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Abstract Replication of empirical findings plays a funda-
mental role in science. Among experimental psychologists,
successful replication enhances belief in a finding, while a
failure to replicate is often interpreted to mean that one of the
experiments is flawed. This view is wrong. Because experi-
mental psychology uses statistics, empirical findings should
appear with predictable probabilities. In a misguided effort to
demonstrate successful replication of empirical findings and
avoid failures to replicate, experimental psychologists some-
times report too many positive results. Rather than strengthen
confidence in an effect, too much successful replication actu-
ally indicates publication bias, which invalidates entire sets of
experimental findings. Researchers cannot judge the validity
of a set of biased experiments because the experiment set may
consist entirely of type I errors. This article shows how an
investigation of the effect sizes from reported experiments can
test for publication bias by looking for too much successful
replication. Simulated experiments demonstrate that the pub-
lication bias test is able to discriminate biased experiment sets
from unbiased experiment sets, but it is conservative about
reporting bias. The test is then applied to several studies of
prominent phenomena that highlight how publication bias
contaminates some findings in experimental psychology. Ad-
ditional simulated experiments demonstrate that using Bayes-
ian methods of data analysis can reduce (and in some cases,
eliminate) the occurrence of publication bias. Such methods
should be part of a systematic process to remove publication
bias from experimental psychology and reinstate the impor-
tant role of replication as a final arbiter of scientific findings.
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Introduction

Imagine that you read about a set of 10 experiments that
describe an effect (call it effect “A”). The experiments appear
to be conducted properly, and across the set of experiments,
the null hypothesis was rejected 9 times out of 10. Next, you
read about another set of 19 experiments that describe effect
“B.” Again, the experiments appear to be conducted properly,
and the null hypothesis was rejected 10 times out of 19
experiments. I suspect most experimental psychologists
would express stronger belief in effect A than in effect B.
After all, effect A is so strong that almost every test was
statistically significant, while effect B rejected the null hy-
pothesis only about half of the time. Replication is commonly
used to weed out false effects and verify scientific truth.
Unfortunately, faith in replication is unfounded, at least as
science is frequently practiced in experimental psychology.
Effect A is based on the series of experiments by Bem
(2011) that reported evidence of people using Psi ability to
gain knowledge from the future. Even after hearing about this
study’s findings, most psychologists do not believe that peo-
ple can get information from the future. This persistent disbe-
lief raises serious questions about how people should and do
interpret experimental findings in psychology. If researchers
remain skeptical of a finding that has a 90% successful repli-
cation rate, it would seem that they should be skeptical of
almost all findings in experimental psychology. If so, one
must consider whether it is worthwhile to spend time and
money on experiments that do not change anyone’s beliefs.
Effect B is based on a meta-analysis of a set of experi-
ments that describe the bystander effect (Fischer et al.,
2011), which is the empirical observation that people are
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less likely to help someone in distress if there are other
people around. I do not know of anyone who doubts that
the bystander effect is real, and it is frequently discussed in
introductory psychology textbooks (e.g., Nairne, 2009).
Given the poor replicability of this effect, the persistent
belief in the phenomenon is curious.

Contrary to its central role in other sciences, it appears
that successful replication is sometimes not related to belief
about an effect in experimental psychology. A high rate of
successful replication is not sufficient to induce belief in an
effect (Bem, 2011), nor is a high rate of successful replica-
tion necessary for belief (Fischer et al., 2011). The insuffi-
ciency of replication is a very serious issue for the practice
of science in experimental psychology. The scientific meth-
od is supposed to be able to reveal truths about the world,
and the reliability of empirical findings is supposed to be the
final arbiter of science; but this method does not seem to
work in experimental psychology as it is currently practiced.

Counterintuitive as it may seem, I will show that the
order of beliefs for effects A and B is rational based largely
on the numbers of reported successful replications. In a field
like psychology that depends on techniques of null hypoth-
esis significance testing (NHST), there can be too much
successful replication, as well as too little. Recognizing this
property of the field is central to sorting out which effects
should be believed or doubted.

Part of the problem is that replication’s ability to sort out
the truth from a set of experiments is undermined by publi-
cation bias (Hedges & Olkin, 1985; Rosenthal, 1984). This
bias may be due to selective reporting of results that are
consistent with the desires of a researcher, or it may be due
to the desires of editors and reviewers who want to publish
only what they believe to be interesting findings. As is
shown below, a publication bias can also be introduced by
violating the procedures of NHST. Such a publication bias
can suggest that a false effect is true and can overestimate
the size of true effects. The following sections show how to
detect publication bias, provide evidence that it contami-
nates experimental psychology, and describe how future
studies can partly avoid it by adopting Bayesian data anal-
ysis methods.

A publication bias test

Ioannidis and Trikalinos (2007) described a test for whether
a set of experimental findings contains an excess of statisti-
cally significant results. Because this test, which I call the
publication bias test, is central to the present discussion, the
method will be described in detail.

The ability of repeated experiments to provide compel-
ling evidence for the validity of an effect must consider the
statistical power of the experiments. If all of the experiments
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have high power (the probability of rejecting the null hy-
pothesis when it is false), multiple experiments that reject
the null hypothesis will indeed be strong evidence for the
validity of an effect. However, the proportion of times a set
of experiments rejects the null hypothesis needs to reflect
the underlying power of those experiments. Even popula-
tions with strong effects should have some experiments that
do not reject the null hypothesis. Such null findings should
not be interpreted as failures to replicate, because if the
experiments are run properly and reported fully, such non-
significant findings are an expected outcome of random
sampling. As is shown below, some researchers in experi-
mental psychology appear to misunderstand this fundamen-
tal characteristic of their science, and they engage in a
misguided effort to publish more successful replications
than are believable. If there are not enough null findings in
a set of moderately powered experiments, the experiments
were either not run properly or not fully reported. If experi-
ments are not run properly or not reported fully, there is no
reason to believe the reported effect is real.

The relationship between power and the frequency of
significant results has been made many times (e.g., Cohen,
1988; Gelman & Weakliem, 2009; Hedges, 1984; Sterling,
Rosenbaum, & Weinkam, 1995), but there has not been a
systematic way to test for violations of this relationship. The
publication bias test identified by loannidis and Trikalinos
(2007) uses the reported effect sizes to estimate the power of
each experiment and then uses those power measures to
predict how often one would expect to reject the null hy-
pothesis. If the number of observed rejections is substantial-
ly larger than what was expected, the test indicates evidence
for some kind of publication bias. In essence, the test is a
check on the internal consistency of the number of reported
rejections, the reported effect size, and the power of the tests
to detect that effect size.

A difference between the expected and observed numbers
of experiments that reject the null hypothesis can be ana-
lyzed with a x? test:

(0 — E)?

ey =228 08

N —E)’ o

where O and FE refer to the observed and expected number of
studies that reject the null hypothesis. N is the total number
of studies in the set of reported experiments. This analysis
actually tests for both too many and too few observed
rejections of the null hypothesis, relative to the expected
number of rejections. The latter probabilities will be negli-
gible in most situations considered here.

The observed number of rejections is easily counted as
the number of reported experiments that reject the null
hypothesis. The expected number of rejections is found by
first estimating the effect size of a phenomenon across a set
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of experiments. This article will consider only mean-based
effect sizes (such as Hedges’ g), but a similar analysis could
be used for correlation-based effect sizes. Meta-analytic
methods (Hedges & Olkin, 1985) weight an experiment-
wise effect size by its inverse variance to produce the pooled
estimate of the effect size.

