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Abstract 

Citizen science is a growing phenomenon.  With millions of people involved and billions of in-

kind dollars contributed annually, this broad extent, fine grain approach to data collection 

should be garnering enthusiastic support in the mainstream science and higher education 

communities.  However, many academic researchers demonstrate distinct biases against the 

use of citizen science as a source of rigorous information.  To engage the public in scientific 

research, and the research community in the practice of citizen science, a mutual 

understanding is needed of accepted quality standards in science, and the corresponding 

specifics of project design and implementation when working with a broad public base.  We 

define a science-based typology focused on the degree to which projects deliver the type(s) and 

quality of data/work needed to produce valid scientific outcomes directly useful in science and 

natural resource management.  Where project intent includes direct contribution to science 

and the public is actively involved either virtually or hands-on, we examine the measures of 

quality assurance (methods to increase data quality during the design and implementation 

phases of a project) and quality control (post hoc methods to increase the quality of scientific 

outcomes).  We suggest that high quality science can be produced with massive, largely one-off, 

participation if data collection is simple and quality control includes algorithm voting, statistical 

pruning and/or computational modeling.  Small to mid-scale projects engaging participants in 

repeated, often complex, sampling can advance quality through expert-led training and well-

designed materials, and through independent verification.  Both approaches – simplification at 

scale and complexity with care – generate more robust science outcomes. 
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Introduction 

On 22 December 2014, Virginia started her sixth beached bird survey near Ocean Shores, 

Washington.  Trained only two months previously, she was still on the learning curve.  In fact, 

she got a lot of practice that day.  Virginia and her survey partner found 425 carcasses in less 

than a kilometer, and photographed, tagged and identified all of them.  This single survey 

marked the peak of the largest marine bird mass mortality event ever documented in the 

Pacific Northwest of the U.S. (Jones et al. 2018).  A documentation only possible because more 

than 500 trained participants of the BeachCOMBERS, BeachWatch, and COASST beached bird 

survey programs conducted over 1,650 standardized, effort-controlled surveys at 264 sites from 

Morro Bay, California to Neah Bay, Washington. At the same time, program experts verified 

carcass identification from the collected evidence (photographs, standard measurements, foot 

type).  Finally, almost 20 scientists, including oceanographers, atmospheric scientists, marine 

ecologists, veterinary pathologists and seabird biologists brought their expertise to bear in 

determining the extent, intensity and causality of the event.  In this story, citizen science and 

science are synonymous.  Is this the norm, or the exception?  In this paper, we examine the 

attributes of citizen science leading to rigorous and robust science.   

 

We define citizen science as projects in which members of the public engage directly in 

research developed by or with scientists to address particular questions and/or issues (Irwin 
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1995; Bonney et al. 2009a).  Because the term "citizen" can be politically problematic and the 

term "volunteer" is not always appropriate, we refer to individuals directly involved in citizen 

science projects and not including project staff as "participants."  Within natural science, fields 

utilizing citizen science already include: archaeology (Bovy et al. 2016), astronomy (Fortson et 

al. 2012), biochemistry (Eiben et al. 2012), ecology (Dickinson et al. 2010), geography 

(Goodchild 2007), geology (Powell et al. 2013), and oceanography (Hays et al. 2005).  This 

diversity might suggest that academic and professional science is broadly accepting of public 

involvement; however, recent studies indicate that the mainstream scientific community 

remains skeptical of the public as a trusted source of scientific information (Riesch and Potter 

2014; Burgess et al. 2017).  In many cases, these misgivings are rooted in the demonstration 

that non-experts in a citizen science program do not always perform a scientific task (usually 

data collection) to the standards desired by researchers.  Thus, the evidence that some citizen 

science programs produce high quality data of immediate use to science (e.g., Cooper et al. 

2014; Swanson et al. 2016) does not translate into the conclusion that all citizen science 

programs can.   

