to
initiate a session between this client and this server;

– Reveal(U): this query models the misuse of the session key that has been established. The
output of this query is the session key, if it has been set.

– Corrupt(C): this query models the client corruption. The output of this query is the password
πC .

12

– Corrupt(S,C, π): this query models the server corruption. The output of this query is the
stored password πS,C . In addition, if π 6= ⊥, πS,C is then changed to π.

This is a slight variant of the so-called weak corruption model in BPR, since the long term secrets
(passwords) only are leaked, and not the internal states, in case of corruption. But contrarily to
BPR, in case of server corruption, we also leak the password even in case of a password change
request. However, this does not affect the security notion since, in both the original BPR model
and in ours, any corruption query makes the password corrupted, and so the Test-query is not
allowed anymore on instances of these players (see below), since they are no longer fresh.

Partnering. Before actually defining the secrecy of the session key, and thus implicit authenti-
cation, we need to introduce the notion of partnering: Two instances are partnered if they both
accept with matching transcripts, which means that their views of the protocol (including the
expected partner identity) correspond.

Security. To actually define the semantic security of a PAKE scheme, the adversary A has
access to a challenge oracle Test(U i), available only once, to evaluate the indistinguishability
of a specific session key. A random bit b is chosen and the Test-query, for some user instance
U i is answered as follows: if b = 1, return the session key of U i, and otherwise, return a random
session key. At the end of the game, the adversary A has to output a bit b′, as a guess for b. The
success probability Succ of A is the probability that b′ = b, while its advantage is defined by
Adv = 2 · Succ− 1.

Note that there are natural restrictions for the Test-query: the tested instance must be fresh,
which means that this is not a trivial case, where trivial cases are no key or known key. More
precisely, there are two definitions of freshness, whether we consider the forward-secrecy, or not:

– basic freshness: an instance U i is fresh (fresh) if,
• a session key has been defined;
• no Reveal-query has been asked to U i, or to his partner, if there is one;
• the password of the client C has not been corrupted (either via a query Corrupt(C) or
via a query Corrupt(·, C, ·)), where C = U is U is a client or U i’s partner is an instance
Cj of C

– forward-secure freshness: similar to basic freshness except for the last part, where only
corruptions before U i defined his key can make this instance unfresh.

In case of Test-query to an unfresh instance, the answer is ⊥, which means that the adversary
cannot have any advantage in these cases. A PAKE is considered BPR-secure if the advantage of any
adversary A, running within time t, in the previous experiment is bounded by qs× 2−m+negl(K),
where qs is the number of active sessions (handled with Send queries), and m is the min-entropy
of the password distribution. Intuitively this means that to win, the adversary has to do an on-line
dictionary attack, which only enables it to test one password per session.

4.2 The Abdalla-Fouque-Pointcheval (AFP) Security Model

It extends the model with multiple Test-queries, which are all answered with the same bit b.
Queries asked to unfresh instances are answered by ⊥.

5 PAKE Constructions

In this section, we present three PAKE constructions: the first one follows the Gennaro-Lindell
(GL) framework [GL03]. The second one follows the Groce-Katz (GK) framework [GK10], and the
third one follows the one-round Katz-Vaikuntanathan (KV) framework [KV11]. They all make
use of public-key encryption schemes that admit SPHFs on the languages of the ciphertexts of a
given message.

13

5.1 Public-Key Encryption Schemes

In all our constructions, we will consider a labeled IND-PCA encryption scheme ES = (KG,Enc,
Dec) and an IND-CPA encryption scheme ES′ = (KG′,Enc′,Dec′) so that SPHFs (either GLSPHFs
or KVSPHFs according to the protocol) exist for the following families of languages:

L`π = {c | ∃r, c = Enc`(pk, π; r)} L′π = {c | ∃r, c = Enc′(pk′, π; r)},

with the global parameters and the public keys pk and pk′ in the common reference string CRS.
We also suppose that HashKG and ProjKG, for both L`π and L′π, do not depend on π nor `, and
thus, just (respectively) on the supersets

L = {c | ∃`,∃π,∃r, c = Enc`(pk, π; r)} L′ = {c | ∃π,∃r, c = Enc′(pk′, π; r)}.

5.2 GL–PAKE Construction and GL–SPOKE

GL–PAKE. Our first two-flow construction is depicted in Fig. 3, where × is a commutative
operation between hash values such that if A is a uniform hash value and B is any hash value,
A×B is uniform (often hash values live in a group and × is just the group law). The session key
generated by the client is denoted KC , while the one generated by the server is denoted KS .

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)
hkC

$← HashKG(L′)
hpC ← ProjKG(hkC , L

′,⊥)
` = (C, S, hpC)

rC
$← ; cC ← Enc`(pk, πC ; rC)

C, hpC , cC−−−−−−−−−→ ` = (C, S, hpC)
`′ = (C, S, hpC , cC , hpS)

rS
$← ; cS ← Enc′

`′
(pk′, πS,C ; rS)

hkS
$← HashKG(L`πS,C

)
S, hpS , cS←−−−−−−−−− hpS ← ProjKG(hkS , L

`
πS,C

, cC)

`′ = (C, S, hpC , cC , hpS)

H ′C ← ProjHash(hpS , L
`
πC
, cC , rC) H ′S ← ProjHash(hpC , L

′`′
πS,C

, cS , rS)

HS ← Hash(hkC , L
′`′
πC
, cS) HC ← Hash(hkS , L

`
πS,C

, cC)

KC ← H ′C ×HS KS ← H ′S ×HC

Fig. 3. Generic GL–PAKE Construction

It requires an IND-PCA encryption scheme ES’ with a KVSPHF3, and an IND-PCA encryption
scheme ES with a GLSPHF. We have the following security theorem:

Theorem 3. We suppose that the two SPHF are perfectly smooth.4 For the GL–PAKE construction,
the advantage of any adversary A in the BPR security game (either with basic freshness and
dynamic corruptions, or with forward-secure freshness in the AFP setting but only with static
corruptions) is:

Adv(A) ≤ qs × 2−m + (qe + qs)× (Adv
ind-pca
ES′

(t) + Adv
ind-pca
ES (t)) +

qeqs
22n

,

where t is approximately the running time of A, qe and qs are the number of Execute and Send-
queries, n is the entropy of both the projected keys and the ciphertexts, and m is the entropy of
the passwords.
3 an IND-CPA encryption scheme ES’ is enough when there is a third flow. But then a one-time signature is
required.

4 We could adapt the proof and the theorem bounds if the SPHFs are only statistically smooth. However, for
the sake of simplicity, we state all our theorems and prove them only for perfectly smooth SPHFs, as all our
concrete instantiations use perfectly smooth SPHFs.