With the pooled estimated effect size and the sample
size(s) of each experiment, it is easy to determine the power
of each experiment to reject the null hypothesis. Power is
the complement of type II error, (3, (the probability of failing
to reject the null hypothesis when the effect size is not zero).
For a set of N experiments with type II error values [3;, the
expected number of times the set of experiments would
reject the null hypothesis is

N
E:Z(l_ﬂi)a (2)
i=1
which simply adds up the power values across all of the
experiments.

For relatively small experiment sets, an exact test can be
used to compute the probability of getting an observed
number of rejections (or more) for a given set of experi-
ments. Imagine a binary vector, a = [a,, ...,ay], that indicates
whether each of N experiments rejects the null hypothesis
(1) or not (0). Then the probability of a particular pattern of
rejections and nonrejections can be computed from the
power and type II error values:

N
Prob(a) = [T (1 - )8 . (3)
i=1

The equation is simply the product of the power and type
I error values for the experiments that reject the null hy-
pothesis or fail to reject the null hypothesis, respectively. If
every experiment rejects the null hypothesis, the term will
simply be the product of all the power values. Likewise, if
no experiment rejects the null hypothesis, the term will be
the product of all the type II error values.

Fisher’s exact test can be used to compute the probability
of the observed number of rejections, O, or more rejections.
If the vectors that describe the different combinations of
experiments are designated by an index, j, then the proba-
bility of a set of experiments having O or more rejections
out of a set of V experiments is

Prob(O or more experiments reject)

N nC
= > Prob(a())), 4)
k=0 j=1

where ,Cj indicates N choose k, the number of different
combinations of k rejections from a set of N experiments,
and j indexes those different combinations. If all of the

experiments in a reported set reject the null hypothesis, there
is only one term under the summations, and Eq. 4 becomes
the product of the power values.

Following the standard logic of hypothesis testing, if the
probability of the experiments is small under the hypothesis
that there is no bias, there is evidence of publication bias in
the set of experiments. It is not entirely clear what is the
appropriate criterion of “small” for a publication bias test.
Using the traditional .05 criterion seems odd, since the
purpose of such a low criterion for NHST is to ensure that
researchers do not mistakenly conclude that they have evi-
dence for an effect that does not really exist. In contrast,
when the probability is below the criterion for a publication
bias test, one concludes that the set of experiments does not
have evidence for an effect. Thus, the more conservative
approach, relative to the conclusion about the existence of
an empirical effect, is to use a larger criterion value. Of
course, if the criterion is too large, the test will frequently
report evidence of publication bias where it does not exist.
As a compromise between these competing demands, tests
of publication bias frequently use a criterion of .1 (Begg &
Mazumdar, 1994; loannidis & Trikalinos, 2007; Sterne,
Gavaghan, & Egger, 2000). As will be shown below, the
publication bias test is quite conservative, so this criterion is
often larger than the type I error rate of the test.

The following sections demonstrate how the publication
bias test works by looking at simulated experiments. The
advantage of starting with simulated experiments is that
there is a known ground truth about the presence or absence
of publication bias.

File drawer bias

A file drawer bias is based on the idea that researchers more
frequently publish experimental findings that reject the null
hypothesis (Rosenthal, 1984; Scargle, 2000; Sterling, 1959).
The impact of such a bias on the interpretation of a set of
experiments and the ability of the publication bias test to
identify a file drawer bias were investigated with simulation
studies.

In a simulated experiment of a two-sample #-test, a com-
mon sample size for each group was chosen randomly to be
between 15 and 50. For a control sample, n; scores were
drawn from a normal distribution with a mean of zero and a
standard deviation of one. For an experimental sample, n, =
n; scores were drawn from a normal distribution with a
mean of 0.3 and a standard deviation of one. A two-
sample, two-tailed #-test was then computed for the samples
with o = .05. The experiment was repeated 20 times with
different sample sizes and random samples, and for each
experiment, an estimate of effect size was computed as
Hedges g with a correction for bias in effect size (Del Re,
2010; Hedges & Olkin, 1985).
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Table 1 summarizes the key statistics for this set of experi-
ments. The fourth column gives the estimated value of
Hedges’ g for each experiment. Because of random sampling,
it varies around the true effect size. The next three columns
give estimates of experimental power (Champely, 2009; R
Development Core Team, 2011) for three different effect sizes,
which are given below the power values. The first power
column is for the true effect size. The second power column
is for a meta-analytic pooled effect size across all 20 experi-
ments. This estimated effect size is quite close to the true effect
size, so the power values for the true and pooled effect size
columns are also quite similar. For each column, the sum of
the power values is the expected number of times the null
hypothesis would be rejected. Not surprisingly, these values
are close to the observed five rejections out of 20 experiments.

The situation is different if the experiments are filtered by
a file drawer publication bias. Suppose that the calculations
above ignored the null findings (because they were not
published) and, instead, were based only on the five experi-
ments that rejected the null hypothesis. Using the effect size
pooled from only those experiments, the penultimate col-
umn in Table 1 provides their power values. The experi-
ments that reject the null hypothesis tend to have larger ¢
values and experiment-wise effect sizes, so their pooled
effect size is almost twice the true effect size. As a result,

the estimated power of each experiment that rejects the null
hypothesis is substantially larger than the true power. Thus,
one side effect of a file drawer publication bias is that both
the effect size and experimental power are overestimated
(Hedges, 1984; loannidis, 2008; Lane & Dunlap, 1978).
This overestimation undermines the publication bias test, but
there is another effect that overcomes this problem. The sum
of the overestimated power values is the expected number of
times the null hypothesis would be rejected if the experiments
were fully reported. Because the experiments were not
reported fully, this sum includes only the five experiments
that reject the null hypothesis. Since the power values from the
unreported experiments are not included, the sum is substan-
tially smaller than for the fully reported cases. In fact, even
though the effect size and power values are overestimated, the
calculations would lead one to expect that around three of the
five experiments should reject the null hypothesis. The prob-
ability that five out of five experiments like these would reject
the null hypothesis is found by multiplying the power values,
and this gives .081, which is below the .1 criterion used for the
publication bias test. Thus, the test correctly identifies that
something is amiss with the biased set of experiments.

The probability of five rejections out of the 20 experi-
ments can also be computed for the fully reported set of
experiments using the true effect size and the pooled effect

Table 1 Statistical summary of 20 simulated experiments to show the properties of a file drawer publication bias

n 1y t Effect size Power from true ES Power from pooled ES Power from biased ES BF
29 29 0.888 0.230 0.202 0.206 0.282
25 25 1.380 0.384 0.180 0.183 0.490
26 26 1.240 0.339 0.186 0.189 0.411
15 15 0.887 0.315 0.125 0.126 0.366
42 42 0.716 0.155 0.274 0.279 0.212
37 37 1.960 0.451 0.247 0.251 1.005
49 49 —0.447 —0.090 0.312 0.318 0.171
17 17 1.853 0.621 0.136 0.138 1.039
36 36 2.036 0.475 0.241 0.245 0.718 1.159
22 22 1.775 0.526 0.163 0.166 0.869
39 39 1.263 0.283 0.258 0.262 0.360
19 19 3.048 0.968 0.147 0.149 0.444 9.503
18 18 2.065 0.673 0.141 0.143 0.424 1.429
26 26 —1.553 —0.424 0.186 0.189 0.602
38 38 -0.177 —0.040 0.252 0.257 0.177
42 42 2.803 0.606 0.274 0.279 0.784 5.631
21 21 1.923 0.582 0.158 0.160 1.104
40 40 2.415 0.535 0.263 0.268 0.764 2.362
22 22 1.786 0.529 0.163 0.166 0.882
35 35 —0.421 —0.100 0.236 0.240 0.197
Pooled ES 0.3 0.303 0.607

Expected number of rejections (E) 4.14 4214 3.135

Probability of observed (O = 5) or more rejections 0.407 0.417 0.081
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size. As the bottom row of Table 1 shows, the probability of
five or more rejections out of the 20 experiments is around
.4, which was measured using an exact test for the 1,042,380
different combinations of experiments that could have five
or more rejections of the null hypothesis out of these 20
reported experiments.

