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Abstract This paper discusses an asymmetric cryptosystem C* which 
consists of public transformations of compIerity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(m2n3) and secret 
transformations of complexity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO( (mn)'(m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ logn)), where each complex- 
ity is measured in the total number of bit-operations for processing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan 
mn-bit message block. Each public key of C' is an n-tuple of quadratic 
n-variate polynomials over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGF(2m) and can be used for both verifying 
signatures and encrypting plaintexts. This paper also shows that for C" 
it is practically infeasible to extract the n-tuple of n-variate polynomials 
representing the inverse of the corresponding public key. 

I. INTRODUCTION 

With the aid of public-key cryptography"], how much computation is 
sufficient to keep the authenticity and the confidentiality of digital data? 
Reducing the computational complexity implies wider and deeper uti- 
lization of the fascinating nature of public-key cryptography. This paper 
gives an answer to  this challenging question by constructing an asymmet- 
ric cryptosystem C' (called c-star) which consists of public transforma- 
tions of complexity O( m2n3) and secret transformations of complexity 
O((mn)'(m + logn)), where each complexity is measured in the total 
number of bit-operations for processing a message block of mn bits. 

Each public key of C" is an n-tuple 
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of quadratic n-variate polynomials over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= GF(2m) ,  and the corre- 
sponding public transformation translates a message block ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE K“ into 
another message block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 E K”, by evaluating F at (. Here the term 
“quadratic polynomials ” means “polynomials of degree 2”, and the de- 
gree d e g ( P )  of a polynomial 

P(Z0, ...) Z,4) = C { P :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo. . . i ,_  l z~ . . .ZB- *~ io , . . . , i , _ l  %,-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O}, 

is determined by 
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On the other hand, Fell and Diffiel61 have proposed an approach 

of combining DES-like structure into multivariate polynomials and con- 
cluded that their approach seems not to produce polynomial-tuples sat- 
isfying the request zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) since the degrees of the original and the inverse 
polynomial-tuple are the same. Here, the degree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeg(Q) of a polynomial- 
tuple Q = [&('), . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(*-')] is defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas rnas(deg(&(j))lj = 0, - .  * ,  t-l}. 

Also, Z h o ~ [ ~ $ ~ ]  have proposed a cryptosystem using polynomial-tuples 
over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGF(2)  constructed by a method similar to Fell's and Diffie's. 

However, at least by the method due to Matsumoto et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. it is possi- 
ble to systematically construct low-degree multivariate polynomial-tuples 
whose inverse polynomial-tuples have very high degree. Actually, this pa- 
per shows that for C* it is practically infeasible to extract the n-tuple 
G of n-variate polynomials representing the inverse of the corresponding 
public key F.  

In the following, Chapter I1 describes the definition of the asymmet- 
ric cryptosystem C* and three important theorems for it. Chapter I11 
develops concrete algorithms for implementing C* and proves Theorem 
2, which states the operational complexity of C* . Chapter IV describes 
the process of deriving C* and proves both Theorem 1, which states the 
consistency of the definition of C* , and Theorem 3, which guarantees a 
certain security aspect of C* . And Chapter V concludes the paper. 

11. THE PROPOSED ASYMMETRIC CRYPTOSYSTEM 

Definition 1. The asymmetric cryptosystem C* is defined by the fol- 
lowing public items Pl,. . .,P5 and secret items Sl,. . . ,S4. 

[Public Items] 

P1. A positive integer rn and an integer n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3, but n # 4; 

P2. A finite field K of order q = 2" with an adder and a multiplier; 

P3. The set of message blocks K",  which is the n-dimensional vector 
space consisting of all n-tuples over K ;  

P4. Each public key is an n-tuple F of quadratic n-variate polynomials 
over K ;  

P5. The public transformation algorithm PA, which transforms a mes- 
sage block < E K" into another message block 77 = PA(F,E) E K" 
by evaluating F at <. 
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[Secret Items] 

S1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA v-degree extension field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(ul of K and a K-isomorphism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(,) from 

S2. Each secret key is a tuple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI? = [SR,TR,r,OJ : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK" to L(,) for each integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = (2X + 1)2P with X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 and p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0; 

S2-1. Two n-tuples SR and T R  of n-variate polynomials of degree one 
over K ,  representing affine bijections 5-1 and t-' on K" ; 

S2-2. A partition T = [nl, . . . , nd] of the integer n such thzt 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 2 1 and n; = (2; + 1)2.; with 1, 2 1 and rj 2 0 ; 

S2-3. The 7r determines a bijection 

and projections 

i where a; = C j=l nj ; 

with 1 5 bi <= 1; ; 
S2-4. A tuple 0 = [e l , .  . . ,Sd] of positive integers, where 6; = bi2" 

S3. The structure of the public key : F represents the composite func- 
tion f : K" + K", f = t o p-' o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[GG:), . . . ,$~ t ) ]  o [ e l , .  . . ,ed] 0 

[$(,I), . * * 7 $ ( ? I d ) ]  p '7 where 

S4. The secret transformation algorithm SA, which outputs < = SA(T, 7) :  

step 1 {A f ine  transformation}: Evaluate T" at 7 E K" to obtain 
2, = TR(q)  E K" ; 

step 2 {Separation}: Compute pl(w) E I?"', . . . , p , j ( u )  E Knd from 
v E K" ,  i.e., split up a tuple of length n into d subtuples of 
lengths nl , . . . , nd; 

step 3 Execute the following steps for i = 1 to d : 

(i-1) {Decoding}: According to the base of L(ni) determined by the 
translate the ni-tuple pi(v) into an ele- K-isomorphism 

ment zi = d(n;)(pi(u)) of L(n,) ; 
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(i-2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Powering}: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACompute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h -  w; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2; ' E L("J 

from t; E L(n i ) ,  where hi is the multiplicative inverse of h; = 
1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqp modulo q r i  - 1 ; 

( W i )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (i-3) {Encoding}: Compute the vector-representation 
K"' of w; E L+) ; 

step 4 {Concatenation}: Compute 

i.e., concatenate di-tuples of lengths nl ,  . . . , n d  into a tuple of 
length n ; 

step 5 { A f i n e  transformation}: Evaluate S R  at u E K" to obtain 
.$ = SR(u) E K". 