14

Proof. In this proof, we first deal with the BPR setting (one Test-query only) and with the basic
freshness (once a password is corrupted, all the associated instances are considered unfresh, even
before the corruption), but we allow adaptive corruptions. This notion of adaptive corruptions,
which allows the adversary to ask Corrupt-queries at any time, makes the last game complex
since the simulator does not know, at the simulation time of the ciphertext cC , whether the
password will get corrupted before the end of the execution of the protocol or not. In the case of
static corruptions, where the adversary is only allowed to corrupt a password when no instance of
the associated players is involved in an execution of the protocol, this is much simpler since the
simulator knows from the beginning of a session which party is corrupted or not.

The AFP setting and forward-secrecy are discussed later. But adaptive corruptions seem hard
to deal with in the AFP setting since the simulator cannot handle a Reveal-query on a client
instance if the server gets corrupted after cC has been sent (and thus simulated with a dummy
password): the adversary can correctly generate cS and compute the session key KS , whereas the
simulator is not able to compute KC that should be equal to KS . However, forward-security in
the AFP setting, but with static corruptions only, easily follows from the proof below.

This proof is close to the proof from [GL03]. The proof consists in proving that the real attack
game Greal = G0 is indistinguishable from a game in which no actual password is used, but just
at the end or at the corruption time to control whether the flag Win has to be set to True or not.
This flag is initially set to False, and at the end of the game, we say the adversary wins if b′ = b,
or if Win = True. We will also make the adversary win the game when a quite unlikely collision
appears between two simulated flows (flag Coll set to True, see Game G6).

Let us consider a polynomial time adversary A. The proof is done by a series of games Gi,
and Advi(A,K) is the advantage of A in the game Gi. We separate Send queries in three types:

– Send0(Ci, Start) queries which enable an adversary to ask Ci to initiate the protocol and
which return the first flow from Ci to S.

– Send1(Sj ,m) queries which enable an adversary to send the first flow from C to Sj and which
return the second flow answered back by Sj ;

– Send2(Ci,m) queries which enable an adversary to send the second flow from S to Ci and
which return nothing but set the session key K of Sj .

Reveal-queries and the Test-query are answered using the defined session key, and according to
the bit b and the freshness of instance. As already said, we first consider the basic freshness only,
in which case a corrupted password makes all the instances of the associated client and server
unfresh.

In the following proof, we assume the SPHFs to be perfectly smooth. This is the case of our
candidates, but the proof could be extended to statistical smoothness only.

We say that two users (a client C and a server S) are compatible if πC = πS,C . Passwords are
initially all set as the same for each client and the server, but a corruption of the server with a
new password can replace πS,C by a different value than πC : C and S are then said incompatible.
Note that as in [KOY03,KOY09], the compatibility is defined at the beginning of the execution
of the protocol (by uploading passwords in the local memory), which means that even in case of
password change in the database during the protocol, this does not affect the passwords used
during this execution.

Game G1: We first modify the way Execute-queries between two compatible users are an-
swered. Since the hashing keys are known, we compute the common session key as

K = KS = KC = Hash(hkC , L
′`′
πS,C

, cS)× Hash(hkS , L
`
πC
, cC).

This does not change anything thanks to the correctness of the SPHFs, and one gets:
AdvG1(A) = AdvG0(A).

15

Game G2: Since the random coins are not needed anymore, we replace cS and cC by encryp-
tions of the dummy passwords 0S and 0C . This is indistinguishable from G1 under the
IND-CPA property of the encryption schemes, for each Execute-query between two com-
patible users. Using a classical hybrid technique, one thus gets |AdvG2(A)− AdvG1(A)| ≤
qe,1 × (Adv

ind-cpa
ES (t) + Adv

ind-cpa
ES′

(t)), where qe,1 is the number of Execute-queries between
two compatible users.

Game G3: We replace the common session key by a truly random value. Since the languages
are not satisfied, the perfect smoothness guarantees perfect indistinguishability: AdvG3(A) =
AdvG2(A).

Game G4: We now modify the way Execute-queries between two incompatible users are an-
swered: we replace both session keys

KC = ProjHash(hpS , L
`
πC
, cC , rC)× Hash(hkC , L

′`′
πS,C

, cS)

KS = Hash(hkS , L
`
πC
, cC)× ProjHash(hpC , L

′`′
πS,C

, cS , rS)

(for the client and the server) by two independent truly random values. Thanks to the
perfect smoothness of the SPHFs, Hash(hkC , L′

`′

πS,C
, cS) and Hash(hkS , L

`
πC
, cC) are completely

independent random values, since the passwords are different. And we have AdvG4(A) =
AdvG3(A).

Game G5: Since the random coins are not needed anymore for these Execute-queries between
two incompatible users, we replace cS and cC by encryptions of the dummy passwords 0S
and 0C .
This is indistinguishable from G4 under the IND-CPA property of the encryption schemes, for
each Execute-query between two incompatible users. Using a classical hybrid technique, one
thus gets |AdvG5(A)− AdvG4(A)| ≤ qe,2 × (Adv

ind-cpa
ES (t) + Adv

ind-cpa
ES′

(t)), where qe,2 is the
number of Execute-queries between two incompatible users.

Game G6: To simplify the following games, we now consider the games in which a collision
appears between flows (hpC , cC) generated via an Execute-query and a Send0-query: we set
Coll to True, and stop the simulation. Since this makes the adversary win, this change can
only increase the advantage of the adversary. Therefore, we have: AdvG5(A) ≤ AdvG6(A).

Game G7: We now modify the way the Send1-queries are answered, by using a OPCA oracle on
ES, or alternatively knowing the decryption key sk. More precisely, when a message (hpC , cC)
is sent, in the name of some client instance Ci and to some server instance Sj , four cases can
happen:
– cC has not been generated by the simulator in the name of this client C (via a Send0-query

or an Execute-query), then we first check whether cC contains the expected password
πS,C or not, with the label ` = (C, S, hpC):
1. if the expected password is encrypted, then we set Win to True, and stop the

simulation;
2. otherwise, we choose the session key K at random;

– cC has been generated in the name of some Ci′ (for the same client C), and because of
the label, hpC is the same too:
3. if S and C are compatible, we know the associated hkC , so we can compute H ′S using

hkC (as HS , and so without the random coins rS of cS). They both come up with
the same key K;

4. otherwise, we choose a random session key K.
The change in the first case can only increase the advantage of the adversary, while the
changes in the second and fourth cases are indistinguishable under the perfect smoothness
of the GLSPHF. The correctness of the KVSPHF implies the indistinguishability of the third
case. Therefore, we have: AdvG6(A) ≤ AdvG7(A).