The example in Table 1 demonstrates a single case where
the publication bias test works well. It is still necessary to
show that the test can generally discriminate experiment sets
with a file drawer bias from experiment sets that do not
contain any bias. Simulations validated the publication bias
test by repeating the experiments in Table 1, while varying
the size of the experiment set being considered and the
probability of null results being published.

Designate the size of the experiment set being tested for
publication bias as M. Using the same parameters for each
experiment as for the findings in Table 1, 1,000 experiment
sets of size M were simulated. The publication bias test was
then applied to each of the experiment sets. In order to ease the
computations, the x? test for publication bias was used instead
of the exact test (these different methods were verified to give
essentially the same result for a subset of the experiment sets).
If the p value for the x* test was less than or equal to .1 and if
the number of published experiments that rejected the null
hypothesis was larger than expected, the experiment set was
classified as having a publication bias. A publication bias was
not reported for the relatively rare cases where the x> test
found evidence of fewer than expected statistically significant
experiments, which tended to happen only when there was no
bias against publishing null results. The ideal publication bias
test has a low proportion of experiment sets indicating bias
when the experiments are fully published (no bias) and a high

proportion indicating bias when some (or all) of the experi-
ments that fail to reject the null hypothesis are not published.

The simulations varied the size of the experiment set, M,
between 10 and 80 in steps of 5. The simulations also varied
the probability, ¢, of publishing an experiment that did not
reject the null hypothesis. When ¢ = 0, only the experiments
that reject the null hypothesis are published and, thereby,
considered in the publication bias test analysis. When ¢ = 1,
both significant and null findings are fully published, and
there is no publication bias. The simulations also considered
intermediate probabilities of publication, g = .125, .25, .5,
which will produce experiment sets with differing amounts
of publication bias.

Figure 1 plots the proportion of times that the test reports
evidence of publication bias as a function of the number of
experiments in the set. The different curves are for the
different probabilities of publishing a null finding. The
proportion of times the test falsely reported a publication
bias when the experiment set actually published all experi-
ments (¢ = 1) was at most .02. The publication bias test does
not have many false alarms when the data are fully reported.

For experiment sets with bias, the test becomes ever more
accurate as the number of experiments increases. Under an
extreme file drawer bias (¢ = 0), only the experiments that
reject the null hypothesis are published, and for the param-
eters used in these simulations, that corresponds to around
2.2 rejections for every 10 experiments. These values are
given in parentheses on the x-axis of Fig. 1. As more null
findings are published (¢ > 0), the test becomes less likely to
report the presence of a publication bias.

The test is very conservative for small experiment sets.
The proportion of times the test detects publication bias does

Fig. 1 Results of simulated
experiments exploring the 1
ability of the publication bias
test to discriminate biased and
unbiased experiment sets.
When all experiments

are published (¢ = 1), the

test almost never reports
evidence of bias. When only
significant experiments are
published (¢ = 0), the
proportion of times the test
reports bias increases with the
size of the experiment set. The
values in parentheses are the
average number of experiments
that rejected the null hypothesis
in the experiment set
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not reach 50% until the experiment set contains between 25
and 30 experiments. This corresponds to an average of
between 5.5 and 6.6 reported experiments that reject the
null hypothesis. Thus, if an extreme file drawer bias really
is present, the test has a fairly low chance of detecting the
bias if fewer than 5 experiments are reported. Even so, the
low false alarm rate means that when evidence of publica-
tion bias is found, the test is very likely to be correct.

It might be tempting to dismiss the simulation findings as
being purely theoretical because few researchers would
purposely suppress null findings while reporting significant
findings. However, there are at least two situations where
this kind of behavior may be quite common for researchers
who do not understand how methodological choices can
produce this kind of bias (see also Simmons, Nelson, &
Simonsohn, 2011).

Multiple measures

For some experiments, it is common to measure a wide
variety of characteristics for each participant. For some
areas of research, there are easily more than 20 such items,
and researchers can run multiple statistical analyses but
report only the findings that are statistically significant. This
type of selective reporting is very similar to a file drawer
publication bias. (It is not quite the same, because the
measures often have dependencies.) Such an approach vio-
lates the basic principles of hypothesis testing and the sci-
entific method, but I have heard more than one academic
talk about where it appeared that this kind of selective
reporting was being done.

Improper pilot studies

A single reported experiment that rejects the null hypothesis
is sometimes the end result of a series of pilot experiments
that failed to reject the null hypothesis. Often times, this
kind of pilot work is valid exploratory research that leads to
a well-designed final study. If such final reported studies
have large power values, the publication bias test will not
report a problem. On the other hand, some researchers may
believe that they are running various pilot studies, but they
are really just repeating an experiment with minor variations
until they happen to reject the null hypothesis. A set of such
experiments with relatively low power will show the pattern
exhibited by the biased reports in Table 1 and will likely be
detected by the publication bias test.

Data-peeking bias
Traditional hypothesis testing requires a fixed sample size

for its inferences to be valid. However, it is easy to violate
this requirement and artificially increase the likelihood of
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rejecting the null hypothesis. Suppose a researcher runs a
two-sample #-test by gathering data from control and exper-
imental groups with 15 participants. If the difference be-
tween groups is statistically significant, the experiment
stops, and the researcher reports the result. If the difference
between groups is not statistically significant, the researcher
gathers data from one more participant in each group and
repeats the statistical analysis. This process can be iterated
until the difference between groups is found to be statisti-
cally different or the experimenter gives up. Concerns about
this kind of data peeking (also called optional stopping)
have been raised many times (Berger & Berry, 1988;
Kruschke, 2010a; Simmons et al., 2011; Strube, 2006;
Wagenmakers, 2007), but many researchers seem unaware
of how subversive it can be. If the null hypothesis is true, the
type I error rate for experiments using this procedure for
several iterations can dramatically increase from the
expected .05, and it can effectively approach 1.0 if the
experimenter is willing to gather enough data. There are
many variations of this approach, and the increase in type
I error produced by any of these approaches depends on a
variety of experimental design factors, such as the number
of initial participants, the number of participants added after
each peek at the data, and the criteria for continuing or
stopping the experiment. All of these approaches introduce
a publication bias because they end up rejecting the null
hypothesis more frequently than would happen if proper
NHST rules were followed. An inflated rejection rate occurs
even if the null hypothesis is false.

To explore the effects of publication bias due to data
peeking, simulated experiments were generated with a
data-pecking method. Each experiment started with a ran-
dom sample of 15 scores from a control (mean of zero) and
an experimental (mean of 0.3) normal distribution, each
with a standard deviation of one. A two-tailed #-test was
performed, and the experiment was stopped; the result was
judged significant if p <.05. If the result was not significant,
one additional score from each distribution was added to the
data set, and the analysis was run again. This process con-
tinued until the sample size reached 50 or the experiment
rejected the null hypothesis.

Table 2 shows the statistical properties of 20 such experi-
ments. The sample size values reflect the number of data
points at the time the experiment ended. Unlike a file drawer
bias, data peeking does not much alter the pooled effect size.
For the particular data in Table 2, the pooled estimated effect
size from the fully published data set is 0.323, which is only
slightly larger than the true effect size of 0.3.