The validity of Definition 1 is checked and summarized as the fol- 
lowing theorem. 

Theorem 1. For every appropriate pair [F, r] of keys of C* , 

PA(F,  S A ( r , q ) )  = 7 ,  for any E K",  

SA(I ' ,PA(F,<))  = .$, for any ( E K". 

(Proof) See Chapter IV. 

We can develop concrete algorithms for C* and have the 

Theorem 2. The size of a message block S M B  = mn [bit] 

The description length of 

- a secret key = DSK N 2mn2 [bit] 

- a public key = DPK - imn3 [bit] 
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The circuit-size complexity (measured in the number of GF(2)-operations 
for one message block) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- the secret key generation = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ~ K G  = O(rn2n2) 

- the public key generation = CPKG ='0(rn2n4) 

- the secret transformation = CSA = O(rn2nn2(rn + logn)) 

( = O(m2n(rn + n)) if n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(d) ) 

- the public transformation = CPA = O(rn2n3) 

( = O(rn2n2+'), (0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 5 1) 

if transform n blocks at a time). 

(Proof) See Chapter I11 . 

Suppose that P is an n'-tuple of n-variate polynomials. Define a 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArup by 

T % ~ ( P )  = n' . ( Ie::$:)) . 
It can be easily shown that the total number of nonzero terms of P,  
denoted by .(P), is always less than or equal to T ~ , ( P ) .  

For the security of C* , the next theorem shows that it is practically 
infeasible for large n to extract the n-tuple G of n-variate polynomials 
representing the inverse of the function represented by the corresponding 
public key F .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. The degree of n-variate n-tuple G satisfies : 

- -q  5 deg(G) 5 2 { ( 4  - 1)nd f 1)- 
27-1 - 1 1 

2 

In particular, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnd is odd and gcd(Od, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnd) = 1, the most right inequality 
becomes an equality, and also a upper bound T ~ ~ ( G )  of the number of 
terms in G satisfies 

where E is the Napier's number 2.718. ' . . 

(Proof) See Chapter TV . 
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Besides the above aspect, we must discuss the complexity of de- 

ducing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa secret key by decomposing the corresponding public key; the 
period of the public transformation which reflects the robustness of the 
system against the iteratively-transforming-attack; the relation between 
bit-security and block-security, etc. 

For small values of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and n, we have some experi- 
mental results showing that there seems to be no apparent clues to reduce 
the complexities of the above mentioned atacks. However, more advanced 
theories should be necessary to confirm this circumstantial evidence. 

In our present point of view, if the parameters are set to be 1 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn 5 
then C* can achieve both high security zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32, 32 5 n 5 64, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 5 mn, 

and great realizability. 

111. ALGORITHMS FOR C' AND THEIR COMPLEXITY 

I11 -1. Secret Key and Its Generation 

As defined in Definition 1, a secret key for C' consists of four parts: 
two n-tuples of linear n-variate polynomials S R  and T R ,  a partition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 
[nl, . . . , n d ]  of n and a tuple of integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = [el , .  . . , B d ] .  

First, we consider SR and TR. Let B represent either of them. B can 
be represented by an n-tuple B, over K and an n-dimensional square 
matrix Bc as follows: 

B is bijective iff the matrix Bt is nonsingular. 

As there are a great many nonsingular matrices, Bc can be found 
using the method of trial and error. However, it will be shown in Section 
I11 -3 that to generate a public key, we have to solve the following linear 
system in 50, . . . , zn-l : 

Hence we can use an excellent method - the LDU decomposition method. 
That is, we can first select an n-dimensional lower triangular matrix L 

over K whose diagonal components are all 1, a non-zero n-dimensional 
diagonal matrix D over K ,  and an n-dimensional upper triangular matrix 
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U over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK whose diagonal components are all 1, then find the product of 
them 

Bc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALDU. 

Apparently, Bc is nonsingular, since L, D and U are all nonsingular. 
Of course, there are other nonsingular matrices not expressible by the 
above formula, but that part is very small. Using L,D and U but not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bc, solving the system (1) becomes fairly convenient. 

Obviously, it requires mn(n + 1) [bit) to describe B. Further, it 
requires 2 ziz1 log n;[bit] to describe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 which cannot exceed n [bit]. 
Thus, we have the following estimations: 

d 

DsK{the description length of secret key of C*} 

= (2m(n  + 1) + 1). [bit] 

N 2mn2 [bit], 

CsKc{the circuit - size complexity of secret key generation of C*} 

=0(m2n2) [GF(2 )  - operation]. 

I11 -2. The Secret Transformation Algorithm 

The secret transformation algorithm S A  consists of (step l)N(step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  
outlined in Definition 1. The running time of (step 1) and (step 5 )  per- 
forming affine transformations is clearly O ( m 2 n 2 )  [GF(2 )  - operation]. 
As compared with the other steps, the running time of (step a ) ,  (step 
3-i-l), (step 3-i-3) and (step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) can be neglected. Now what remain to be 
investigated are only the concrete algorithm which performs powering in 
step (step 3-i-2), and its complexity. Taking advantage of features of hi, 
this section constructs an efficient algorithm for the powering. 

First, we have the following theorem. 