16

Game G8: We now modify the way the Send2-queries are answered, knowing the decryption
key sk′. More precisely, when a message (hpS , cS) is sent, in the name of some server instance
Si and to some simulated client instance Cj that previously answered the Send0-query by
(hpC , cC), four cases can appear (note we have already excluded collisions on (hpC , cC) via
Execute and Send0-queries in G6):
– cS has not been generated by the simulator in the name of a server in response to the

first flow (hpC , cC) sent by Cj , then we first check whether cS contains the expected
password πC or not, with the label `′ = (C, S, hpC , cC , hpS):
1. if the expected password is encrypted, then we set Win to True, and stop the

simulation;
2. otherwise, we choose the session key K at random;

– cS has been generated in the name of some Si′ (via a Send1-query) after receiving the first
flow (hpC , cC), and thus Cj and Si′ are partners and the label `′ = (C, S, hpC , cC , hpS)
guarantees the same transcripts:
3. if S and C are compatible, we use the same key as Si′ ;
4. otherwise, we choose a random session key K.

The changes in the first case can only increase the advantage of the adversary, while the
changes in the second and fourth cases are indistinguishable under the smoothness of the
KVSPHF. The third case is identical. Therefore, we have: AdvG7(A) ≤ AdvG8(A).
We remark that H ′S can now be computed without using random coins of cS .

Game G9: Since the random coins rS are not needed anymore by the simulated servers to
compute hash values, we replace cS by an encryption of the dummy password 0S (up to the
corruption of πC or πS,C). This is indistinguishable from G8 under the IND-PCA property
of the encryption scheme ES′, since we still need to be able to test the correct password
encrypted by the adversary: the simulator thus knows the decryption key sk of ES, but has
just access to the OPCA oracle for ES′. Using a classical hybrid technique, one thus gets
|AdvG9(A)− AdvG8(A)| ≤ qs1 × Adv

ind-pca
ES′

(t), where qs1 is the number of Send1-queries.
Game G10: We now modify the way the Send0-queries are answered. In G8, we remark that we

do not need to know the random coins rC used by the ciphertext cC generated in response
to a Send0 query. So, we can simply encrypt the dummy password 0C instead of the correct
password πC in all ciphertexts cC , generated as responses to Send0 queries (up to the corruption
of πC). This is indistinguishable under the IND-PCA property of the encryption scheme ES, since
we still need to be able to test the correct password encrypted by the adversary: the simulator
thus knows the decryption key sk′ of ES′, but just has access to the OPCA oracle for ES. Using
a classical hybrid technique, one thus gets |AdvG10(A) − AdvG9(A)| ≤ qs0 × Adv

ind-pca
ES (t),

where qs0 is the number of Send0-queries.
Unfortunately, in the case of the corruption of πC after the Send0-query, we are not able to
generate the correct session key KC , whereas the adversary might be able: using a Reveal-
query, he can detect this mistake by the simulator. To overcome this problem, we can simply
guess which client-password will be involved in the Test-query, and thus apply the above
modifications only on flows from or to an instance of this client. We know such a password
cannot get corrupted, otherwise the Test-query answers ⊥ whenever it is asked (since we are
dealing with the basic freshness only), and so the advantage of the adversary is 0.

Game G11: In this final game, Win is initially set to False, and we target a specific client C: for
all the executions and flows not involving this client, we do the simulation with the correct
password. However, we do not choose πC from the beginning. We thus ignore the cases 1
during the game, simulating them as cases 2, and we will just check whether Win has to be
set to True at the very end only, or when a corruption happens, using the decryption keys sk
and sk′:
– Execute-queries: encryptions of the dummy passwords 0C and 0S are generated together

with projection keys. If the users are compatible, they are given the same random key

17

K = KC = KS . If they are incompatible, they are given two independent random keys
KC and KS ;

– Send0-queries: a projection key hpC is generated, together with an encryption cC of the
dummy password 0C ;

– Send1-queries:
• if this is not a message generated by the simulator in the name of a client, then we

store the input ((C, S, hpC), cC) in ΛC ;
• in any case, a projection key hpS is generated, together with an encryption cS of the

dummy password 0S , and we choose a random session key KS .
– Send2-queries:
• if this is not a message generated by the simulator in the name of a server in response
to the first flow (hpC , cC), then we store the input ((C, S, hpC , cC , hpS), cS) in ΛS ,
and choose a random session key KC ;
• otherwise, if C and S are compatible, it gets the same keys as its partner, otherwise
we choose a random session key KC .

– Corrupt(C) and Corrupt(S,C,⊥)-queries: one first chooses a random password π, and
checks for all the tuples in ΛC and ΛS involving this client, whether one of them encrypts
π. In such a case, we set Win to True.

– Corrupt(S,C, π)-query: set πS,C ← π.
– Reveal-queries and the Test-query are answered using the defined session key, and

according to the bit b and the freshness of instance.
In case of collision between the first flow of an Execute-answer and a Send0-answer, we sent
Coll to True. At the very end, all the undefined passwords are dealt as above: for each client,
one chooses a random password π, and checks for all the tuples in ΛC and ΛS involving this
client, whether one encrypts π. In such a case, one sets Win to True. If b′ = b, Win = True,
or Coll = True, we say the adversary has won.
– Since the passwords are chosen at random, but never used, the probability for Win to be

set to True is bounded by (qs0 + qs1)× 2−m, where m is the entropy of the passwords;
– The probability to generate two identical first flows is upper-bounded by qeqs0/22n, where
n is the entropy of both the projected keys and the ciphertexts, and qs0 is the number of
Send0-queries;

– Since all the session keys are chosen uniformly at random, in all the other cases, the
advantage is 0.

Hence, AdvG11(A) ≤ qs × 2−m + qeqs0/2
2n.

In conclusion, the global advantage of any adversary against a specific client C in the PAKE
protocol is bounded by

qs × 2−m + (qe + qs)× (Adv
ind-pca
ES′

(t) + Adv
ind-pca
ES (t)) +

qeqs0
22n

,

where qe and qs are queries involving C. By summing on all the clients, one gets

AdvGreal(A) ≤ qs × 2−m + (qe + qs)× (Adv
ind-pca
ES′

(t) + Adv
ind-pca
ES (t)) +

qeqs0
22n

,

where qe and qs are the number of Execute and Send-queries, and n is the entropy of both the
projected keys and the ciphertexts.

Forward-Secrecy and Multiple Test-Queries One can remark that the forward-secrecy notion
achieved by the KOY protocol [KOY03,KOY09] is essentially the above one, since in their proof
they assume that, once a user is corrupted, all the sessions involving this user are unfresh (even
before the corruption). But this is a quite weak notion.

The above proof extends in a straightforward way to the forward-secure freshness setting
(with all the clients at once) if we assume static corruptions only: no corruption of U is allowed
during the execution of a protocol involving an instance of U . In addition, in the case of static
corruption, our proof also extends to multiple Test-queries (the AFP setting).

18

GL–SPOKE: GL – Simple Password-Only Key Exchange (Fig. 4). Using our new Short
Cramer-Shoup encryption scheme a quite efficient PAKE with implicit authentication.