However, the number of experiments that reject the null
hypothesis is artificially high under data peeking. The last
column of Table 2 lists the power of each experiment for the
pooled effect size and the given sample sizes. The sum of
these power values is £ = 5.191, which is much smaller than
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Table 2 Statistical summary of simulated experiments (with true effect size equal to 0.3) to show the properties of a data-pecking publication bias

n ny t Effect size Power from pooled ES Power from pooled ES
(data peeking) (data-peeking and file drawer bias)

37 37 2.009 0.462 0.278 0.759
50 50 1.130 0.224 0.359

50 50 0.027 0.005 0.359

39 39 2.009 0.450 0.291 0.781
26 26 2.020 0.552 0.207 0.602
50 50 0.724 0.144 0.359

19 19 2.419 0.768 0.162 0.469
50 50 0.850 0.169 0.359

25 25 2.141 0.596 0.201 0.585
50 50 0.716 0.142 0.359

44 44 2.079 0.439 0.322 0.829
15 15 3.215 1.142 0.137 0.382
17 17 2.197 0.736 0.150 0.426
15 15 2.369 0.842 0.137 0.382
15 15 2.091 0.743 0.137 0.382
19 19 2.191 0.696 0.162 0.469
50 50 0.559 0.111 0.359

50 50 —-0.898 -0.178 0.359

15 15 3.089 1.097 0.137 0.382
50 50 1.414 0.281 0.359

Pooled ES 0.323 0.627
Expected number of rejections (E) 5.191 6.447
Probability of observed (O = 12) or more rejections <.001 <.001

the observed O = 12 significant findings. An exact test
(across 263,950 different experiment combinations) reveals
that the probability of finding 12 or more experiments that
reject the null hypothesis out of 20 experiments with these
power values is slightly less than .001. Thus, there is very
strong evidence of a publication bias due to data peeking.

The final column of Table 2 shows the estimated power
values related to a situation where data peeking was used for
each study and a file drawer bias was added so that only the
positive findings were reported. As was discussed for the
file drawer bias in Table 1, the effect size and power values
are substantially overestimated, but the fewer considered
experiments means that one would expect only about £ =
6.45 of the 12 reported experiments to reject the null hy-
pothesis. The probability that all 12 reported experiments
would reject the null hypothesis is the product of the power
values, which is only .0003.

Table 3 summarizes a similar simulation analysis when the
effect size is zero, which means that the null hypothesis is true.
In the simulations, the experiment continued until the null
hypothesis was rejected in the right-hand tail (evidence in the
negative direction was ignored, under the idea that a researcher
was looking for a particular direction of an effect). To be sure

to get enough experiments that rejected the null hypothesis, the
maximum number of data samples was increased to 100.

Because the null hypothesis was true for these simulated
experiments, every rejection of the null hypothesis was a
type I error. If the experiments were run properly (without
data peeking), 1 out of the 20 experiments would be
expected to reject the null hypothesis. In fact, with data
peeking, the null hypothesis was rejected four times (type
I error rate of 0.2). The pooled effect size is quite small
(0.052) because most of the experiments that reject the null
hypothesis have small sample sizes, as compared with the
experiments that do not reject the null hypothesis, and large
samples have more influence on the pooled effect size
estimate than do small samples. With such a small effect
size, the power values are also quite small, and the expected
number of times these 20 experiments will reject the null
hypothesis is only 1.284. An exact test considered all
1,047,225 combinations of ways that 4 or more experiments
might reject the null hypothesis for these 20 experiments,
and the probability of any of those combinations is only
.036. Thus, there is clear evidence of publication bias.

The publication bias test continues to properly detect a
problem when a file drawer bias is combined with a data-
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peeking bias under the situation where the null hypothesis is
true. The penultimate column in Table 3 shows the power
values for the pooled effect size that was computed
from only those experiments that rejected the null hy-
pothesis in a positive direction. As in the previous
simulations with a file drawer bias, the effect size and
power values are dramatically overestimated. Even so,
the expected number of times these experiments should
reject the null hypothesis is about half the actual num-
ber of reported rejections. The probability that four out
of four such experiments would reject the null hypoth-
esis is .047, which indicates publication bias.

It would be good to know how well the publication bias
test discriminates between the presence and absence of a
data-peeking bias. The performance of the publication bias
test should improve as the number of experiments in the set
increases and as the effect of peeking introduces more bias.
The most biased case of data peeking comes when a single
data point is added to each group after each peek at the data.
With more data points added after each peek, there are fewer
peeks (assuming a fixed upper number of data points), and
each addition of a set of data points tends to be less variable.
In new simulations, 10,000 simulated experiments like the
one in Table 3 (where the null hypothesis is true) were

created for each of five data-peeking cases with different
numbers of data points added after each peek. From this
pool of simulated experiments for a given peek addition
number, M experiments were drawn at random, and the set
was tested for publication bias (there was no file drawer
bias, since experiments were fully reported). The test was
repeated 1,000 times, and Fig. 2 plots the proportion of
times the test reports evidence of publication bias as a
function of the experiment set size, M. The different curves
are for variations in the number of added data points after
each peek.

The bottom curve (no peeking) verifies that if there
is no data peeking (the sample size was always n; = n,
= 15), it is rare for the test to report that publication
bias was present. The maximum proportion of false
alarms was .06 when the experiment set contained only
10 experiments. Just as for the file drawer bias, the
publication bias test makes few false alarms.

All of the other curves show results for varying the
number of data points added after each peek. The test more
frequently detects bias in experiment sets with smaller
numbers of data points added after each peek. In the stron-
gest bias case (adding 1 data point for each group after each
data peek), the publication bias test detects the bias better

Table 3 Statistical summary of simulated experiments showing the properties of a data-peeking publication bias when the null hypothesis is true

n o t Effect size Power from pooled ES Power from pooled ES BFq
(data peeking) (data-peeking and file drawer bias)

19 19 2.393 0.760 0.053 0.227 2518
100 100 0.774 0.109 0.066 0.148
100 100 1.008 0.142 0.066 0.181
63 63 2.088 0.370 0.060 0.611 1.065
100 100 0.587 0.083 0.066 0.131
100 100 —1.381 —0.195 0.066 0.278
100 100 —0.481 —0.068 0.066 0.124
100 100 0.359 0.051 0.066 0.118
100 100 -1.777 —0.250 0.066 0.505
100 100 —0.563 —-0.079 0.066 0.129
100 100 1.013 0.143 0.066 0.182
100 100 —0.012 —0.002 0.066 0.111
46 46 2.084 0.431 0.057 0.480 1.175
100 100 0.973 0.137 0.066 0.175
100 100 -0.954 —0.134 0.066 0.172
100 100 —-0.136 —0.019 0.066 0.112
78 78 2.052 0.327 0.062 0.704 0.920
100 100 —-0.289 —0.041 0.066 0.115
100 100 1.579 0.222 0.066 0.368
100 100 0.194 0.027 0.066 0.113
Pooled ES 0.052 0.402

Expected number of rejections (E) 1.284 2.021

Probability of observed (O = 4) or more rejections .036 .047
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than 50% of the time even when the experiment set size is as
small as 20. In the least biased case reported here (adding 40
data points to each group after each data peek), there are
only three opportunities to test the data, and it is difficult for
the test to detect such a bias.