Theorem 4. For integers m, q, ! ,  n, b, and 8 satisfying m > 0,  q = 
2",k' > O , T  2 0, n = (2!+ 1)2',0 < b 5 t , 8  = b2', the integer h = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + qe 

possesses a multiplicative inverse element h modulo (qn  - l), which can 
be expressed as 

"-1 e--1 1-1 - 
h {( C 2 ' ) ( C  qJ)(x q 2 e k )  + q2e'} . .2"-' (modqn - 1).(2) 

i =O j = O  k=O 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe notice that 

From this theorem we see that the hth power of an element of a finite 
field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq n  can be computed from the (C;z: b')th and the bath 
powers of the element for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  

Let us consider evaluating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C::; b')th power. For example, we 
can use the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 

b' = ( ( b 2  + l ) b 2  + l ) ( b  + 1 ) b  + 1 (3)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=O 

6 '  to compute z ,  the xi=* b'th power of z, by the following algorithm: 

(stepl) y +- z ; 

(step2) y - yb2 . y ; 

(step31 y - yb2 - z ; 

W P 4 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY - Y b .  Y ; 

(step5) y - y b  . z ; 

(step6) z - y . 
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This algorithm requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 multiplications and 4 evaluations of the bkth 
power (where k is a suitable positive integer). The latter operation re- 
quires about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 times b-th powering. 

Similarly, for general C::; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb’, to evaluate the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z::: b’)th power can 
be completed by using a formula like (3). The complexity is estimated 
as follows. 

Theorem 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(X::; b’) th power can be accomplished in 

For two positive integers a and b, evaluating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0 Llog2.u] + W2(a) - 1 times multiplications ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(7)  [log, u] + W2 ( u )  - 1 times evaluation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbk th power, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is a suitable positive integer and where Wz(u) denotes the 2- 
weight of u defined by 

W2(u)  = C{Ujlj = 0 )  1) * .  a}, 

when the binary representation of a is 

u = C{2j . U j l O  5 a j  < 2, j = 0,1,. . -}. 

Furthermore, if evaluating the bk th power is done by evaluating iteratively 
the bth power, then ( v )  can be expressed as 

(q‘) (u - 1) times evaluation of the 6th power. 

Proof(sketch): For a general (Cyli b; ) ,  we form the corresponding 
formula like (3). Counting the number of “+’, appearing in the right 
hand side of the formula, we get (C) and ( q ) ;  summing the superscripts 
of b, we get (71’). 4 

Corollary 1. For positive integers u and b, the complexity of evaluat- 
ing the (c:zi b’) th power is estimated as “O(1oga) times multiplication” 
, if the complexity of evaluating the bth power can be neglected as com- 
pared to that of multiplication. 

It is known[g] that, for the n-degree extension field L of a finite 
field K of order q, there always exists a base of L over K which takes 
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the form of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ p ,pq ,@q2, .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,BQ"-' ]  (called a normal base). Let V ( x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[q, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,-,] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK" denote the (vector) representation of an element 
x of L by a normal base [p,,BQ,,Bq2, . . . , ,f?* 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.e., x is expressed as 
x = ~~~~ x ipq ' .  Now, for any integer k, we have 

"-1 . 

since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxp = z;, where csk(v(2)) is a bijection on K",  and represents the 
k-step (right) cyclic shift operation. 

By the use of this well-known fact, we see that the complexity of 
evaluating the qkth power of an element of L, can be neglected as com- 
pared to the complexity of the L-multiplication (the multiplication of two 
elements over L ), if elements of L are represented by using a normal base 
of L over K. 

Assembling all the above results, we get an algorithm for evaluating 
the k h  power over the field L of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq", where q, n, h satisfy the 
conditions stated in Theorem 4. 

[HPA : algorithm for evaluating the 71th power] 

PREREQUISITE Each element of L is given in the form of a vector 
representation by a normal base of L over K .  

PROCEDURE (Outline): Evaluating the hth power according to (2). No- 

powers, is decomposed into the L-multiplication and evaluating the 27th 
and the q6th powers of elements of L by using formulae like (3). Also, 

all the evaluations of the q'th power are performed by cyclic shifts to the 
right. 

tice that evaluating the 2'th, the x;ii qjth and the zk=O c-1 q 2ekth 

The complexity of the algorithm HPA is estimated in the following 
theorem. 

Theorem 6. For HPA, O ( m  + logn) times L-multiplication are 
sufficient for evaluating the x th  power of an element of L. And hence, 
the circuit-size complexity of HPA is 

O(rn2n2(rn + logn)) [GF(2) - operation]. 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFrom Corollary 1, we know that evaluating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,",: qith and 

the ~ ~ ~ ~ q 2 " t h  powers can be performed in O(log6) and O(logl), re- 
spectively, times Emultiplication. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB , C  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/2, the summation of 
them is O(1ogn). And also we know, from Theorem 5, that evaluating 
the 2'th power can be performed in at most m - 1 + [log mJ + 
W2(m) - 1 = O ( m )  times L-multiplication. Further, evaluating q2"th 
and the qe-'th powers can be done only by cyclic shifts, hence the com- 
plexities of them c m  be neglected. Now, evaluating the 2*-lth power 
can be accomplished in (m - 1) times multiplication. Summing all the the 
above terms, we get the first half of the theorem. The second half of the 
theorem is obvious, since the L-multiplication can be done in O(m2n2) 
times operations over GF(2). L, 

Thus, when the algorithm HPA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis used in evaluating power, the 
total circuit-size complexity CSA of the secret transformation algorithm 
is estimated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 

O(m2n2)  + O(m2np(rn + logn;)) [GF(2) -operation]. 
i = l  

The above estimation can be further condensed to 

CSA = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ( m2 n2 ( m  + log n)) [GF( 2) - operation]. 

In particular, if there is a constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco independent from n such that n; < 
CO, i.e., if n = O(d) ,  then it holds Cf=, O(rn2n~(rn+logni)) = O(m3n) , 
which implies that the circuit-size complexity of the secret transformation 
algorithm can be estimated by 

CSA = O(m2n(m + n) )  [GF(2) - operation]. 

I11 -3. Public Key and Its Generation 

A public key F of C* is an n-tuple of n-variate polynomials over K .  SO 
obviously, we have 

D p K  = mT,p(F) [bit] 
1 
2 

= -mn(n + l ) (n + 2) [bit] 

1 
N -mn3 [bi t ]  

2 
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for the description length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADpK of a public key of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC' . 