It is based on the plain DDH assumption, and consists of 5 group elements to be sent by the
client and 4 group elements by the server, within 2 flows only. They both have to compute 15
exponentiations.

Using the above security bounds for the encryption schemes, one gets, for the basic freshness
in the BPR setting, or for the forward-secure freshness in the AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 2Q× (Advddh
G (t) + Succcoll

H (t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries, and m is the
min-entropy of the passwords.

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G3, pk′ = y ∈ G)

(α′1, α
′
2, β
′, γ′)

$← Z4
p

(t′1 ← gα
′
1hβ

′
cγ
′
, t′2 ← gα

′
2dγ
′
) ∈ G2

r
$← Zp

(u← gr, e← hrgπC , v ← (cdξ)r) ∈ G3,

with ξ ← HSCS(C, S, t
′
1, t
′
2, u, e)

C, t′1, t
′
2, (u, e, v)−−−−−−−−−−−−→ (α, β, γ)

$← Z3
p

t← gαhβ(cdξ)γ ∈ G
r′

$← Zp
S, t, (u′, e′, v′)←−−−−−−−−−−−− (u′ ← gr

′
, e′ ← hrgπS,C , v′ ← (cdξ

′
)r
′
) ∈ G3

with ξ′ ← HSCS(C, S, t
′
1, t
′
2, u, e, v, t)

with ξ′ ← HSCS(C, S, t
′
1, t
′
2, u, e, v, t) with ξ ← HSCS(C, S, t

′
1, t
′
2, u, e)

H ′C ← tr ; HS ← u′
α′1+ξ

′α′2(e′/gπC)β
′
v′
γ′

H ′S ← (t′1t
′
2
ξ′
)r
′
; HC ← uα(e/gπS,C)βvγ

KC ← H ′C ×HS KS ← H ′S ×HC

Fig. 4. GL–SPOKE

We remark that one encrypted gπ where π is the password, instead of π. This makes it hard
to recover π from the decryption of a ciphertext, but that is not a problem in the proofs, where
one only needs to check whether a ciphertext contains a given password or not.

5.3 GK–PAKE Construction and GK–SPOKE

GK–PAKE. Our second two-flow construction is depicted in Fig. 5. It additionally provides
explicit server authentication to the client.

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)
rC

$←
cC ← Enc′(pk′, πC ; rC)

C, cC−−−−−−−−−→ hk
$← HashKG(L′πS,C

)

hp← ProjKG(hk, L′πS,C
, cC)

H ← Hash(hk, L′πS,C
, cC)

(KS , rS)← PRG(H)
` = (C, S, cC , hp)

H ′ ← ProjHash(hp, L′πC
, cC , rC)

S, hp, cS←−−−−−−−−− cS ← Enc`(pk, πS,C ; rS)
(KC , r

′
S)← PRG(H ′)

` = (C, S, cC , hp)
c′S ← Enc`(pk, πC ; r

′
S)

If c′S 6= cS , abort

Fig. 5. Generic GK–PAKE Construction

19

It requires an IND-CPA encryption scheme ES’ with a GLSPHF, and an IND-PCA encryption
scheme ES (no need of SPHF for it). It also makes use of a Pseudo-Random Generator PRG,
which on a random input returns a longer output that looks random: AdvprgPRG(t) denotes the best
advantage one can get in distinguishing an output from a truly random bitstring within a running
time bounded by t. We have the following security theorem:

Theorem 4. We suppose that the SPHF is perfectly smooth. Then, for the GK–PAKE construction,
the advantage of any adversary A in the BPR security game (either with basic freshness and
dynamic corruptions, or with forward-secure freshness in the AFP setting but only with static
corruptions) is:

Adv(A) ≤ qs × 2−m + (qe + qs)× (Adv
ind-cpa
ES′

(t) + Adv
ind-pca
ES (t) + Adv

prg
PRG(t)) +

qeqs
22n

,

where t is approximately the running time of A, qe and qs are the number of Execute and Send-
queries, n is the entropy of both the projected keys and the ciphertexts, and m is the entropy of
the passwords.

Proof. This proof is now close to the proof from [GK10], but a bit more intricate since we allow
executions between players with incompatible passwords. The proof consists in proving that the
real attack game Greal = G0 is indistinguishable from a game in which no actual password is
used, but just at the end or at the corruption time to control whether the flag Win has to be set to
True or not. This flag is initially set to False, and at the end of the game, we say the adversary
wins if b′ = b, or if Win = True. We will also make the adversary win the game when a quite
unlikely collision appears between two simulated flows (flag Coll set to True, see Game G12).

Game G1: We first modify the way Execute-queries between two compatible users are an-
swered. Since the hashing key is known, we compute H ′, from the client side as H ′ = H =
Hash(hk, L′πC , cC). This does not change anything thanks to the correctness of the SPHFs:
AdvG1(A) = AdvG0(A).

Game G2: Since the random coins rC are not needed anymore, we replace cC by the encryption
of a dummy password 0C . This is indistinguishable from G1 under the IND-CPA property
of the encryption scheme ES′, for each Execute-query between two compatible users. Using
a classical hybrid technique, one thus gets |AdvG2(A) − AdvG1(A)| ≤ qe,1 × Adv

ind-cpa
ES′

(t),
where qe,1 is the number of Execute-queries between two compatible users.

Game G3: We replace the hash value H ′ = H by a truly random value. Since the language L′π
is not satisfied, the perfect smoothness guarantees perfect indistinguishability: AdvG3(A) =
AdvG2(A).

Game G4: We we now replace the outputs of the PRG by truly random outputs KC = KS and
rS = r′S . The security of the PRG leads to: |AdvG4(A)− AdvG3(A)| ≤ qe,1 × Adv

prg
PRG(t).

Game G5: Since the client and the server use the same random coins and the random password,
we never make the client abort. This does not change anything, and one thus gets: AdvG5(A) =
AdvG4(A).

Game G6: We replace cS by the encryption of a dummy password 0S . This is indistinguishable
from G5 under the IND-CPA property of the encryption scheme ES, for each Execute-query
between two compatible users. Using a classical hybrid technique, one thus gets |AdvG6(A)−
AdvG5(A)| ≤ qe,1 × Adv

ind-cpa
ES (t).

Game G7: We now modify the way Execute-queries between two incompatible users are an-
swered: since the client and the server use different passwords, we always make the client
abort. This does not change anything: AdvG7(A) = AdvG6(A).

Game G8: Since the random coins rC are not needed anymore, we replace cC by the encryption
of a dummy password 0C . This is indistinguishable from G7 under the IND-CPA property of
the encryption scheme ES′, for each Execute-query between two incompatible users. Using
a classical hybrid technique, one thus gets |AdvG8(A) − AdvG7(A)| ≤ qe,2 × Adv

ind-cpa
ES′

(t),
where qe,2 is the number of Execute-queries between two incompatible users.