 

Defining the Goals 

Many citizen science projects assert production of data in service to science or resource 

management as a goal. Theobald et al. (2015) found that 97% of 388 surveyed biodiversity 

citizen science projects stated their primary goal was to contribute to science and/or advance 

scientific understanding.  However, only 12% of projects had demonstrably contributed to a 

science-focused peer-reviewed publication (one measure of scientific contribution).  Even if this 
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publication rate is underreported due to "cryptic" use of the term citizen science only outside 

of the abstract and keywords if at all (Cooper et al. 2014), the discrepancy suggests that there 

may be large differences in what project managers, and research scientists, consider evidence 

of scientific use.  In assessing the potential for bonafide science as an outcome of citizen 

science, we invoke the concept of fitness to use or fitness to purpose (Juran 1951), or the 

degree to which the quality-related elements or activities of an organization - here a citizen 

science project - can result in the declared purpose.  Simply put, projects claiming science as a 

primary goal or "purpose" should adhere to accepted quality standards within science (Wiggins 

et al. 2018).   

 

However, science is not the only goal of citizen science.  Other common goals include 

education, community empowerment and personal fulfillment.  Science education and/or 

increasing science literacy has long been a major thrust of citizen science programming (Bonney 

et al. 2009b; Wiggins and Crowston 2011).  Community goals, often related to environmental or 

social justice issues, are an explicit outcome of community-based, community-driven, and 

participant action research projects (Wilderman et al. 2004; Cooper et al. 2007; Danielsen et al. 

2009).  And for the individual participant, personal fulfillment can include learning goals, the 

desire to contribute to science, or simply engaging in something enjoyable or fun (Raddick et al. 

2010; Wright et al. 2015).   

 

While we recognize the value of citizen science to both personal and societal outcomes, this 

paper explores strategies for better ensuring projects can meet declared goals based on 
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scientific outcomes (i.e., optimizing project fitness to scientific purpose).  Here we distinguish 

between the practice of science (including authentic science experiences on the part of the 

participants) and science outcomes (new information or knowledge, or applied work based on a 

scientific understanding of how the world works), where the latter must include the former, but 

the reverse is not the case.  Our goal is to facilitate both acceptance and use of citizen science 

by the professional science community, and intentional design of projects with science as a 

primary objective.  To that end, we: (1) present a science-focused typology that differentiates 

projects based on intent and activity; (2) define a process workflow to help identify design 

nexus points for science-focused projects; and (3) discuss quality control approaches to 

maximize data quality as a function of project scale and complexity. 

 

A Science-based Typology of Citizen Science 

Existing typologies of citizen science pivot on the degree to which participants are involved in 

tasks other than data collection. Bonney et al. (2009b) posited three points of project design 

along a continuum of interaction between scientist and participant.  Contributory projects - also 

referred to as virtual and/or investigative projects (Wiggins and Crowston 2011), externally-

driven monitoring with local data collectors (Danielsen et al. 2009), or distributed intelligence 

(Haklay 2013) - are designed by the mainstream science community with the role of data 

producer assigned to the public.  At the other end of the continuum are co-created projects 

which involve participants in all stages of the scientific process, and are often associated with 

particular communities and specific concerns such as air or water quality, as in "extreme citizen 

science" or community-based participatory science focused on highly marginalized and often 
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remote populations (Haklay 2013; Stevens et al. 2014).  In fact, there are a range of projects 

which confer increasing power and project ownership to non-scientist participants including 

autonomous local monitoring (Danielsen et al. 2009), community-based participatory research 

(Wilderman et al. 2004), and more generally "action" projects (Wiggins and Crowston 2011).  

What often sets these projects apart is the explicit movement of project results into the sphere 

of decision-making and governance.  In between these poles are collaborative projects 

expanding participants roles beyond data collector, from contributing to iterative versions of 

data collection protocols and training of new recruits, to results interpretation and defining the 

next phase(s) of the research (Cooper et al. 2007). 

 

What is apparent about most of these typologies is that they are centered on the roles and 

degree of control accorded to professional scientists versus other participants.  We suggest that 

a science-focused typology aimed at classifying projects according to their potential for 

inclusion in scientific research and science-based decision-making is also needed to guide the 

scientific community in identifying projects applicable to their work.  In lieu of a meta-analysis 

systematically reviewing attributes of all citizen science projects (e.g., the 1,800 projects 

currently listed in SciStarter.org), we generated our schema through an iterative process that 

extended a framework presented at the Waypoints of Science: Scaling Design, Development 

and Delivery of Citizen Science for Bonafide Science symposium held at the Citizen Science 

Association meeting in 2017.  Iterations were tested against: (1) all projects (unique projects = 

80) highlighted as examples in all previous literature proffering a typology or categorization of 

citizen science (i.e., see references above), (2) the 388 biodiversity citizen science projects 
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collected in the Theobald et al. (2015) meta-analysis, (3) projects managed directly by the 

authors, and projects associated with and/or analogous to or duplicative of those projects (e.g., 

all projects focused on beach habitats; projects focused on documenting phenology), and (4) all 

projects on data collection platforms managed by the authors (e.g., in the Zooniverse).  In total, 

over 500 projects were tested against our typology. 