Next, we consider how to generate a public key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF .  F can be ex- 
pressed by n-tuples F,, F;, F;,, F,j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE K" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

n-1 "-1 

where F;; = 0 when m = 1. Thus, we can first compute, according 
to the definition of the public transformation, values of F at the points 
corresponding to  several elements of K",  then from these values, find 
F,, F;, Fii, F;, by the use of the interpolation method, and finally, gen- 
erate the desired F .  

Now suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, E K n  is a 0 vector, 7; E K" a vector whose 
i th (0 5 i < n) coodinate is 1 but all of the others are 0, and q;, E K" a 
vector whose i th and j t h  (0 5 i < j < n)  coodinates are 1 but all of the 
others are 0. When m 2 2, we have 

When m = 1, we have 

Hence, the n-tuple F of n-vatiate polynomials can be computed from 
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Applying this method, we have the following algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

[PKG : algorithm for generating a public key ] 

(step 1){Evaluating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(q )  E K" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,,qj,uq;, q;k } 

(step 1-1) : Compute w E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK n  satisfying SR(u)  = q ; 

(step 1-2) : Find p;(w)  E K"1 (1 <_ i <_ d) ;  

(step 1-3) : Execute the following steps for i = 1 to d : 

(step 1-3-i-1) : Find w; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$yn , ) (p ; (w) )  E L(n,); 

(step 1-3-i-2) : Compute z; = wh' E L(,,,); 

(step 1-3-i-3) : Find +G:)(zi) E K".; 

(step 1-4) : Find si = p-'(+G;)(z1), . . . , $;,f,,(zd)) E K";  

(step 1-5) : Find y E K" satisfying TR( r )  = (; 

(step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) : Find F,, Fi, Fi;, F,, according to (6). 

Using the matrices L, D and U, based on which ST and T R  were 
computed in Section I11 -1, (step 1-1) and (step 1-5) can be executed 
in O(n2)  K-operation. According to Theorem 5 ,  (step 1-3-i-2) can be 
executed in 0(rn2n:)[GF(2) - operation]. Notice that the complexities 
of the other steps can be neglected as compared to these, and there are 
totally ("i2) points 7 to be used, we can estimate the complxity of (step 

1) bY 

d (" ; 2) (20(rn2n2) + c O(m2n;)} = O(m2n4)  
i= 1 

[GF( 2) - operation]. 

From (6), the complexity of (step 2) is estimated as 

n.O(rn*n)+n.O(mn) + .O(mn) = O(mn2 (m+n)) [GF(2)-operation]. 

Thus we conclude that 

CpKc{the circuit - size complexity of public key generation of C* 1 
= O(m2n4) [GF(2) - operation]. 
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I11 -4. Public Transformation Algorithm 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnoted in Definition 1, the public transformation algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP A  evalu- 
ates the polynomial tuple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF at points of K". Let 

be a vector corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ro, . . . , ~ n - 1 1 ,  and 

be a +n(n + 3) x n matrix. Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and F ,  we can rewrite (5) as 

F ( z )  = F, + zE. 

So, we can first find 5, then find F ( s )  to perform the public transforma- 
tion. This complexity is 

= 0 ( ~ 2 ~ 3 )  [GF(2) - operation]. 

Furthermore, when performing public transformation on n message 
blocks do),  . . . , d n - l )  in parallel, we can do it by computing Ao + x F  
according to an n x 3n(n+3) matrix 2 = [do), . . . , dn-l)]T and an n x n 
matrix A0 = [F,, . . . , F,IT. A0 + X F  can be rewitten into 

where X i  and A; are n x n matrices and satisfies X = [ X I , .  . . , Xn+3] and 
= [ A l ,  . . . , A,+3]T, respectively. Here, we can multiply two matrices in 

0(n2+') [K-operation] (0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 5 1) by the use of various, say Strassen's, 
divide and conqure methods. Thus, in this case, the circuit-size complexity 
of public transformation for one block is 

{ ( n  + 3) * O(n2+") - O(m*) } /n  = O(rn2n2+") [GF(2) - operation]. 

I11 -5. Collection of Main Results 

Theorem 2 can be directly proved by the results of the above four sections. 
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Corol lary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 2 become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

For C* with m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand mn = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  the parameters in 

Now we briefly compare C* with the RSA cryptosystem[l0I. For 
the RSA system, the complexities of secret transformation and public 
transformation are both O ( N 3 )  for a block of size N .  When a particular 
secret key or a public key is selected, the corresponding complexity can be 
reduced to less than O ( N 3 ) .  However, it seems that, in general, we have 
no way to reduce both of them. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs opposed to the above fact, the order 
of the complexity of public transformation of C* is much lower than 
that of the RSA system. Also, for the RSA system, public and secret 
keys connot be generated if an integer with certain particular properties 
is not found. For C* , keys can be easily genarated. 

is greater than those of 
previous systems with the same block size. However, this is not always 
a demerit because the total number of usable keys of C* is larger than 
that of those. Further, the large description length will not be a serious 
problem, if public keys are kept by the corresponding owner after they are 
certificated by the manager of the system or network, and when necessary, 
sent to  other ones with the certificates. 

The description length of a key for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC* 

I11 -6. Implementation-Primary Results 

Using a 32-bit microprocessor MC68020 (16.67 MHz) on a SONY NEWS 
UNIX workstation with programs written in the "C language, our first 
implementation confirms that algorithms S A  and P A  run at least 100 
Kbps for m = 8 and n = 32. Since these programs are not optimized, we 
may expect that C* can run much faster in the same environment. 

Besides this , we also have been implementing C* using multiple 
transputers (T414, T800) with accam programs, and verifying high per- 
formance. Detailed results will appear in another paper. 
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IV. A THEORY OF POLYNOMIAL-TUPLE 

ASYMMETRIC CRYPTOSYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this chapter we discuss why we have stated C* as Definition 1 

and prove Theorem 1 and Theorem 3. 

IV -0. Preliminaries 

Basic concepts and notations used in this chapter are sketched in the 
following. 