20

Game G9: We replace H by a random value. Thanks to the perfect smoothness of the SPHF,
Hash(hk, L′πS,C , cC) is completely random values: AdvG9(A) = AdvG8(A).

Game G10: We we now replace the outputs of the PRG by truly random outputs KS and rS .
The security of the PRG leads to: |AdvG10(A)− AdvG9(A)| ≤ qe,2 × Adv

prg
PRG(t).

Game G11: We replace cS by the encryption of a dummy password 0S . This is indistinguishable
from G10 under the IND-CPA property of the encryption scheme ES, for each Execute-
query between two incompatible users. Using a classical hybrid technique, one thus gets
|AdvG11(A)− AdvG10(A)| ≤ qe,2 × Adv

ind-cpa
ES (t).

Game G12: To simplify the following games, we now consider the games in which a collision
appears between flows cC generated via an Execute-query and a Send0-query: we set Coll
to True, and stop the simulation. Since this makes the adversary win, this change can only
increase the advantage of the adversary. Therefore, we have: AdvG11(A) ≤ AdvG12(A).

Game G13: We now modify the way the Send2-queries are answered, by using a OPCA oracle on
ES, or alternatively knowing the decryption key sk. More precisely, when a message (hp, cS)
is sent, in the name of some server instance Si and to some simulated client instance Cj that
previously answered the Send0-query by cC , four cases can appear (note we have already
excluded collisions on cC via Execute and Send0-queries in G6):
– it is not a message generated by the simulator in the name of this server S in response

to the first flow cC sent by Cj , then we first check whether cS contains the expected
password πC or not, with the label ` = (C, S, cC , hp):
1. if the expected password is encrypted, then we set Win to True, and stop the

simulation;
2. otherwise, we abort;

– it is a message generated in the name of some Si′ (for the same server S):
3. if S and C are compatible, we know the associated hk, from the simulation of hp, so

we can compute H ′ using hk (as H, and so without the random coins rC of cC);
4. otherwise, we abort.

The change in the first case can only increase the advantage of the adversary, while the
changes in the second and fourth cases are indistinguishable since cS does not encrypt the
correct password. The correctness of the SPHF implies the indistinguishability of the third
case. Therefore, we have: AdvG12(A) ≤ AdvG13(A).

Game G14: We now modify the way the Send0-queries are answered: since the random coins
rC are not needed anymore by the simulated clients to compute H ′, we replace cC by an
encryption of the dummy password 0C (up to the corruption of πC). This is indistinguishable
from G13 under the IND-CPA property of the encryption scheme ES′. Using a classical hybrid
technique, one thus gets |AdvG14(A) − AdvG13(A)| ≤ qs0 × Adv

ind-cpa
ES′

(t), where qs0 is the
number of Send0-queries.
Unfortunately, in the case of the corruption of πC after the Send0-query, we are not able to
generate the correct hash value H ′ and thus the session key KC , whereas the adversary might
be able: using a Reveal-query, he can detect this mistake by the simulator. To overcome this
problem, we can simply guess which client-password will be involved in the Test-query, and
thus apply the above modifications only on flows from or to an instance of this client. We
know such a password cannot get corrupted, otherwise the Test-query answers ⊥ whenever
it is asked (since we are dealing with the basic freshness only), and so the advantage of the
adversary is 0.

Game G15: We now modify the way the Send1-queries are answered, knowing the decryption
key sk′. More precisely, when a message cC is sent, in the name of some client instance Ci

and to some server instance Sj , three cases can happen:
– it is not a message generated by the simulator in the name of this client C (via a Send0-

query or an Execute-query), then we first decrypt the ciphertext to get the password π
used by the adversary:
1. if this is the expected password πS,C , then we setWin to True, and stop the simulation;

21

2. otherwise, we choose the hash value H at random;
– it is a message generated in the name of some Ci′ (for the same client C):

3. we choose the hash value H at random;
The changes in the first case can only increase the advantage of the adversary, while the
changes in the second and third cases are indistinguishable under the smoothness of the
SPHF, since the encrypted passwords are wrong. Thus, we have: AdvG14(A) ≤ AdvG15(A).

Game G16: We we now replace the outputs of the PRG by truly random outputs KC = KS

and r′S = rS . The security of the PRG leads to: |AdvG16(A)− AdvG15(A)| ≤ qs1 × Adv
prg
PRG(t),

where qs1 is the number of Send1-queries.
Game G17: In G13, we remark that we do not need to check the correct construction of cS

from a simulated server, so we can simply encrypt the dummy password 0S instead of the
correct password πS,C in all ciphertexts cS , generated as responses to Send1 queries (up
to the corruption of πC or πS,C). This is indistinguishable under the IND-PCA property
of the encryption scheme ES, since we still need to be able to test the correct password
encrypted by the adversary: the simulator thus knows the decryption key sk′ of ES′, but
just has access to the OPCA oracle for ES. Using a classical hybrid technique, one thus gets
|AdvG17(A)− AdvG16(A)| ≤ qs1 × Adv

ind-pca
ES (t).

Game G18: In this final game, Win is initially set to False, and we target a specific client C: for
all the executions and flows not involving this client, we do the simulation with the correct
password. However, we do not choose πC from the beginning. We thus ignore the cases 1
during the game, simulating them as cases 2, and we will just check whether Win has to be
set to True at the very end only, or when a corruption happens, using the decryption keys sk
and sk′.
By a simple summary (in the previous proof), we can see that AdvG18(A) ≤ qs × 2−m +
qeqs0/2

2n.

In conclusion, the global advantage of any adversary against a specific client C in the PAKE
protocol is bounded by

qs × 2−m + (qe + qs)× (Adv
ind-cpa
ES′

(t) + Adv
ind-pca
ES (t) + Adv

prg
PRG(t)) +

qeqs0
22n

,

where qe and qs are queries involving C. By summing on all the clients, one gets

AdvGreal(A) ≤ qs × 2−m + (qe + qs)× (Adv
ind-cpa
ES′

(t) + Adv
ind-pca
ES (t) + Adv

prg
PRG(t)) +

qeqs0
22n

,

where qe and qs are the number of Execute and Send-queries, and n is the entropy of both the
projected keys and the ciphertexts.

Forward-Secrecy and Multiple Test-Queries. The same remarks as in the security proof for
GL–PAKE still hold.

GK–SPOKE: GK – Simple Password-Only Key Exchange (Fig. 6). Combining our new
Short Cramer-Shoup encryption scheme, with the basic ElGamal encryption scheme, we obtain
the most efficient PAKE known so far: It is based on the plain DDH assumption, and consists of 2
group elements to be sent by the client and 4 group elements by the server. They both have to
compute less than 9 exponentiations.