 

The right-hand branch of Figure 1 - no/minimal data - is defined by projects for which the 

primary intent is not data collection at a level or scale needed to address an issue or question of 

scientific interest.  Education and awareness projects may well bring members of the public into 

direct contact with practicing scientists for the first time, and may provide individuals with 

authentic scientific experiences, without contributing to the advancement of science.  Examples 

include the Lost Ladybug Project (Gardiner et al. 2012) which focuses on youth programs to 

identify native and invasive ladybugs, and the youth-focused intertidal project Long-term 

Monitoring Program and Experiential Training for Students, or LiMPETS (Ballard et al. 2016).  In 

both of these examples, hundreds of middle school students annually gain authentic science 

experiences, become more aware of scientific practice and environmental issues, and may gain 

agency (permission to act) and expand their identity through participation (Ballard et al. 2016).  

However, standardized, effort-controlled, verifiable data at a spatio-temporal scale equivalent 

to questions of scientific interest are rarely produced.  Non-data collection tasks include a 

broad swath of activities where participants may be deeply engaged in assistance towards a 

goal that does not require the collection or processing of information, as in conservation action 

and restoration projects (Bruyere and Rappe 2007).  
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The left-hand branch - data generated - separates out projects where the primary intent is the 

creation of information, or data in service of a scientific goal.  We define “data” as an 

abstraction � a measurement, classification and/or count that individually or collectively 

characterizes an object, phenomenon or state � as well as the thing itself, as in a sample.  First, 

we divide projects by whether the participant is directly engaged in thinking, or is giving tacit 

permission for the use of "information and communication technologies" (ICT; Wiggins and 

Crowston 2011).  Passive participation ranges from computation, or the use of networked 

desktops and laptops to parallel process discrete "work packages" as part of big data projects 

(e.g., SETI@home, Rosetta@home, climateprediction.net), to sensing, defined as personally 

carrying and/or housing automated sensors which report data directly (e.g., Quake-Catcher 

Network, where participants host seismic sensors on their laptops; Cochran et al. 2009).  

Although science is clearly being accomplished in both cases, the participant is passive in the 

sense of a non-thinking contribution which can be accomplished without specific understanding 

of how their participation contributes to science. 

 

By contrast, active participation requires participants to engage directly in one or more of the 

tasks of the scientific process.  Types of activity can be divided into physical hands-on work and 

virtual citizen science - where the latter is conducted entirely through a computer interface, 

often online, whether that is situated in a kiosk at a visitor's center or in a science museum, at 

home, or on a mobile device.  Virtual citizen science capitalizes on crowdsourcing, a distributed 

production model that makes an open call for contributions from a large, undefined network of 
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people (Howe 2006) to achieve both faster task accomplishment and higher project-wide 

accuracy with no precondition or expectation of long-term engagement.  

 

Two basic approaches to crowdsourcing in service of science include: multiple independent 

classifications and competitive solution formulation.  In the former, the accuracy of the 

individual participant is secondary to the "wisdom of the crowd" emerging through the use of 

voting or aggregation algorithms (Fortson et al. 2012).  Advanced algorithms account for 

individual performance, assigning additional weight to responses from participants who are 

more accurate, and/or who contribute more (e.g. Marshall et al. 2016).  Zooniverse - an online, 

crowdsource classification platform currently hosting ~80 projects is the exemplar.  Zooniverse 

participants can choose to classify everything from camera-trapped mammals in East Africa 

(Snapshot Serengeti) to feather color from digital stills of museum specimens (Project Plumage) 

to leaves on growing plants (Leaf Targeting).  By contrast, competitive solution formulation uses 

the crowd to find the single best participant, as in the protein structure game Foldit (Khatib et 

al. 2011) or the multiple sequence alignment game Phylo (Kawrykow et al. 2012).  Task 

performance is tied directly to recognition and thus a degree of competition (e.g. Greenhill et al 

2014), and the "game" may become relatively distinct from the underlying science.   