Other sources of publication bias

One of the main strengths of the publication bias test is that
it detects biases from a variety of different sources. Bias can
be introduced by seemingly innocuous decisions at many
different levels of research (Simmons et al., 2011). Given
the high frequency of errors in reporting statistical findings
(Bakker & Wicherts, 2011), researchers can introduce a
publication bias by being very careful when the results are
contrary to what was expected but not double-checking
results that agree with their expectations. Likewise, data
from a participant that performs poorly (relative to the
experimenter’s hopes) might be discarded if there is some
external cause, such as noise in a nearby room; but data
from a participant that happens to perform well under the
same circumstances might be kept. The key property of the
publication bias test is that many of these choices leave
evidence of their influence by producing an excess of sig-
nificant findings, relative to what the estimated effect sizes
suggest should be found.

Overall, the publication bias test properly detects evi-
dence for several different types of bias that produce an
excess of significant results. One shortcoming of the test is
that it is conservative, especially when the number of sig-
nificant findings is small (less than five), because using the
pooled estimated effect size from a set of published experi-
ments gives a generous benefit of the doubt, which often
leads to an overestimation of the power values when there
really is bias. Thus, once evidence for publication bias is

Size of experiment set

found, the magnitude of the bias is probably larger than
what the test directly indicates.

Publication bias in experimental psychology

The previous section described the Ioannidis and Trikalinos
(2007) test for publication bias and demonstrated that it
works properly for simulated experiments. The test has a
low false alarm rate and is conservative about reporting the
presence of publication bias. In this section, the test is
applied to several sets of studies in experimental psycholo-
gy. The examples are chosen to highlight different proper-
ties of publication bias, but it is also valuable to know that a
particular set of experiments has a publication bias, because
those findings should be considered nonscientific and
anecdotal.

Previous applications of the test have indicated publica-
tion bias in individual reports (Francis, 2012a, 2012b, in
press) and in a meta-analysis (Renkewitz, Fuchs, & Fiedler,
2011). Schimmack (in press) independently developed a
similar analysis. Francis (2012b) found evidence that the
precognition studies of Bem (2011), which correspond to
effect “A” in the introduction, are contaminated with publi-
cation bias. Thus, despite the high replication rate of those
studies, the findings appear unbelievable. Below, this con-
clusion will be contrasted with a similar analysis of effect
“B,” which had a low replication rate.

It is important to be clear that the indication of publica-
tion bias in a set of experiments does not necessarily imply
that the reported effect is false. Rather, the conclusion is that
the set of experiments does not provide scientific informa-
tion about the validity of the effect. The proper interpreta-
tion of a biased set of experiments is a level of skepticism
equivalent to what was held before the experiments were
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reported. Future studies (without bias) may be able to dem-
onstrate that the effect is true or false.

Washing away your sins

Zhong and Liljenquist (2006) reported four experiments
with evidence that cleansing activities were related to moral
purity. For example, they showed that people subject to
moral impurity (e.g., recalling unethical behavior in their
past) were more likely than controls to complete a word
fragment task with cleanliness-related words. Each of the
four experiments rejected the null hypothesis, thereby pro-
viding converging evidence of a connection between moral
purity and cleanliness.

A meta-analytic approach was used to compute the power
of the experiments, as summarized in Table 4. For the four
experiments reported in Zhong and Liljenquist (2006), the
pooled effect size is 0.698, and the penultimate column in
Table 4 shows the power of the studies to detect this pooled
effect size. The sum of the power values is £ = 2.25, which
is small, as compared with the O = 4 rejections. The product
of the four power values is the probability that four experi-
ments like these would all reject the null hypothesis if the
studies were run properly and reported fully. This probabil-
ity is .089, which is below the .1 threshold used to conclude
evidence of publication bias. Thus, readers should be skep-
tical about the validity of this work.

Additional positive replications of the effect will alleviate
the publication bias only if the effect size of the new experi-
ments is much larger than in the original experiments. One
might wonder if a failure to replicate the effect in new
experiments might make evidence of publication bias dis-
appear. This would set up a counterintuitive situation where
a scientific effect becomes more believable if it fails to
replicate in new experiments. Mathematically, such a situa-
tion seems possible, but it would occur only if the new
experiments just barely fail to replicate the effect. The find-
ings of the new experiments contribute to a new meta-
analytic estimate of the effect size, and because the experi-
ments do not reject the null hypothesis, their estimate of the
effect size will usually be smaller than the previous estimate

(assuming similar sample sizes). As a result, the pooled
effect size will be smaller, and the power of all the experi-
ments will take smaller values.

In fact, two of the findings of Zhong and Liljenquist
(2006) did fail to replicate in a follow-up study (Fayard,
Bassi, Bernstein, & Roberts, 2009). The replications
reported small effect sizes, as shown in the last two rows
of Table 4. Since Fayard et al. used larger sample sizes, their
estimates of effect size are weighted more heavily than any
individual experiment from Zhong and Liljenquist. Indeed,
the pooled effect size across all six experiments is 0.300,
which is less than half the previous estimate. As is shown in
the final column of Table 4, the power of the experiments to
reject the null hypothesis for this new estimated effect size is
fairly small. The sum across the power values (£ = 1.62) is
the expected number of times experiments like these six
experiments would reject the null hypothesis if they were
run properly and reported fully. An exact test considered all
possible ways that O = 4 or more of the six experiments
might reject the null hypothesis and computed the probabil-
ity of each of the 22 possible combinations. The sum of
these probabilities is only 0.036, which means there is still
evidence of publication bias in this set of experiments. One
cannot draw statistical conclusions from any particular pat-
tern of results, but it is curious that in the reported findings,
all of the low-powered experiments rejected the null hypoth-
esis, while the moderately powered experiments failed to
reject the null hypothesis.

Bystander effect

One common view of science is that although a given
research lab may have biases, these can be mitigated by
countering biases from other research labs. Thus, it might
seem that although publication bias could be introduced
with a few studies for specific topics, the main effects in
experimental psychology would likely not be subject to such
bias. We can investigate this possibility by looking at a
meta-analysis of such a main effect.

Fischer et al. (2011) used meta-analytic techniques to com-
pare the bystander effect for dangerous and nondangerous

Table 4 Statistical properties of the Zhong and Liljenquist (2006) and Fayard, Bassi, Bernstein, and Roberts (2009) experiments on moral impurity
and cleanliness. Effect sizes were computed from the reported 7 and x> tests

Description N1 N2 Effect size Power from pooled ES of Z&L Power from pooled ES of all
Z&L Experiment] 30 30 0.526 0.757 0.215
Z&L Experiment2 13 13 1.004 0.403 0.117
Z&L Experiment 3 16 16 0.796 0.479 0.142
Z&L Experiment 4 22 23 0.696 0.612 0.178
Fayard et al. Experiment 1 104 106 0.066 NA 0.596
Fayard et al. Experiment 2 57 58 0.228 NA 0.370
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situations. The bystander effect is the observation that an
individual is less likely to help someone in need if there are
other people who might provide assistance. The bystander
effect has been widely studied, and the meta-analysis reported
105 independent effect sizes that were based on more than
7,700 participants.

Fischer et al. (2011) broke down the investigations of the
bystander effect by several different variables. One impor-
tant classification was whether the context of the study
involved an emergency or a nonemergency situation. (The
nonemergency situation is effect “B” from the introduction.)
Table 5 shows the results of a publication bias test for each
of these two contexts. Given the large number of studies, it
is not surprising that evidence for the bystander effect is not
always found. Only 24 of the 65 experiments in the emer-
gency situation rejected the null hypothesis (assuming two-
tailed t-tests with o =.05), and only 10 of 19 experiments in
the nonemergency situation rejected the null hypothesis.
Fischer et al. identified some additional experiments with
other contexts that are not considered here.