Finite Fields[g] 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp be a prime integer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm and n positive integers, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p". Fix 
a finite field K of. order q (i.e., with q elements). Denote by K" the 
n-dimensional vector space over K ,  each element of which is an n-tuple 
over K .  Determine an n-degree extension field L of K .  L contains q" 
elements. When L is taken as an n-dimensional vector space over K ,  L is 
isomorphic to K". The isomorphism between L and K" will be denoted 
by a bijection + : K" ----f L. 

Polynomial Representations of Functions 

Denote by L[u] the polynomial ring over L in indeterminate u ,  and by 
( P ( u ) )  the ideal generated by apolynomial P(u)  E L[u]. As shown in [ll], 
any function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl : L -+ L can be represented by a univariate polynomial 
E ( u )  E L[u] ,  where E(u )  is uniquely determined in the residue class ring 
L[u]/(uqn - u )  (i-e., mod(u9" - u )  is applied ). In other words, we always 
have fl((E') = E(<) for every (E' E L ,  and furthermore, there is just one 
such E(u)  which has no terms divisible by uQn.  Such an E(u )  is called 
the univariate polynomial representation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  over L ,  and denoted by 

Similarly, functions f2 : L + I C n , f 3  : K" -+ L ,  and f4 : K" --f 

K" can be uniquely represented by a tuple of polynomials over L in 
indeterminate u mod(u9" - u) ,  a polynomial over L in indeterminates 
TO,.  . . ,2n-1 mod (xi - zo ,  . . . , zz-l - zn- l ) ,  and a tuple of polynomials 
over K in indeterminates TO, .  . . ,z,-1 mod (2: - zo,. . . , z:-l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxn-l), 

respectively. These items are called the univariate polynomial n-tuple 
representation of f2 over L,  the n-variate polynomial representation of 
f3 over L ,  and the n-variate polynomial n-tuple representation of f4 over 
IC, and denoted by if*], [fs] and [,fd], respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ufd. 
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Functions Represented by Algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Polynomials or tuples of polynomials can be considered to be a kind of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
algorithms. In general, there are two sets I and J with related to  an 
algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA outputs q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE J on input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E I ,  we say A represents 
a function I ---c J,< H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, and denote the function by {A ) .  For example, 
since the polynomial representation Ifl] of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl is considered 
to be an algorithm, it is apparent that ([fl]) = f l .  

Functions on Integers 

Let a be an integer greater than 1, i a nonnegative integer. Denote the 
a-ary representation of i by 

We define a function W, on the nonnegative integers as follows: 

W,(i) = E{ij1j = 0,1,. . -}. 

Wa(z) is called the a-weight of i, which has the following properties: 

(Wl) If s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, t 2 0 and 0 5 s + t < a, then 

(W2) If 0 5 t < a,  then 

(W3) If s 2 0 , t  2 0 and s + t = a" - 1, then 

Also, we define a function R, from the positive integers to the non- 
negative integers as follows: 

Ra(i) = max{j 2 012 is divisible by a'}. 

R,(i) is called the a-rank of i, which has the following properties: 
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(Rl) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(i) is equal to  the number of consecutive 0's appearing in the 

least significant digits of the a-ary representation of the positive 
integer i. 

(R2) If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is a prime and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt > 0, then R,(s.t) = R,(s)+R,(t). 

Functions from Polynomials to Integers 

For a univariate polynomial E ( u )  = Eo + E1u + E2u2 + . I -  + Edud, the 
exponential a-weight wt,(E) of E is defined by 

Besides this, we use the notations d e g ( P ) ,  .(P), and T ~ ~ ( P )  for 
polynomial-tuple P as defined in Chapter I. 

IV -1. Multivariate Equations and Cryptosystems 

Imagine that we are to realize a public-key signature scheme, when given 
an asymmetric cryptosystem with multivariate polynomial-tuples as pub- 
lic keys. Finding the valid signature z with respect to a message M and 
a public key F can be rephrased as solving the equation F ( z )  = M for z 
given F and M .  The essential idea behind the present research is that we 
can employ a system of multivariate algebraic equations as the equation 
F ( z )  = M .  The grounds for it are that, in general, as briefly intro- 
duced in Chapter I, it is an extremely difficult problem to solve systems 
of multivariate algebraic equations. Of course, when given hints about a 
system, say some information on the structure of F ,  one may be able to 
to solve the system quickly. 

In the rest of this chapter, we will aim at constructing a system of 
multivariate algebraic equations F ( s )  = M. The system corresponds to 
an asymmetric cryptosystem supporting both authenticity and confiden- 
tiality, so we cannot say the system is a completely general one. But 
it should not be easy to get any hint on effectively solving the system 
of equations, i.e., the system should possess no apparent features. In a 
sense, the system should be a nearly random one. 
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IV -2. From Univariate Polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInto Tuples of Multivariate 

Polynomials 

For our purposes, we require that the above tuple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF of multivariate poly- 
nomials represents a bijection, and that the equation F ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= M can be 
readily solved when given some knowledge on it. Hence, we take the 
following approach[4] : We begin our discussion by thinking about uni- 
variate polynomials. Coping with such polynomials is relatively easy. 
Then we transform them into multivariate ones. Several aspects have 
to be considered : (1) Tuples of multivariate polynomials must be made 
as random its possible; (2) It should be easy to estimate the size, and 
the likes, of the resulting multivariate polynomial-tuples from the basic 
univariate polynomials. 

Here is an idea. Following the ways of thinking on the algorithm 
composition method proposed in [5], we consider a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf : K" -+ K" 
expressed as follows ( K  is a finite field of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp" with prime p ) :  

where s and t are affine bijections on K" ,  n is a positive integer which can 
be partitioned into d positive integers satisfying n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 fn2 +- - . + n d ,  and 
L; is an n;-degree extension field of the field K .  $* is an isomorphism from 
Kn* to  L; ,  and e; a bijection on L,. Further, p ,  : K" -+ K"* is a projec- 

K n * ,  and p : K" + K"1 x - . .  x K"d is a bijection determined by 

tion which maps [Q,. . . ,z,+~] E K" to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[z I - l  , . . . ,r(c;=l nJl- l  I €  c,=, "J 

pL1= [ /117.-. ,pd]* 

Apparently, the function f is a bijection. Now we establish an asym- 
metric cryptosystem which uses f as a public transformation. 