 

Finally, hands-on citizen science is typified by a wide range of projects from laboratory-based 

work to field-based environmental science.  These projects include both monitoring and 

experimental studies, all of which require physical collection of data.  Sample collection includes 

direct contact with the sampled material, as in SoundCitizen, a water quality project requiring 
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participants to send in water samples for laboratory analysis (Keil et al. 2011); and/or may 

simply be a geo-referenced, time-stamped photograph, as in CrowdWater, which collects 

hydrological data based on photographs (Seibert et al. 2017).  In deduction, a decision is made 

based on the original data or evidence collected (e.g., species identification based on 

morphological characters), as in the fish identification dive program Reef Environmental 

Education Foundation Fish Survey Project (REEF; Thorson et al. 2014).  For verifiable deductions, 

the decision reached by a participant can be independently verified; that is, an expert can 

evaluate the collected evidence, as is the case with Earthwatch, where experts are on-site with 

participants (Chandler et al. 2012).  Non-verifiable deductions can still have high scientific value, 

especially when the volume or scale of data collected is high or large, as is the case for the 

Christmas Bird Count, or eBird (Sullivan et al. 2014).  In virtual projects, verification solutions 

are implicit in the crowdsource approach. 

 

Designing for Science and Citizen Science 

An increasing body of literature suggests that non-professional participants engaged in hands-

on, deductive citizen science may underperform relative to professionals.  For example, project 

participants tend to under-report common species and over-report rare species (Kremen et al. 

2011; Paul et al. 2014).  Participants over-report easy-to-identify, flashy, brightly colored or 

especially charismatic species (Ward 2014; Boakes 2016) and under-report cryptic species (Cox 

et al. 2012).  Non-professionals are less likely to master non-visual survey methods (e.g., 

acoustic surveys, scat surveys; Moyer-Horner et al. 2012), and are more likely to collect 

information non-systematically across the landscape (Boakes et al. 2016).  In contrast, a meta-
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analysis of 509 ecological and environmental citizen science projects (Pocock et al. 2017) found 

that "best quality of data" was associated with in-person training, production of associated 

materials (e.g., a protocol) and the use of specialized equipment for data collection.   

 

For citizen science to become an accepted form of bona-fide science, intentional design with 

attention to data quality is essential, including measures of quality assurance (the procedures 

to enhance data quality undertaken before and during data collection) and methods of quality 

control (the processes for improving quality after data collection).  Burgess et al. (2017) found 

that biodiversity scientists overwhelmingly agreed on the following quality assurance measures 

for field-collected data: documentation of sampling location, time and date; effort control via 

known area and/or time envelope of sampling; verifiable data; and data collection personnel 

trained by an expert.  

 

We abstracted the scientific process as a series of steps (left side, Figure 2) from project design 

through to publication and use, that can be understood as necessary in both science (flowchart 

in gray, Figure 2) and citizen science (flowchart in white, Figure 2).  The design of any scientific 

project design involves the selection of a sampling scale and a level of precision for data 

collection that match the question or issue at hand, as well as selecting a minimum sample size 

(N floor) that addresses the variability inherent in the system.  Once the data are collected, the 

post-processing step involves refining an analytic approach suited to the data and the question.  

The final step in science is presenting the work in a peer-reviewed publication. 

 

http://mc.manuscriptcentral.com/icbiol

Downloaded from https://academic.oup.com/icb/advance-article-abstract/doi/10.1093/icb/icy032/5001059
by University of Nebraska-Omaha user
on 29 May 2018



Quality Assurance in Citizen Science 

Citizen science as a method of science is not different, but requires additional attention to 

aspects of quality assurance.  During project design, intentional recruitment of target audiences 

can be key to success.  Individuals are differentially attracted to projects based on personal 

values and shared goals (Evans et al. 2005; Rotman et al. 2012).  Thus, making project goals 

explicit allows individuals who may have different, even antithetical, goals to consider whether 

their needs are being met, perhaps selecting another project more closely aligned to their own 

world-view.  Attention to ability, or level of content knowledge and skill development as novice 

participants, is also essential.  Projects are variably accessible relative to physical ability, 

economic status, and time available among other features (Pandya 2012).  Whether recruits 

can accomplish the work will also vary as a function of their "distance" from the content and 

the complexity of the tasks (Jung et al. 2005; Kosmala et al. 2016).  For instance, while some 

projects attract hobbyists with a high degree of skill and little need of formal training (e.g., 

birders, amateur astronomers - Jones et al. 2017a), many projects attract a broad swath of 

interested non-experts with little-to-no a priori training (Kelling et al. 2015).   