To know whether there is a publication bias in either of
these experiment sets, one computes the power of each
experiment for the pooled estimated effect size. For the
nonemergency situation, the expected number of experi-
ments that report evidence of the bystander effect (the sum
of the power values across experiments) is just a bit less than
11, which is pretty close to the observed number of experi-
ments that reject the null hypothesis. In contrast, the power
analysis for the 65 experiments in the emergency situation
expects that around 10 of the experiments should find evi-
dence of the bystander effect (most of the experiments have
fairly small sample sizes), which is much smaller than the 24
observed findings. The results of the x? tests are shown in
the bottom two rows of Table 5.

Even though fewer than half of the studies with an
emergency situation reported evidence of the bystander
effect, there is strong evidence of a publication bias, so

Table 5 Results of the publication bias test for the meta-analyses
reported by Fischer et al. (2011) (a negative effect size is evidence
for the bystander effect)

Emergency Nonemergency
situations situations
Number of studies 65 19
Pooled effect size —-0.30 —-0.47
Observed number of rejections 24 10
of Hy consistent with
bystander effect (O)
Expected number of rejections 10.02 10.77
of Hy consistent with
bystander effect (E)
(1) 23.05 0.128
)4 <.0001 721

researchers should be skeptical about the validity of this
effect. It should be pointed out that this observation is
consistent with the general ideas of Fischer et al. (2011),
who argued that the bystander effect should be attenuated in
emergency situations.

It is noteworthy that there is no evidence of a publication
bias for the nonemergency situation studies. The nonemer-
gency situation studies had power values ranging from 0.2
(for several experiments with only 24 participants) to nearly
1.0 (for one experiment with 2,500 participants). The key
characteristic of this set of experiments is that the number of
studies that reject the null hypothesis is generally consistent
with the properties of the experiments and the pooled effect
size. This self-consistency is missing in the experiment sets
with publication bias.

Altered vision near the hands

The previous two investigations of published data sets were
drawn from the subfield of social psychology. There may be
different standards and experimental methods for different
subfields, but there is no reason to believe that publication
bias is a problem only for social psychology. Indeed, data
sets that appear to be biased are readily found in mainstream
publications for cognitive psychology. For example,
Abrams, Davoli, Du, Knapp, and Paull (2008) presented
evidence that visual processing is different when a person’s
hands are near the stimuli. In one representative experiment,
they noted that search times increased with display size
more quickly when the hands were placed on either side of
a computer monitor than when the hands were on the lap. In
a set of five experiments, Abrams et al. explored this effect
with several different experimental designs and concluded
that the effect of hand position is due to an influence on
disengagement of attention. Table 6 shows the effect sizes of
this phenomenon across the five experiments, which all used
a within-subjects design.

The pooled effect size across all five experiments is
0.543. The last column of Table 6 gives the power of each
experiment to detect this pooled effect size if the experi-
ments were run properly and reported fully. The sum of the
power values across the five experiments is £ = 2.84, and
this expected number of rejections is notably smaller than
the reported O = 5 rejections. Indeed, the probability that
experiments like these would all reject the null hypothesis is
the product of the power values, which is .048.

At least one follow-up experiment showed a similar
pattern. Davoli and Abrams (2009) reported that the effect
was found even with imagined placement of the hands.
Their reported result (n = 16, g = 0.567) is very similar to
those in Abrams et al. (2008), but the power of this exper-
iment to detect the pooled effect size is only 0.53. Despite
the relatively low power, Davoli and Abrams did reject the
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Table 6 Statistical properties of the Abrams, Davoli, Du, Knapp, and
Paull (2008) experiments on altered vision near the hands (the effect
size for each experiment was computed from the F value and the
sample size given in the report)

Study N Effect size Power from pooled ES
Exp. la 20 0.550 0.635
Exp. 1b 12 0.649 0.404
Exp. lc 20 0.524 0.635
Exp. 2 12 0.652 0.404
Exp. 3 24 0.440 0.722

null hypothesis. If one considers this finding to be another
replication of the effect, the probability of six such experi-
ments all rejecting the null hypothesis is roughly .025.
Further successful replications of the finding will only pro-
vide stronger evidence for publication bias if they include
the findings from Abrams et al., so researchers interested in
this phenomenon are advised to ignore those findings and
start over with new unbiased investigations.

Bayesian data analysis can reduce publication bias

The previous section makes it clear that the publication bias
test is not just a theoretical curiosity. There is evidence for
publication bias in articles and topics that are published in
the top journals in the field and have been investigated by
dozens of different labs. It is not yet clear how pervasive the
problem might be, but such studies were not difficult to
identify. A systematic investigation of publication bias
across the field may be necessary in order to weed out the
unbelievable findings.

Although no analytical technique is completely immune to
all forms of publication bias, this section shows that Bayesian
data analysis methods have features that allow them to avoid
some forms of publication bias. These properties add to the
already excellent motivations to analyze data with Bayesian
methods (Deines, 2011; Kruschke, 2010a; Rouder, Speckman,
Sun, Morey, and Iverson, 2009; Wagenmakers, 2007).

There are several different approaches to Bayesian data
analysis, but in relation to the effects of publication bias,
they all have the properties described in this section. The
most flexible Bayesian approach involves creating a para-
metric distribution model for a data set and then using Gibbs
sampling techniques to estimate the probabilities of the
observed data for different parameters. Readers interested
in this approach are encouraged to look at Kruschke (2010b)
for an introduction into how experimental psychologists
would use these techniques.

Although flexible, the Gibbs sampling approach is compu-
tationally intensive. This is usually not a problem for
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analyzing any particular data set, but for the simulated experi-
ments described below, the computations would be cumber-
some. An alternative approach is to accept the assumptions
appropriate for a traditional #-test and then compute a Bayes
factor, which is the ratio of the probability of the observed data
for the null and alternative hypotheses. The main advantage of
this approach is that Rouder et al. (2009) derived a formula for
computing the Bayes factor using a standard objective prior
distribution that can be applied to #-tests. This formula requires
only the sample size(s) and the ¢ value that is used in tradi-
tional NHST approaches. A complete understanding of the
calculations of the Bayes factor is not necessary for the fol-
lowing discussion, but interested readers should see Rouder et
al. for details on the #-test and Rouder, Morey, Speckman, and
Province (in press) for Bayesian analysis methods of ANOVA
designs. An additional advantage of using the Bayes factor
computations is that Rouder and Morey (2011) derived a
meta-analytic version that pools information across multiple
experiments. Again, the meta-analytic calculations require
only the sample size(s) and ¢ value for each experiment.

As a ratio of probabilities given the null and alternative
hypotheses, a Bayes factor of one corresponds to equal
evidence for both hypotheses. It is arbitrary whether to place
the probability corresponding to the null hypothesis in the
numerator or denominator of the ratio. I have put the null
hypothesis in the denominator and use the term BF), to
indicate that this is the Bayes factor with hypothesis 1
(alternative) in the numerator and hypothesis 0 (null) in
the denominator. A Bayes factor larger than one indicates
evidence for the alternative hypothesis, while a Bayes factor
less than one indicates evidence for the null hypothesis.

Bayesian analysts have identified thresholds that are
conventionally used to characterize the evidence in favor of
the null or alternative hypotheses (Kass & Raftery, 1995).
When BF;o > v/10 ~ 3.16, there is said to be “substantial”
evidence for the alternative hypothesis. Evidence values be-
tween 1 and 3.16 are said to be anecdotal or inconclusive.
Other category thresholds include above 10 for “strong” evi-
dence and above 100 for “decisive” evidence. A Bayesian
analysis can also provide evidence for the null hypothesis,
with thresholds set by the inverse of the alternative category
boundaries. Thus, when BFy < 0.316, there is said to be
“substantial” evidence for the null hypothesis. Unlike NHST,
none of these threshold categories are sacrosanct, and one
frequently finds the “substantial” evidence thresholds rounded
to 3 and 1/3. None of these choices will alter the general
discussion below.