Definition 2. Let K" be the set of message blocks. The following system 
constitutes an asymmetric cryptosystem. The system is constructed by 
designating 

(1) if], an n-tuple of n-variate polynomials over K ,  as a public key; 

(2) it-'], ley1], . . . , [.;I] and is-'] as a secret key; 

(3) the evaluation of [ f ]I as the public transformation algorithm; 

(4) the operations series in the following order as the secret transforma- 
tion algorithm: 
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(a) the evaluation of 

(b) the projections due to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi ,  

(c) the transformations due to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$;, 

(d) the evaluations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[e;lD, 

(e) the transformations due to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ i l l  

(f) the concatenation due to p ,  and 

(g) the evaluation of 1s-'1. 

This asymmetric cryptosystem will be called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,* for short. 

IV -3. Degree of A Tuple of Multivariate Polynomials 

Now, the size of public key and the complexity of public transformation 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,* can be estimated by the following formulae: 

{ The description length of a public key of C,* } = O ( ~ ( [ f l )  log, p) [bZt ] .  

{ The complexity of a public transformation of C,* } 
= o ( ~ ( [ f ] ) m ~ )  [GF(2) - operation]. 

Clearly, both the descreption length of a public key and the complex- 
ity of a public transformation are increasing functions of .(If]) - the 
number of terms in the n-tuple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[f] ( the public key ) of n-variate poly- 
nomials. From the equations (7) and (8), we can see that [f] is hardly 
sparse, but dense in most cases. Thus, decreasing deg ([in) which domi- 
nates the upper bound Tu,([fl) of .(if)), is strongly related to reducing 
the description length of a public key and the complexity of the public 
transformation. 

Similarly, i t  is also true that in most cases, the polynomial represen- 
tation [f-'] of a secret transformation f-' of C,* is dense. Therefore, 
increasing deg ([pI]) which dominates ~ ~ ~ ( [ f - l ] )  is related to raising 
the number of terms in ~ ( [ f - l ] ) ,  and also related. to raising tremen- 
dously the complexity of extracting the secret key from the public 
key [ j ] ]  by the use of the symbolic computation, the interpolation, or 
other methods for solving algebraic equations. 

First, turn our attention to a basic theorem. 

Theorem 7. Let s and t be any two affine functions on the vector 
space K" ,  E denote the set of all functions on the finite field L. We have 
the following (i), (ii) and (iii) : 
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(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor any e E E ,  

[[el = constant [t o $-I o e o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt j ~  o s] = constant. 

(ii) For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany e E E,  

(iii) If and only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif both s and t are bijections, the following holds for all 
e E E  

[el # constant a deg([t o o e o tjI o s]) = wt,((e]). 

Proof (sketch): Proving this theorem is not difficult but wastes pages. 
So, we mention here only that the proof for general q can be readily 
obtained from that for the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 2, which is described in [12]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Using Theorem 7, we can compute the degree of the multivariate 
polynomial tuple [ f 1 from the exponential q-weights of univariate polyno- 
mials [el l , .  . . , [ e d ] .  The computing method is described in the following 
theorem. 

Theorem 8. 
are true : 

For the bijection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf defined by (7) and (8), the followings 

1) deg ([In) = rnax{wt,([ei~)Ii = 1,. . . , d }  

2) deg([f-l]) = max{wt,([e;'])li = l , . .  . , d } .  

Proof: Using a bijection e : L + L ,  g can be expressed as 

From Theorem 7, we get 

deg (us]) = Wt,(uen). 

Also, from (7) and (9), f can be expressed as 
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so, from Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 we have 

(10) and (11) imply 

Well, from (8) we have 

and according to the definition of the degree of a tuple of polynomials, 
we have 

deg([g]) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=max{deg(8$i10e,o'$;n)li= 1, . . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd } .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13) 

Further, from Theorem 7, we get 

(12),(13) and (14) imply the first half of the theorem. The second half 
can be proved in the same way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

IV -4. Univariate Monomials as Grounds 

The functions e;  a.re bijections expressed by univariate polynomials. Poly- 
nomials representing bijections are also called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApermutation polynomials, 
and it is well-known that there are many kinds of such polynomials. 
However, in this paper, we only deal with those [ e ; ]  which possess the 
simplest form - the monk monomials. Other forms of [ e ; ]  will be topics 
for further discussion. We do so for several reasons : 

i )  It is easy to judge whether a monic monomial represents a bijection 
or not; 

ii) When the bijections e; are represented by monic monomials [e ; ] ,  
their inverse functions ey l  are also represented by monic monomials 
[.$], so it is easy to compute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[e;'] from [e ; ] .  

iii) A monic monomial can be readily evaluated. 
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Now let [ei], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,. . . , d, be a monic monomial in indeterminate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 

over the finite field L; of order grin, which takes the form of 

[e;](u) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuh*,  o < < qn' - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(15) 

Since the exponents constitutes a multiplicative semi-group of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq"' - 

1, e; forms a bijection only when hi and g"' - 1 are relatively prime, i.e., 
only when gcd(hi,q"' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1).= 1. 

< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ"; - 1 is the multiplicative 
inverse element of hi modulo (qni -l), then Be;'] forms a monic monomial 
in indeterminate v : 

Furthermore, suppose that 0 < 

- 
[ei'](v) = v", o < hi < q n i  - 1. (16) 

Since exponential q-weights of [e;] and [ e f ' ]  are equal to the q-weights 
of hi and respectively, Theorem 8 immediately implies a new theorem: 

Theorem 9. 

have 
For the bijection defined by (7), (81, (15) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(16), we 

1) deg([f]) = max{W,(hi)li = 1,. . . , d }  

2) deg([f-']) = rnax{W,(h;)li = 1,. . . ,d } .  

As mentioned in the beginning of Section IV -3, a small deg([f]), 
but a large deg( [ j- '1) are desirable. Considering Theorem 9, we require 
that for al l  i, W,(h;) are smal l ,  but for some i, W,(h;) is large . 