 

Within the realm of citizen science, project development follows from the intersection of 

participant ability and the sampling precision required by the project, and includes two types of 

interaction with participants: training and participant-specific materials.  While scientists prefer 

citizen science data collected by projects with in-person expert training (Burgess et al. 2017), 

online trainings can also be effective (Masters et al. 2015), and may be the only way to scale 

projects beyond local-to-regional geographies.  Project materials include, at a minimum, a well-
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developed protocol outlining all of the steps needed to perform tasks successfully, and project-

specific tools (e.g., measuring equipment, data sheets).  Parrish et al. (2017) suggest serial 

refinement of project materials - (in this case, a field key to beached birds) by non-professional, 

non-experts in the target audience in collaboration with project scientists - to identify and 

replace or explain jargon and otherwise clarify materials.  Co-creation and/or refinement of the 

training, protocol and associated data collection materials among scientists, project staff and 

project participants can improve both data quality and participant retention (Kim et al. 2011).  

Attention to cost-effectiveness, including both the price of provided materials and their 

durability, is important because the scaled success of a project - recruiting thousands of 

participants - should not cause its financial failure nor exclude potential participants in 

disadvantaged circumstances.   

 

In the delivery of the project, quality assurance can be affected through participant testing and 

attention to sampling.  Testing participant knowledge can be used to ensure that trainings are 

successful in delivering both content and skill (e.g., pre-post testing surrounding a training), as 

well as to ensure continued quality as participants engage in the practice of project tasks; that 

is, do the work.  For online image classification projects, inserting a certain proportion of 

images where the answer is already known can create an accuracy baseline for each 

participant.  Such evaluation built directly into the normal flow of activities (i.e., embedded 

assessment) can also support timely feedback.  For participants, understanding what they are 

doing incorrectly and how to correct it, as well as recognition of correctly accomplished tasks, 

can be empowering and lead to increased retention (Haywood et al. 2016).  For project 
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designers, understanding process breakdowns is essential for adaptively managing project 

training and materials to maximize data quality, as well as to understand the types and levels of 

error resulting from hundreds to thousands of data collectors.  Although minimum sample size 

is set by system variability, maximum sample size (N ceiling) should be set relative to what 

individual participants can reasonably be expected to contribute, multiplied by the number of 

participants (minimally) in the program.  Because citizen science is, by definition, the work of 

the many, attending to the sampling error inherent in this design is important, and may further 

increase sampling needs depending on whether participants are collecting deductive data that 

is (or isn't) backed up by evidence.  

 

Data ingestion is automatic in some projects (e.g., all passive participation and some virtual, 

and sample collection projects) such that transcription error is non-existent. Virtual projects 

focused on classification (e.g., projects within the Zooniverse) minimize transcription error via 

the crowdsource design of multiple, independent classifiers for each task.  However, hands-on 

projects may provide participants with the opportunity to input data they collect, introducing 

another source of error in the data.  Mobile technologies may offer solutions by automatically 

logging some data (e.g. date, time, location, limited environmental data, photographic 

evidence).   

 

Quality Control in Citizen Science 

Within citizen science, post-processing prior to analysis offers many possibilities for post-hoc 

improvement to data via quality control procedures, even in cases where quality assurance has 
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been relatively weak.  In Figure 3, we conceptualize citizen science projects from those 

featuring relatively simple tasks requiring little-to-no deductive reasoning on the part of the 

participant (e.g., collecting a water sample, collecting a photograph sample) to those requiring 

participants to engage in complicated work requiring advanced training, deductive reasoning, 

mastery through practice, and/or a mental model of the system (e.g., species identification, 

performing chemical analyses on water quality samples).  Orthogonal to the axis of task 

complexity, we array projects as a function of scale, from local projects with relatively few 

participants to projects that span regions (e.g. large marine ecosystems, countries or 

continents) up to - at least theoretically - the globe.  While not completely interchangeable, 

projects with a larger geographic extent also tend to be those with higher participant numbers 

(Theobald et al. 2015).  Virtual projects, which are effectively aspatial, can similarly scale in 

participant numbers and total tasks completed. 