At the risk of offending my Bayesian colleagues, the
discussion below is going to treat these thresholds with
more respect than they deserve. Simulated experiments will
investigate how file drawer and data-peeking publication
biases affect the frequency of finding “substantial” evidence
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for the null and alternative hypotheses in a meta-analysis.
From the viewpoint of a Bayesian analysis, this focus
ignores a lot of useful information. Generally, a Bayesian
data analysis is interested in the evidence itself, rather than
identifying where the evidence falls within some quasi-
arbitrary categories. Nevertheless, I hope to introduce the
main issues to the majority of experimental psychologists,
who I suspect will look for concepts analogous to “rejecting
the null hypothesis,” and these Bayesian categories play a
somewhat similar role. The main arguments apply equally
well to consideration of evidence itself, without the
categories.

File drawer bias

The last column of Table 1 shows the results of a
Bayesian analysis of the previously investigated set of
20 simulated experiments that were generated with a
true effect size of 0.3. Two of the experiments report
substantial evidence for the alternative hypothesis, and
five experiments report substantial evidence for the null
hypothesis. The remaining experiments do not provide
substantial evidence for either the null or the alternative
hypothesis. However, the meta-analytic Bayes factor that
considers all of the experiments finds decisive evidence
for the alternative hypothesis (BFq = 44,285).

It might seem that there would be no reason to publish
the inconclusive experiments, but they actually provide a lot
of information. The meta-analytic Bayes factor based only
on the seven experiments with substantial evidence for
either of the hypotheses is BFy = 0.534, which is not
convincing evidence for either hypothesis but slightly favors
the null. Thus, introducing a file drawer publication bias
radically alters the Bayesian interpretation of this set of
findings. By not reporting the findings from inconclusive
experiments, the meta-analysis would fail to recognize the
decisive evidence for the effect. Indeed, pooling nonsignif-
icant findings across a large set of experiments in order to
extract significant effects is one of the primary motivations
for meta-analytic approaches (Hedges & Olkin, 1985).

To explore the effects of publication bias further, the
simulated experiment set was repeated 100 times. After
gathering data from 20 experiments, the experiment set
was subjected to one of four publication bias conditions,
described below. The published data from the 20 experi-
ments were then analyzed with the meta-analytic Bayes
factor, and the output was classified as substantial evidence
for the alternative hypothesis, substantial evidence for the
null hypothesis, or inconclusive. The whole process was
then repeated for experiments where the effect size equaled
zero (the null hypothesis was true). Table 7 reports the
number of times the meta-analytic Bayes factor reached
each of the decisions.

When there was no publication bias (first-row pair), the
meta-analytic Bayesian analysis almost always makes the
correct decision, and it never reports substantial evidence for
the wrong hypothesis. The second-row pair corresponds to a
publication bias where only the experiments that reached a
definitive conclusion (substantial evidence for the alterna-
tive or null hypothesis) were published. This is the most
natural version of a file drawer bias, and it has little effect
when the null hypothesis is true. However this bias has a
striking negative effect when the true effect size is 0.3.
Frequently, the meta-analytically pooled evidence ends up
being inconclusive or supportive of the null hypothesis. As
was described above, the inconclusive experiments actually
contain evidence for the alternative hypothesis, and ignoring
that information with a publication bias sometimes leads to
the wrong conclusion in the meta-analysis.

The third bias condition supposes that a researcher does
not publish any experiment that fails to provide evidence for
a positive alternative hypothesis. It might seem that such a
bias will lead to artificially enhanced evidence for the alter-
native hypothesis, and this is indeed the impact if the null
hypothesis is true. The impact is not overwhelming, how-
ever, and the meta-analytically pooled decision is most often
that the evidence is inconclusive. Interestingly, a similar
effect is found when the alternative hypothesis is true. As
compared with fully publishing all experiments, publishing
only those experiments that find evidence for a positive
alternative reduces the number of times the meta-analytic
Bayes factor data analysis correctly concludes that the alter-
native hypothesis is true. Again, this is because the unre-
ported experiments contain evidence for the alternative
hypothesis and not reporting those findings reduces the
ability of the meta-analysis to draw the proper conclusion.

Table 7 The influence of different forms of publication bias on the
frequency of each decision of a meta-analytic Bayes factor data anal-
ysis for simulated sets of experiments

Type of bias Meta-analytic decision

Effect  Alternative Null Inconclusive
size

None 0.0 0 95

0.3 100 0 0

Publish only 0.0 0 100 0
experiments with 03 50 17 33
conclusive evidence
(file drawer bias)

Publish only 0.0 17 0 83
experiments with 03 90 0 10
conclusive positive
evidence

File drawer bias based 0.0 23 14 63
on NHST results 03 97 1 2
(#-test)
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Finally, the simulation considered the impact of the file
drawer bias on the basis of the results of a traditional NHST
t-test. An experiment was reported only if the z-test rejected
the null hypothesis. This kind of bias has little impact on the
meta-analytic Bayesian analysis if the alternative hypothesis
is true, but it greatly diminishes the ability of the meta-
analysis to correctly identify when the null hypothesis is
true. Instead, the most common decision is that the data are
inconclusive.

One main conclusion from the simulations of the meta-
analytic Bayes factor data analysis is that a file drawer publi-
cation bias undermines the ability of experiments to demon-
strate evidence for the alternative hypothesis. Bayesian
analysis methods do not reduce the impact of a file drawer
bias, but they make the problems with such a bias more
obvious. If finding evidence for nonzero effects is of interest
to researchers who use a Bayesian analysis, they should avoid
publication bias. Moreover, researchers who introduce a pub-
lication bias will probably not be very productive, because a
common outcome of such bias is to produce experiment sets
with inconclusive meta-analysis findings.

Data-peeking bias

A benefit of Bayesian data analysis is that it almost entirely
avoids publication bias introduced by data peeking. The last
column of Table 3 shows the Bayes factor data analysis for
the experiments generated when the null hypothesis was
true, but data peeking was used such that the experiment
stopped when the null hypothesis was rejected with a pos-
itive mean difference. This type of data peeking exaggerates
the NHST type I error rate (from 0.05 to 0.2), which leads to
a publication bias.

However, Kerridge (1963) proved that the frequency of
type I errors with a Bayesian analysis has an upper bound
that depends on the criterion used to indicate evidence of an
effect. As a result, Bayesian data analysis is mostly insensi-
tive to the presence of data peeking. This insensitivity is
evident in Table 3, since not one of the experiments finds
substantial evidence for the alternative hypothesis. In fact,
14 out of the 20 experiments (correctly) provide substantial
evidence that the null hypothesis is true. When all of the
experimental results are considered, BF o = 0.092, which is
strong evidence for the null hypothesis.

In part, the insensitivity of the Bayesian data analysis to
data peeking is due to a stricter criterion for evidence of the
alternative hypothesis, relative to NHST approaches. But
there are other factors as well. In an additional simulation,
data peeking was implemented so that data points were
added until the Bayes factor calculation gave a conclusive
result for either the null or the alternative hypothesis. Table 8
shows that this approach most often leads to substantial
evidence for the null hypothesis, and only one experiment
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reports substantial evidence for the alternative hypothesis.
When pooled across all of the experiments, the meta-
analytic Bayes factor is 0.145, which is substantial evidence
for the null. An important characteristic of the Bayesian
approach, as compared with NHST, is that an experiment
can stop with substantial evidence for the alternative hy-
pothesis or for the null hypothesis. Notably, the Bayesian
data-peeking approach reaches a conclusion with fairly
small sample sizes. Bayesian data analysis fits in well with
the general idea that a researcher should gather data until a
definitive answer is found.