It also uses a PRG from G to {0, 1}k × Zp, where k is the bit-length of the eventual common
session key. In practice, one would just need a randomness extractor to extract a seed, and then
one extends the seed to get the session key K and the random coins r for the encryption scheme.

Using the above security bounds for the encryption schemes, one gets, for the basic freshness
in the BPR setting, or for the forward-secure freshness in the AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 2Q× (Advddh
G (t) + Succcoll

H (t) + Succ
prg
PRG(t)) +

2Q2

p
,

22

where qs is the number of Send-queries, Q is the global number of oracle queries, and m is the
min-entropy of the passwords.

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G3, pk′ = y ∈ G)

r′
$← Zp

(u′ ← gr
′
, e′ ← yr

′
gπC) ∈ G2 C, (u′, e′)−−−−−−−−−→ (α′, β′)

$← Z2
p ; t

′ ← gα
′
yβ
′
∈ G

HC ← u′
α′
(e′/gπS,C)β

′

(KS , r)← PRG(HC)
(u← gr, e← hrgπS,C , v ← (cdξ)r) ∈ G3,

H ′C ← t′
r′ S, t′, (u, e, v)←−−−−−−−−− with ξ ← HSCS(C, S, u

′, e′, t′, u, e)
(KC , r

′′)← PRG(H ′C)
(u′′ ← gr

′′
, e′′ ← hr

′′
gπC , v′′ ← (cdξ

′′
)r
′′
) ∈ G3,

with ξ′′ ← HSCS(C, S, u
′, e′, t′, u′′, e′′)

If (u′′, e′′, v′′) 6= (u, e, v), abort

Fig. 6. GK–SPOKE

5.4 KV–PAKE Construction and KV–SPOKE

KV–PAKE. Our third construction is a one-round PAKE, depicted in Fig. 7, from the client point
of view, but the server does exactly the same thing, since this is a one-round protocol, where the
two flows can be sent independently to each other.

Client C (πC) CRS: (parameters, pk, pk′) Server S (πS,C)
hkC

$← HashKG(L′) ; hpC ← ProjKG(hkC , L
′,⊥)

`C = (C, S, hpC) ; rC
$← ; cC ← Enc`C (pk, πC ; rC)

C, hpC , cC−−−−−−−−−→
`S = (S,C, hpS)

S, hpS , cS←−−−−−−−−−
H ′C ← ProjHash(hpS , L

`C
πC , cC , rC)

HS ← Hash(hkC , L
`S
πC , cS)

KC ← H ′C ×HS

Fig. 7. Generic KV–PAKE Construction

It requires an IND-PCA encryption scheme ES with a KVSPHF. We have the following security
theorem:

Theorem 5. We suppose that the two SPHF are perfectly smooth. Then, for the KV–PAKE
construction, the advantage of any adversary A in the BPR security game (either with basic
freshness and dynamic corruptions, or with forward-secure freshness in the AFP setting but only
with static corruptions) is:

Adv(A) ≤ qs × 2−m + (2qe + qs)× Adv
ind-pca
ES (t) +

qeqs
22n

,

where t is approximately the running time of A, qe and qs are the number of Execute and Send-
queries, n is the entropy of both the projected keys and the ciphertexts, and m is the entropy of
the passwords.

Proof. This proof is now close to the proof from [KV11], but also to [BBC+13a]. The proof
consists in proving that the real attack game Greal = G0 is indistinguishable from a game in
which no actual password is used, but just at the end or at the corruption time to control whether
the flag Win has to be set to True or not. This flag is initially set to False, and at the end of the
game, we say the adversary wins if b′ = b, or if Win = True. We will also make the adversary win
the game when a quite unlikely collision appears between two simulated flows (flag Coll set to
True, see Game G6).

23

Game G1: We first modify the way Execute-queries between two compatible users are an-
swered. Since the hashing keys are known, we compute the common session key as

K = KS = KC = Hash(hkC , L
`S
πS,C

, cS)× Hash(hkS , L
`C
πC
, cC).

This does not change anything thanks to the correctness of the SPHFs, and one gets
AdvG1(A) = AdvG0(A).

Game G2: Since the random coins are not needed anymore, we replace cS and cC by encryptions
of the dummy passwords 0S and 0C . This is indistinguishable from G1 under the IND-CPA
property of the encryption scheme, for each Execute-query between two compatible users. Us-
ing a classical hybrid technique, one thus gets |AdvG2(A)−AdvG1(A)| ≤ 2qe,1×Adv

ind-cpa
ES (t),

where qe,1 is the number of Execute-queries between two compatible users.
Game G3: We replace the common session key by a truly random value. Since the languages

are not satisfied, the perfect smoothness guarantees perfect indistinguishability: AdvG3(A) =
AdvG2(A).

Game G4: We now modify the way Execute-queries between two incompatible users are an-
swered: we replace both session keys

KC = ProjHash(hpS , L
`C
πC
, cC , rC)× Hash(hkC , L

`S
πS,C

, cS)

KS = Hash(hkS , L
`C
πC
, cC)× ProjHash(hpC , L

`C
πS,C

, cS , rS)

(for the client and the server) by two independent truly random values. Thanks to the perfect
smoothness of the KVSPHF, Hash(hkC , L`SπS,C , cS) and Hash(hkS , L

`C
πC
, cC) are completely

independent random values, since the passwords are different. And we have AdvG4(A) =
AdvG3(A).

Game G5: Since the random coins are not needed anymore for these Execute-queries between
two incompatible users, we replace cS and cC by encryptions of the dummy passwords 0S
and 0C .
This is indistinguishable from G4 under the IND-CPA property of the encryption scheme,
for each Execute-query between two incompatible users. Using a classical hybrid technique,
one thus gets |AdvG5(A) − AdvG4(A)| ≤ 2qe,2 × Adv

ind-cpa
ES (t), where qe,2 is the number of

Execute-queries between two incompatible users.
Game G6: To simplify the following games, we now consider the games in which a collision

appears between flows (hp, c) generated via an Execute-query and a Send-query: we set Coll
to True, and stop the simulation. Since this makes the adversary win, this change can only
increase the advantage of the adversary. Therefore, we have: AdvG5(A) ≤ AdvG6(A).

Game G7: We now modify the way the Send1-queries are answered, by using a OPCA oracle on
ES, or alternatively knowing the decryption key sk. More precisely, when a message (hp, c) is
sent, in the name of some instance U i and to some simulated instance V j , four cases can
happen:
– it is not a message generated by the simulator in the name of this instance U (via a

Send0-query or an Execute-query), then we first check whether c contains the expected
password or not, with the label ` = (U, V, hp):
1. if the expected password is encrypted, then we set Win to True, and stop the

simulation;
2. otherwise, we choose the session key K at random;

– it is a message generated in the name of some U i′ (for the same player U):
3. if U and V are compatible, we know the associated hkU , so we can compute H ′V

using hkU (as HV , and so without the random coins rV of cV). They both come up
with the same key K;

4. otherwise, we choose a random session key K.