Assume that deg([f]) = 1. Now we have W,(h;) = 1 for all i ,  and 
also W,(h;) = 1 for all i. This implies that deg([f-']l) = 1, which is 
not desirable. Hence, it is essential that deg([f) 3 2. The rest of this 
chapter will be concerned with the case deg( [ j l )  = 2, which can be easily 
treated. The other cases will also be topics for further discussion. 

IV -5 .  Util izing Tuples of Quadratic Multivariate Polynomials 

For the simplicity of presentation, in this section we only treats the case 
d = 1, and instead of n;,$,,L;,ei and hi ,  we will use the notations 
n, $, L,  e and h. The results can be easily generalized to the cases d 2 2. 

As stated in the end of the last section, here we still assume deg((f]) 
= 2, i.e., W,(h) = 2. The following theorem can be easily obtained. 
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Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp be a prime integer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,n,q and h be integers 
satisfying m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 ,  n > 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = p" , 0 < h < q" - 1, and gcd(h, q" - 1) = 1. 
Then p = 2 is the necessary condition for W,(h) = 2. 

Proof: Assume q be odd. When W,(h) = 2, h can be written as 
h = q i ( l+  q'), where j and 6 are nonnegative integers. Hence h must be 
even. Also notice that q" - 1 is apparently even. Thus gcd(h, q" - 1) must 
be divided by 2, which contradicts to the assumption of gcd(h, q"-1) = 1. 
Therefore q must be even. Put it in other words, p = 2 is the necessary 
condition for W,(h) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

In the sequel, we will always suppose that p = 2, i.e., q = 2m. 

Now that W,(h) = 2, as mentioned in the proof of Theorem 10, h 
can be expressed as 

h = qJ(1  + q') 

where j and 6 are nonnegative. Since $-I O(U,'}O$J is a linear function, we 
can consider the functions of evaluating the qjth power together with the 
affine transformations s and t ,  between them the function e is inserted. 
So it suffices to  consider the case j = 0, and 0 5 6 5 [72/2J. 

If 8 = 0, thenh = 2. In this case, e is a bijection since gcd(2, q"-1) = 
1. Now consider the n-variate n-tuple representation of the bijection 
t o  +-I o e  o $ o s over K :  

Since both p = 2 and h = 2, it is clear that each P, contains only 
constant terms and the terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi,. . . , In this case, one can quickly 
solve the following system of quadratic multivariate polynomial equations 
in indeterminates 20,. . . , zndl : 

First, taking the system as a system of linear equations in variables 
zi, . . . one can readily solve the new system and get xi,. . . , xi-1.  
Then, one can uniquely determine z; from zf (note that p = 2). The 
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above algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( method) requires about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0(n3 )  times operations over 
the field K .  So such a system is far from being a good cryptosystem. 

Now let us assume that 8 # 0 furthermore. 

From the above discussions, it becomes obvious that we can concen- 
trate our attention upon the case h = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl+q', 0 < 8 < ln/2_/. The function 
e = (uh)  is a bijection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif€ gcd(h,q" - 1) = 1, which can be restated in 
another zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAway : 

Theorem 11. Let m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, 8, n and h be integers satisfying m > 0, q = 
2",0 < 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn and h = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ g o .  We have gcd(h,qn - 1) = 1 iff R2(8) 2 
R2(n), where Rz(0) (resp. R2(n)) is the 2-rank of8 (resp. n). 

Proof: From Theorem A1 of Appendix, it can be proved that gcd(h, qn- 
1) = gcd(1 + '2me,2mn - 1) = 1 is equivalent to R2(m8) 2 R2(mn). Ac- 
cording to the property (R2) of 2-rank functions, we have Rz(m8) = 

&(m) + R2(0) and R2(mn) = R2(m) + R2(n), which implies the theo- 
rem. 4 

According to Theorem 11, it is necessary that n 2 3. Thus it suffices 
for us to consider those zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 restricted by 

where T- is a nonnegative integer and .t is a positive integer such that 

n = (2.t + 1) .  2', T = &(n). 

In this case, the q-weight of TI can be calculated from the q-rank of h, as 

is stated in the following theorem. 

Theorem 12. For integers m,q,%,n,h satisfying m > 0,q  = 2",0 5 
0 < n, h = 1 + q', gcd(h, 4" - 1) = 1, the q-weight of the multiplicative 
inverse element % of h modulo (qR  - 1) is given by: 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn Appendix (Lemma A2), we have 

and also from Appendix (Lemma A3), we have 

hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2Wq(Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Q - l)(n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,(?i)) + 1 

and it proves the theorem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Corollary 3. Under Theorem 12, we have 

Proof: 

n, which implies the corollary. 4 
0 5 R,(z) 5 n-1, since 0 < ?i < Q"-1. Hence 1 5 n-Rq(x) 5 

Now we see that, fortunately, W,(?i) can be increased greatly even 
when Wq(h) = 2. In certain special cases, the q-weight o fh  can be exactly 
calculated by using the following theorem. 

Theorem 13. R,(?i) = 2" - 1 when gcd(b, 2& + 1) = 1. 

Proof: 

Hence 
q(2c+')B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE l(modq" - l), since (2 t  + 1)8 = (2 t  + 1)2'b = nb. 

Let Q = q2r,  the above equation becomes : 

2c 
- 1  
h - Qbk(-l)'(modq" - 1). 