 

For simple tasks (left side of Figure 3), data quality can be improved by "outsourcing" the 

thinking to scientists, that is, restricting citizen involvement to straightforward sample 

collection tasks while scientists receive, verify, catalog and analyze the samples and the 

resulting data (i.e., do the thinking).  In the case of virtual projects with numbers of participants 

(upper left quadrant of Figure 3), data quality can be improved via crowdsourcing tasks to 

multiple individuals, with task completion automatically based on algorithm voting or 

consensus metrics (e.g., species identification projects on the Zooniverse platform). For 

example, Swanson et al. (2016) found that crowdsourced (>10 people classifying an image) 

identifications of images in Snapshot Serengeti were slightly (97.9%) more accurate than even 
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expert identifications (96.6%).  Algorithms can also identify individual players who are 

particularly adept, or inept, and assign coefficients accordingly (Hines et al. 2015), creating 

more accurate data (Marshall et al. 2016) - akin to statistical pruning.  While outsourcing is 

constrained by scientific resource time to smaller projects, crowdsourcing supports very large 

projects with millions of images to be processed (e.g., Lintott et al. 2008). Here, even inaccurate 

answers can prove valuable information if a given participant’s bias is systematic (Masters et al. 

2016).   

 

As task complexity increases at small project scales (lower right quadrant of Figure 3), options 

for quality control shift towards expert intervention.  On-site expert facilitation and mentoring 

is exemplified by Earthwatch where scientists train, mentor and remain on-site with 

participants throughout the tenure of the project (Chandler et al. 2017).  In independent record 

verification, participants’ deductions are subsequently verified via photographs or specimens.  

For example, in the COASST program all species identifications (marine birds) are independently 

verified by experts via participant-collected primary evidence (foot type, standardized 

measurements, scaled dorsal and ventral photographs), a process which improves identification 

to species level from 83% (participant rate) to 92% (Parrish et al. 2017).  Verification can also 

proceed at the local phenomenological level, as in tracking the invasion front of the Asian tiger 

mosquito (Aedes albopictus) in Spain, where participant reports via the Mosquito Alert app 

were independently verified via ovitrapping (Palmer et al. 2017). 
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As project scales increase to continental and beyond (upper right quadrant of Figure 3), quality 

control of individual data points may be less practical as volume prohibits comprehensive 

expert review, but statistical pruning, flagging, and other post hoc techniques can weed out 

anomalous data points (e.g., mixed effect models and machine learning: Bird et al. 2013; false-

positive occupancy models: Pillay et al. 2014), or computational models can be used to create 

smoothed, interpolated versions of the original data (e.g., spatiotemporal exploratory models: 

Hochachka et al. 2012).  In between, participant profiling (e.g., trust metrics: Hunter et al. 2012; 

occupancy-detection-experience model: Hochachka et al. 2012) can be used to winnow or 

weight data based on participants’ known performance levels; however, this approach can 

introduce difficult decisions about the ethics of selective data use. 

 

Use Beyond Science 

For most academics, the ultimate step is dissemination of results into the scientific literature 

(i.e., "publication/use" step in Figure 2), simultaneously validating the work through review by 

scientific peers while daylighting the work to the larger scientific community.  However, long-

term maintenance of a citizen science project requires two additional and on-going steps: 

demonstrating that science is applied as promised, and sharing the results with participants 

(Cox et al. 2015).  For some projects, taking results directly into "real world" decision-making 

processes (e.g., conservation, resource management) is the social contract that contributors 

make as a precondition for participation (Haywood et al. 2016).  For place-based, 

environmental justice projects, such decision-making is the primary, even exclusive, goal 

(Haklay 2013).   
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Finally, returning "results-at-scale" to participants in suitable text and graphical forms (i.e. data 

storification and visualization, Figure 2) can be essential to participant retention (Cox et al. 