24

The change in the first case can only increase the advantage of the adversary, while the
changes in the second and fourth cases are indistinguishable under the perfect smoothness of
the KVSPHF. The correctness of the KVSPHF implies the indistinguishability of the third
case. Therefore, we have: AdvG6(A) ≤ AdvG7(A).

Game G8: We now modify the way the Send0-queries are answered: since the random coins r
are not needed anymore by the simulated players to compute hash values, we replace c by an
encryption of the dummy password 0U (up to the corruption of the associated password).
This is indistinguishable under the IND-PCA property of the encryption scheme ES, since
we still need to be able to test the correct password encrypted by the adversary (see G7):
the simulator has still access to the OPCA oracle for ES. Using a classical hybrid technique,
one thus gets |AdvG8(A) − AdvG7(A)| ≤ qs0 × Adv

ind-pca
ES (t), where qs0 is the number of

Send0-queries.
Game G9: In this final game, Win is initially set to False, and we target a specific client C: for

all the executions and flows not involving this client, we do the simulation with the correct
password. However, we do not choose πC from the beginning. We thus ignore the cases 1
during the game, simulating them as cases 2, and we will just check whether Win has to be
set to True at the very end only, or when a corruption happens, using the decryption key sk.
Again, as in the previous proofs, in this game, AdvG9(A) ≤ qs × 2−m + qeqs0/2

2n.

In conclusion, the global advantage of any adversary against a specific client C in the PAKE
protocol is bounded by

qs × 2−m + (2qe + qs)× (Adv
ind-pca
ES (t)) +

qeqs0
22n

,

where qe and qs are queries involving C. By summing on all the clients, one gets

AdvGreal(A) ≤ qs × 2−m + (2qe + qs)× Adv
ind-pca
ES (t)) +

qeqs0
22n

,

where qe and qs are the number of Execute and Send-queries, and n is the entropy of both the
projected keys and the ciphertexts.

Forward-Secrecy and Multiple Test-Queries. The same remarks as in the security proof of
GL–PAKE still hold.

KV–SPOKE: KV – Simple Password-Only Key Exchange (Fig. 8). Using our new Short
Cramer-Shoup encryption scheme and its associated KVSPHF, we obtain the most efficient one-
round PAKE known so far: It is based on the plain DDH assumption, and consists of 5 group
elements to be sent by the each user. They both have to compute 14 exponentiations.

Using the above security bounds for the encryption schemes, one gets, for the basic freshness
in the BPR setting, or for the forward-secure freshness in the AFP setting with static corruptions:

Adv(t) ≤ qs × 2−m + 4Q× (Advddh
G (t) + Succcoll

H (t)) +
2Q2

p
,

where qs is the number of Send-queries, Q is the global number of oracle queries, and m is the
min-entropy of the passwords.

Acknowledgments

The second author would like to thank Léo Ducas for the discussion they had on PAKE. This
work was supported in part by the French ANR-12-INSE-0014 SIMPATIC Project, the CFM
Foundation, and the European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

25

Client C (πC) Server S (πS,C)
CRS: (param = (G, p, q), pk = (h, c, d) ∈ G3)

(α′1, α
′
2, β
′, γ′)

$← Z4
p

(t′1 ← gα
′
1hβ

′
cγ
′
, t′2 ← gα

′
2dγ
′
) ∈ G2

r
$← Zp ; (u← gr, e← hrgπC , v ← (cdξ)r) ∈ G3,

with ξ ← HSCS(C, S, t
′
1, t
′
2, u, e)

C, t′1, t
′
2, (u, e, v)−−−−−−−−−→

H ′C ← (t1t
ξ
2)
r S, t1, t2, (u

′, e′, v′)←−−−−−−−−−
HS ← u′α

′
1+ξ
′α′2(e′/gπC)β

′
v′γ
′

with ξ′ ← HSCS(S,C, t1, t2, u
′, e′)

KC ← H ′C ×HS

Fig. 8. KV–SPOKE

References

ABB+13. M. Abdalla, F. Benhamouda, O. Blazy, C. Chevalier, and D. Pointcheval. SPHF-friendly non-interactive
commitments. In ASIACRYPT 2013, Part I, LNCS 8269, pages 214–234. Springer, Heidelberg,
December 2013. (Page 4.)

ACP09. M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for conditionally extractable
commitments. In CRYPTO 2009, LNCS 5677, pages 671–689. Springer, Heidelberg, August 2009.
(Pages 2 and 4.)

AFP05. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the
three-party setting. In PKC 2005, LNCS 3386, pages 65–84. Springer, Heidelberg, January 2005.
(Page 11.)

AP05. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange protocols. In
CT-RSA 2005, LNCS 3376, pages 191–208. Springer, Heidelberg, February 2005. (Page 4.)

AP06. M. Abdalla and D. Pointcheval. A scalable password-based group key exchange protocol in the
standard model. In ASIACRYPT 2006, LNCS 4284, pages 332–347. Springer, Heidelberg, December
2006. (Pages 2 and 4.)

BBC+13a. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New smooth projective hash
functions and one-round authenticated key exchange. Cryptology ePrint Archive, Report 2013/034,
2013. http://eprint.iacr.org/2013/034. (Page 22.)

BBC+13b. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New techniques for SPHFs
and efficient one-round PAKE protocols. In CRYPTO 2013, Part I, LNCS 8042, pages 449–475.
Springer, Heidelberg, August 2013. (Pages 3, 4, 7, and 8.)

BBP04. M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for a
hybrid-encryption problem. In EUROCRYPT 2004, LNCS 3027, pages 171–188. Springer, Heidelberg,
May 2004. (Page 4.)

BCP03. E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient password-based key
exchange. In ACM CCS 03, pages 241–250. ACM Press, October 2003. (Page 4.)

BCP04. E. Bresson, O. Chevassut, and D. Pointcheval. New security results on encrypted key exchange. In
PKC 2004, LNCS 2947, pages 145–158. Springer, Heidelberg, March 2004. (Page 4.)

BDPR98. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-
key encryption schemes. In CRYPTO’98, LNCS 1462, pages 26–45. Springer, Heidelberg, August 1998.
(Page 1.)

BGS06. J.-M. Bohli, M. I. Gonzalez Vasco, and R. Steinwandt. Password-authenticated constant-round group
key establishment with a common reference string. Cryptology ePrint Archive, Report 2006/214, 2006.
http://eprint.iacr.org/2006/214. (Page 4.)

Ble98. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS #1. In CRYPTO’98, LNCS 1462, pages 1–12. Springer, Heidelberg, August 1998. (Page 1.)

BM92. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure against
dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer
Society Press, May 1992. (Page 3.)