2 
k=O 



Since gcd(b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 l +  1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, the multiplicative inverse element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 of b modulo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2&+ 1) exists. Assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = (bk )  mod (2& + l ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk can be expressed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as k = (z j )  mod (2 + 1). Hence 

. 21 

Using the relation 1 q .  q2c-1 . Q-'(modq" - I), we get 

21 

In other words, h can be written as 

- 
hEq2'-1. (-) 4 A(modq" - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI), 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=o 

21-1 
[ i ;( i+l)]mod(2ft1) + Q21 = 1 + c Qi ( - l )  

i =O 

Apparently, A is not divisible by q. Also, we have 

and 

Therefore, from 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh < q" - 1, we have 

Q 
2 

- 
h = q2'-I , (-) . A,  q does not divide A 

(Notice : not 2, but = ). Hence R,(h) = 2' - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
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From Theorem 12 and Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13, it can be shown that, when n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is relatively prime to n, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq- 
becomes zero, and the q-weight of h reaches its maximum - 

is an odd integer 2 3 

rank of 
z { ( q  - 1). + 1). Thus, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,(h) = 0, we get 1 

where E is the base of natural logarithms. The above 
us that the n-variate polynomial n-tuple representation 

inequality tells 
of the function 

f-' = s-l o o e-* o II, o t-' , contains approximately exponentially 
in m and n many number of nonzero terms, and writing down all those 
terms is practically impossible. The correctness of the inequality can be 
ascertained by a simple calculation using the definition of T,~, Theorem 
9, Theorem 12, and the Stirling's formula on factorials. 

IV -6. Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Theorem 1 and Theorem 3 

In Sections IV -3, -4 , -5, we discussed in detail specializations of C,* . 
The resulting asymmetric cryptosystem is nothing but our C* defined in 
Definition 1. Therefore we can see that Theorem 1 really holds. And the 
first half of Theorem 3 follows from Theorem 9 and Corollary 3 and from 
that nl 5 - - 5 nd. The second half of Theorem 3 immediately follows 
from the discussions made in the end of Section IV-5. 

V . CONCLUDING REMARKS 

On a basis different from the previous, this paper has proposed and an- 
alyzed an asymmetric cryptosystem C* which can serve for both digital 
signatures and encryption. 

An advantage of C* over the previous asymmetric cryptosystems is 
that both secret and public transfromations can be done in complexity 
much less than U( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 3 )  for a message block of size iV. Actually, we have 
implemented C* with the languages "C" and Occam on 32-bit micropro- 
cessors and verified high performance of C' . 

The description length of a key for C' is greater than that of previous 
systems with the same block size. However, this is not always a dement 
as mentioned in Section I11 -5. 

Thus the present authors believe that C* is a cryptosystem worth 
investigating for everybody interested in high-speed cryptographic com- 
munications. 
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APPENDIX 

Lemma A l .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbf + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthen 

If integers a ,b ,c  and f satisfy a > b > c 2 0 and 

gcd(2" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1,2* + 1) = gcd(P + 1,2'f 

gcd(2= + 1, 2b - 1) = g ~ d ( 2 ~  - 1,2" + 1). 

Proof: From 

2" f 1 = 2bf2c f 1 

and 
2bf = (71 + (2* f 1))f 

f 

= c (;) (71)j(2b f 1)f-.j 

= (2b f l){E (i) (T l ) j (P * 1)f -J- l }  + ( r f l ) f ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = O  

j = O  3 
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we get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f-1 

2" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 b  + l){E (f) (-1)J(2b + l)f-j-1}2c + (-1)f2" f 1, 
j = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem A l .  

then 
If integers a,b,d satisfy a > 0 , b  > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,d = gcd(a,b), 

1; Rz(4 2 &(b )  

2d + 1; &(a )  < RZ(b). 
gcd(2" + 1,2' - 1) = 

Proof: By applying Lemma A1 iteratively, we can find that gcd(2= + 
1,2b - 1) is equivalent to g ~ d ( 2 ~  f 1,2' + 1) = g ~ d ( 2 ~  f l ,2)  = 1 or 
g ~ d ( 2 ~  rjt 1, 2' - 1) = g ~ d ( 2 ~  + 1,O) = 2d + 1. Now from the definition of 
R2 and Lemma A l ,  we have 

&(a) < &(b)  a &(a) = R z ( d )  < R2(b) 

Rl(U/d) = &(a)  - & ( d )  = 0 -1 R * ( b / d )  = &(b)  - &(d)  > 0 

= -1 and ( - l > b / d  = 1 

gcd(2" + 1, 2d + 1) = g ~ d ( 2 ~  + 1,2O + (-1)) 

= Z d + l  

gcd(2' - 1,2d + 1) = g ~ d ( 2 ~  + 1,2O - 1) -1 = 2 d + 1  

'. (2d + 1)1 gcd(2" + 1,2b - 1) 

which proves the theorem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Lemma A2. For integers m,q,O,n and h with m > 0,q = 2",0 I 
8 < n, h = 1 + q*,gcd(h,q" - 1) = 1, the multiplicative inverse element 
h of h satisfies 
- 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq-ary representaiton of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% = xylt q'J;, (0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 J; < q ) .  
B y  introducing an integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, (1 + q') a h  can be writen as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ( q n  - 1) + 1. 
Hence, 

qn - h = q e z  - (k - l ) (q" - 1) (A2 - 2) 

Because 

n-1 0-1 

we get 

n-1 0-1 

- 
from (A2-2). Also, q" - h < qn - 1 since h > 1. Hence 

which implies (A2-1). 4 

Lemma A3. If an integer a satisfies 1 5 u 5 q" - 1, then 

where X = R,(u). 

Proof: 

qX . b and b is not divisible by q. Thus 
We can uniquely determine a positive integer b such that a = 

Also, from q" - a = qn - q X b  = q X ( ~ n - X  - b ) ,  we get 
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Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is not divisible by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ,  and can be expressed as 

by using the properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Wl)  and (W2) of W,, we get 

1.e.; 

W,(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= W,(b - 1) + 1. (A3 - 3) 

Furthermore, from ( b  - 1) + (@"" - b)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq"-' - 1 and the property (W3) 

of W,, we get 

W,(b - 1) + W,(q"-X - b)  = (n  - X)(q  - 1). (A3 - 4) 

Thus, by (A3-l) ,  (A3 -2 ) ,  (A3-3) ,  and (A3-4),  we have the following: 

Wq(4 + W,(C - a )  = W,(b) + Wq(q"-X - b)  

= 1 + Wq(b - 1) + Wq(q"-' - b)  

= 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(71 - X)(q  - 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 