2015).  Species migration (e.g., eBird - Sullivan et al. 2014), the timing of spring flowering (e.g., 

National Phenology Network - Rosemartin et al. 2014), the occurrence and location of extreme 

weather (e.g., CoCoRaHS - Gochis et al. 2015), the spread of disease across a population (e.g., 

Sea Star Wasting - Montecino-Latorre et al. 2016), the extent of a marine bird mass mortality 

event (e.g., COASST - Jones et al. 2017b) - these "data stories" are all patterns that transcend 

the ability of a single participant to directly observe the emergent pattern.  Without these 

stories, participants cannot "see" their own data as contributing to the greater whole, and may 

be unaware of actual data uses.  With these stories, participants refer to the work as 

"purposeful and powerful" and may be energized to take action, from continued engagement 

to calling for conservation stewardship or other resource management outcomes (Haywood et 

al. 2016). 

 

Conclusions 

Citizen science progresses through the actions of the many.  The collective work of hundreds to 

hundreds-of-thousands creates datasets that bound phenomena and address issues of scientific 

and management interest at spatio-temporal scales otherwise unattainable (Theobald et al. 

2015).  With this promise comes responsibility: 

�� from the scientific community to erase or at least understand bias and to embrace well-

designed, scale- and content-appropriate projects as a valid source of information; 
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�� from project designers to attend to the specifics of quality assurance and quality control 

needed to produce rigorous, high quality data, if science is the primary goal; 

�� from project owners and managers to honestly advertise the type of project, depth of 

participant engagement, and quality and limitations of project data, and to ensure 

fitness to declared purpose; 

�� from participating scientists to follow through on data use and data stories providing 

both the scientific community and the participant corps and their communities with 

results-at-scale; 

�� and from participants to choose projects wisely according to their values and goals, to 

contribute as much and as well as they can, and to hold project managers to their 

declarations of purpose or intent. 

 

Without judgement, we suggest the use of a science-based typology to sort existing projects 

will increase the "honest signaling" needed to help the mainstream science community see and 

understand citizen science as a bonafide method for generating legitimate scientific outcomes.  

Furthermore, the degree to which the individual participant: (1) understands and values the 

precision and accuracy required of the task(s) they are performing; (2) applies "thinking" skills 

requiring mastery of simple tasks to successfully perform more complex ones (e.g. species 

identification); and (3) can literally "see" their work (data collection or otherwise) within the 

larger context defined by the science at scale, will structure their degree of engagement and 

will impact data quality.  Because task performance is often dependent on accrued experience 

within a project (Kelling et al. 2015; Kosmala et al. 2016), the strategies we have outlined herein 
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(i.e. Figure 2) support the "learning curve" and improve retention by providing transparency 

about project goals and data quality processes that match fitness to purpose (Juran 1951). 

 

Pocock et al. (2017) found that the recent 10% per annum growth rate in ecological and 

environmental citizen science has primarily been realized through online projects with mass, 

often short-term, participation in low-complexity data collection.  Growth in field-based, hands-

on approaches is more difficult, but can return data on global change impacts from climate to 

disease to invasions and ecosystem change (Theobald et al. 2015).  Thus, we argue that both 

approaches – simplification at scale, and complexity with care – are valid and valuable 

strategies for citizen science projects to generate rigorous and robust science outcomes. 
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Figure Legends 

 

Figure 1. A typology of citizen science separating projects according to scientific intent and 

participant activities.  The first branching separates projects by primary goal: generation of 

science outcomes (e.g., data generated) or other goals (e.g., education, community 

empowerment or personal fulfillment) for which data generation is possible but not necessary.  

Note any single branch point does not define mutually exclusive space (e.g., 

awareness/education is possible on the left side of the tree, and deduction can be 

accomplished virtually). 

 

Figure 2. The steps of science (listed sequentially at left) outlined as a flowchart.  At each stage, 

the necessary elements inherent in all science projects are highlighted in bold print and 

encased within the gray box across stages.  Additional elements specific to citizen science are 

highlighted in bold italics, and fall outside the gray box. 

 

Figure 3. Approaches to quality control in citizen science as a function of the scale and 

complexity of the task(s) performed by participants.  Shading is used to visually highlight the 

different approaches.  Regions of overlap indicate intersections of task complexity and sample 

size within which multiple solutions might be found. 
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