BM93. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-based protocol secure
against dictionary attacks and password file compromise. In ACM CCS 93, pages 244–250. ACM
Press, November 1993. (Page 3.)

BMP00. V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange using
Diffie-Hellman. In EUROCRYPT 2000, LNCS 1807, pages 156–171. Springer, Heidelberg, May 2000.
(Page 4.)

BPR00. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary
attacks. In EUROCRYPT 2000, LNCS 1807, pages 139–155. Springer, Heidelberg, May 2000. (Pages 2,
4, and 11.)

http://eprint.iacr.org/2013/034
http://eprint.iacr.org/2006/214

26

BR95. M. Bellare and P. Rogaway. Provably secure session key distribution: The three party case. In 27th
ACM STOC, pages 57–66. ACM Press, May / June 1995. (Page 4.)

BR04. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption.
Cryptology ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/2004/331. (Page 9.)

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001. (Page 4.)

CGH98. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited (preliminary
version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998. (Page 4.)

CHK+05. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable password-
based key exchange. In EUROCRYPT 2005, LNCS 3494, pages 404–421. Springer, Heidelberg, May
2005. (Pages 2 and 4.)

CS98. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In CRYPTO’98, LNCS 1462, pages 13–25. Springer, Heidelberg, August
1998. (Pages 2, 3, and 6.)

CS02. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT 2002, LNCS 2332, pages 45–64. Springer, Heidelberg,
April / May 2002. (Pages 2, 4, and 7.)

DDN91. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In 23rd ACM
STOC, pages 542–552. ACM Press, May 1991. (Page 1.)

DDN00. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing,
30(2):391–437, 2000. (Page 1.)

DH76. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976. (Page 3.)

ElG84. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO’84, LNCS 196, pages 10–18. Springer, Heidelberg, August 1984. (Page 6.)

Gen08. R. Gennaro. Faster and shorter password-authenticated key exchange. In TCC 2008, LNCS 4948,
pages 589–606. Springer, Heidelberg, March 2008. (Pages 2 and 4.)

GK03. S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th FOCS, pages
102–115. IEEE Computer Society Press, October 2003. (Page 4.)

GK10. A. Groce and J. Katz. A new framework for efficient password-based authenticated key exchange. In
ACM CCS 10, pages 516–525. ACM Press, October 2010. (Pages 2, 3, 4, 12, and 19.)

GL01. O. Goldreich and Y. Lindell. Session-key generation using human passwords only. In CRYPTO 2001,
LNCS 2139, pages 408–432. Springer, Heidelberg, August 2001. (Page 4.)

GL03. R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In
EUROCRYPT 2003, LNCS 2656, pages 524–543. Springer, Heidelberg, May 2003. http://eprint.
iacr.org/2003/032.ps.gz. (Pages 2, 3, 4, 7, 12, and 14.)

GM84. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984. (Page 1.)

GS04. R. Gennaro and V. Shoup. A note on an encryption scheme of kurosawa and desmedt. Cryptology
ePrint Archive, Report 2004/194, 2004. http://eprint.iacr.org/2004/194. (Page 8.)

GS08. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-
CRYPT 2008, LNCS 4965, pages 415–432. Springer, Heidelberg, April 2008. (Page 2.)

Jab97. D. P. Jablon. Extended password key exchange protocols immune to dictionary attacks. In 6th
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE 1997), pages 248–255, Cambridge, MA, USA, June 18–20, 1997. IEEE Computer Society.
(Page 3.)

JG04. S. Jiang and G. Gong. Password based key exchange with mutual authentication. In SAC 2004, LNCS
3357, pages 267–279. Springer, Heidelberg, August 2004. (Pages 2 and 4.)

KD04. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO 2004,
LNCS 3152, pages 426–442. Springer, Heidelberg, August 2004. (Page 8.)

KMTG05. J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only authenticated key
exchange. In ACNS 05, LNCS 3531, pages 1–16. Springer, Heidelberg, June 2005. (Pages 2 and 4.)

KOY01. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-
memorable passwords. In EUROCRYPT 2001, LNCS 2045, pages 475–494. Springer, Heidelberg, May
2001. (Pages 2 and 4.)

KOY03. J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in password-only key exchange protocols. In
SCN 02, LNCS 2576, pages 29–44. Springer, Heidelberg, September 2003. (Pages 2, 4, 14, and 17.)

KOY09. J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated key exchange using weak
passwords. Journal of the ACM, 57(1):78–116, 2009. (Pages 2, 4, 14, and 17.)

KV11. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key exchange. In
TCC 2011, LNCS 6597, pages 293–310. Springer, Heidelberg, March 2011. (Pages 2, 3, 4, 12, and 22.)

Luc97. S. Lucks. Open key exchange: How to defeat dictionary attacks without encrypting public keys. In
Workshop on Security Protocols, École Normale Supérieure, 1997. (Page 3.)

http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2003/032.ps.gz
http://eprint.iacr.org/2003/032.ps.gz
http://eprint.iacr.org/2004/194

27

Mac02. P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange. Contributions
to IEEE P1363.2, 2002. (Page 4.)

Nie02. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing
encryption case. In CRYPTO 2002, LNCS 2442, pages 111–126. Springer, Heidelberg, August 2002.
(Page 4.)

NR97. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In
38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997. (Page 2.)

NY90. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Page 1.)

OP01. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem
Transform. In CT-RSA 2001, LNCS 2020, pages 159–175. Springer, Heidelberg, April 2001. (Pages 2
and 5.)

RS92. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In CRYPTO’91, LNCS 576, pages 433–444. Springer, Heidelberg, August 1992. (Page 1.)

Sho99. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM, 1999. (Page 4.)
Sho04. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint

Archive, Report 2004/332, 2004. http://eprint.iacr.org/2004/332. (Page 9.)
STW95. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted key exchange. ACM

SIGOPS Operating Systems Review, 29(3):22–30, July 1995. (Page 3.)

http://eprint.iacr.org/2004/332

	Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks
	Introduction
	Indistinguishabiliy under Plaintext-Checkable Attacks
	A new IND-PCA encryption scheme
	Applications to PAKE
	Organization
	Publication Note
	Related Work on PAKE

	Public-Key Encryption
	Definition
	Relations with the IND-CPA and IND-CCA Security Notions
	Classical Schemes
	Smooth Projective Hash Functions

	The Short Cramer-Shoup Encryption Scheme
	Smooth Projective Hash Functions
	IND-PCA Security Proof

	PAKE Security Models
	The Bellare-Pointcheval-Rogaway Security Model
	The Abdalla-Fouque-Pointcheval (AFP) Security Model

	PAKE Constructions
	Public-Key Encryption Schemes
	GL–PAKE Construction and GL–SPOKE
	GK–PAKE Construction and GK–SPOKE
	KV–PAKE Construction and KV–SPOKE