A Bayesian data analysis is even immune to a data-
peeking publication bias that appears to be blatantly decep-
tive. Table 9 shows experimental data generated with a data-
peeking process that continued adding one data point after
each peek until the experiment found evidence for a positive
alternative hypothesis or the upper limit to the number of
data points was reached. In contrast to the data-peeking
approach in Table 8, which quickly converged on evidence
for the null hypothesis, experiments searching for Bayesian
evidence of the positive alternative hypothesis are mostly
futile, because the null hypothesis is actually true in these
simulations. Eighteen of the 20 experiments reach the upper

Table 8 Statistical summary of simulated experiments showing the
properties of a data-peeking publication bias when the null hypothesis
is true

n ny t Effect size BF
16 16 —0.569 -0.196 0.294
15 15 -0.072 —0.026 0.263
15 15 0.039 0.014 0.263
15 15 0.099 0.035 0.263
24 24 2.696 0.766 4.574
29 29 0.887 0.230 0.282
15 15 0.660 0.234 0.316
15 15 0.018 0.006 0.262
17 17 -0.471 —0.158 0.274
36 36 0.630 0.147 0.215
15 15 —0.085 —-0.030 0.263
15 15 —0.534 —-0.190 0.296
15 15 0.592 0.210 0.305
15 15 0.589 0.209 0.304
15 15 —0.537 —-0.191 0.297
15 15 -0.221 —0.078 0.268
15 15 —0.134 —0.048 0.264
18 18 0.609 0.198 0.286
15 15 0.634 0.225 0.311
15 15 0.404 0.143 0.281

Note. These experiments stopped when the Bayes factor reached a
value indicating substantial evidence for either the null or the alterna-
tive hypothesis.
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limit of the number of data points and then report substantial
evidence for the null hypothesis. One experiment stops very
early and reports substantial evidence for the positive alter-
native hypothesis. The remaining experiment reaches the
upper limit and reports an inconclusive Bayes factor. The
meta-analytic Bayes factor for all experiments gives a value
0.067, which is strong evidence for the null hypothesis.

Finally, Table 10 summarizes the results of simulations
that repeated the analyses above and reports on the final
decision of the meta-analytic Bayesian analysis under dif-
ferent types of data peeking. The main finding is that data
peeking does not introduce a substantial bias for a Bayesian
meta-analysis.

Conclusions

Science is difficult, and anyone who believes that it is easy
to gather good scientific data in a discipline like experimen-
tal psychology is probably doing it wrong. The various ways
of doing it wrong undermine the ability of replication to
verify experimental findings. The publication bias test pro-
posed by loannidis and Trikalinos (2007) provides a means

Table 9 Statistical summary of simulated experiments showing the
properties of a data-peeking publication bias when the null hypothesis
is true

n 1y t Effect size BF
15 15 2.755 1.006 4918
100 100 -0.519 —-0.073 0.126
100 100 -0.299 —0.042 0.116
100 100 0.408 0.058 0.120
100 100 -0.027 —-0.004 0.111
100 100 —0.434 —-0.061 0.121
100 100 -1.112 —0.157 0.201
100 100 0.643 0.091 0.135
100 100 —0.493 —0.070 0.125
100 100 —1.966 -0.278 0.707
100 100 —-0.154 —-0.022 0.112
100 100 0.130 0.018 0.112
100 100 —0.660 —-0.093 0.137
100 100 -0.563 —-0.080 0.129
100 100 —1.466 -0.207 0.312
100 100 0.504 0.071 0.125
100 100 —-0.738 -0.104 0.144
100 100 —-0.106 -0.015 0.111
100 100 -1.170 —-0.165 0.214
100 100 1.011 0.143 0.181

Note. Each experiment stopped adding data points when the Bayes
factor showed substantial evidence for a positive alternative hypothe-
sis. Most experiments still report substantial evidence for the null
hypothesis.

Table 10 The influence of different forms of data peeking on the
frequency of different decisions of a meta-analytic Bayes factor data
analysis for simulated sets of experiments

Type of bias Meta-analytic decision

Effect  Alternative  Null  Inconclusive
size
Stop when get 0.0 0 96 4
conclusive BF10 03 100 0 0
Stop when get 0.0 0 98 2
conclusive 03 100 0 0
positive BF,
Stop when reject Hy 0.0 0 98 2
for positive t 0.3 100 0 0

of identifying the influence of some of these mistakes, and it
should be frequently used as a check on the tendency to
report too many significant findings. Experimental psychol-
ogists can mitigate the influence of publication bias by using
Bayesian data analysis techniques. With these improve-
ments, experimental psychology can fully take advantage
of replication to reveal scientific evidence about the world.

Some people may mistakenly believe that to avoid a
publication bias, researchers must publish the outcome of
every experiment. If taken too far, this view leads to the
absurd idea that every experiment deserves to be published,
even though it may be poorly conceived, designed, or exe-
cuted. Likewise, some people may believe that all pilot
experiments need to be reported to avoid a file drawer bias.
Calls for a registry of planned experiments that can be used
to check on the outcome of experiments operate along these
ideas (e.g., Banks & McDaniel, 2011; Munafo & Flint,
2010; Schooler, 2011). This approach would indeed address
issues of publication bias, but at the cost of flooding the
field with low-quality experiments. While well intentioned,
such registries would probably introduce more trouble than
they are worth.

It may seem counterintuitive, but an easier way to avoid a
publication bias is to be more selective about which experi-
ments to publish, rather than more liberal. The selection
criteria must focus on the quality of the scientific investiga-
tion, rather than the findings (Greenwald, 1975; Sterling et
al., 1995). Studies with unnecessarily small sample sizes
should not be published. Pilot studies and exploratory re-
search should not be published as scientific findings. The
publication bias test is not going to report a problem with a
set of selective experiments as long as the power of those
reported experiments is high, relative to the number of
reported experiments that reject the null hypothesis.

As was noted above, Bayesian hypothesis testing is better
than NHST, but better still is an approach that largely
abandons hypothesis testing. Hypothesis testing is good
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for making a decision, such as whether to pursue an area of
research, so it has a role to play in drawing conclusions
about pilot studies. The more important scientific work is to
measure an effect (whether in substantive or standardized
units) to a desired precision. When an experiment focuses
on measurement precision and lets nature determine an
effect’s magnitude, there is little motivation for publication
bias. Better experiments give more precise estimates of
effects, and a meta-analysis that pools effects across experi-
ments allows for still more precise estimates. Moreover, one
can practice data peeking (e.g., gather data until the confi-
dence interval width for g is less than 0.5) with almost no
bias for the final measurement magnitude. Such an approach
can use traditional confidence interval construction techni-
ques (Cumming, 2012) or Bayesian equivalents (Kruschke,
2010b). The latter has advantages beyond the issues of
publication bias.

The past year has been a difficult one for the field of
psychology, with several high-profile cases of fraud. It is
appropriate to be outraged when falsehoods are presented as
scientific evidence. On the other hand, the large number of
scientists who unintentionally introduce bias into their studies
(John, Loewenstein, & Prelec, 2012) probably causes more
harm than the fraudsters. As scientists, we need to respect, and
explicitly describe, the uncertainty in our measurements and
our conclusions. When considering publication, authors,
reviewers, and editors need to know the difference between
good and poor studies and be honest about the work. The
publication bias test is available to identify cases where
authors and the peer review process make mistakes.
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