
Publicly Verifiable Non-Interactive 

Zero-Knowledge Proofs 

Dror Lapidot Adi Shamir 

Department of Applied Mathematics 

The Weizmann Institute of Science 

Rehovot, Israel 

Abstract 

In this paper we construct the first publicly verifiable non-interactive zero-knowledge proof 

for any NP statement under the general assumption that one way permutations exist. If 

the prover is polynomially bounded then our scheme is based on the stronger assumption 

that trapdoor permutations exist. In both cases we assume that P and V have a common 

random string, and use it to prove a single theorem (which may be chosen as a function of 

the known string). 

1 Introduction 

The notion of a non-interactive zero-knowledge (NIZK) proof was introduced by 

[BlFeMi]. It all ows a prover to prove in writing (without interaction) any NP- 

theorem to a polynomially bounded verifier, without revealing any knowledge be- 

sides the validity of the theorem, provided that they possess a common random 

string (such as the l,OOO,OOO random digits published by the RAND corporation). 

These NIZK proofs should be p&ZicIy wetifiaHe (i.e. checkable by anyone rather 

than directed at a particular verifier) and zero-knowledge to any coalition of veri- 

fiers. Such proofs have important cryptographic applications, such as digital signa- 

tures, message authentication (see [BeGo]), and protection of public key cryptosys- 

terns against chosen ciphertext attacks (see[NaYu]). 

[BlFeMi] and [DeMiPe] d escribe concrete implementations of this model based on 

the difficulty of specific computational problems (distinguishing products of two 

primes from products of three primes or distinguishing quadratic residues from 

quadratic non residues). Under the assumption that Oblivious Transfer protocols 

exist, [KiMiOs] and [BeMi] h s ow h ow after an initial preprocessing stage, the prover 

can noninteractively prove polynomially many NP-statements, but these proofs are 

not publicly verifiable and all of them are directed to a particular verifier. 

Finally the scheme of [DeMiPel] and the preliminary scheme we present in section 2 
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are based on a model in which the prover proves a random theorem in an interactive 

preprocessing stage and then uses it to prove the actual theorem noninteractively. 

These two schemes can be implemented using any one-way function. 

Our main result in this paper is a publicly verifiable NIZK proof with a common 

random string, for any  NP-theorem, under the general assumption that one-way 

permutations exist. The protocol remains zero-knowledge even when the theo- 

rem is chosen as a function of the random string. If the prover is polynomial time 

bounded, then our scheme is based on the stronger assumption that trapdoor per- 

mutations exist. This is the fist known protocol of this type which is not based on 

the difficulty of specific computational problems. 

Our result together with the result of [XaYu] imply that under the general assump- 

tion that trapdoor permutations exist, there exists a public key cryptosystem which 

is provably secure against chosen ciphertext at tacks. 

The paper is organized in the following way: In Section 2 we present a new construc- 

tion of NIZK proofs with preprocessing which axe its efficient as their interactive 

counterparts. In Section 3 we describe our main result and in Section 4 we prove 

its correctness. Section 5 is devoted to several extensions and applications of the 

main result. 

2 A NIZK proof with preprocessing 

Consider a prover who wants to prove the Hamiltonicity of an arbitrary graph G 

with n nodes. We assume that the prover and the verifier can execute a preliminary 

interactive stage which is independent of G (i.e. at this stage they know that in the 

non-interactive stage the prover will prove the Hamiltonicity of an n node G, but 

they don’t know which graph it will be). Only after the termination of this inter- 

active stage, they get G and execute the non-interactive move in which the prover 

sends a written message to the verifier in order to convince him in zero-knowledge 

that G is Hamiltonian. The verifier is not allowed to ask the prover any questions 

and should be convinced just by reading this message. 

The Basic Step 

Let H be a randomly chosen Hamiltonian cycle on n nodes. The adjacency ma- 

trix of H is a permutation matrix with a single 1 in each row and column, and a 

single cycle. Let S be such a n  adjacency matrix in which each entry is replaced 

by a string which hides it ( for example: by the hard bit construction of [GoLe] 

or by a probabilistic encryption), so that a polynomially bounded observer cannot 

determine the locations of the 1’s. 

Assume now that S is given to P and V, and that P wants to prove to V the 

Hamiltonicity of some graph G with n nodes. Since P is infinitely powerful, he can 

recover the original Hamiltonian cycle H from S and determine the permutation 

T that maps H onto the Hamiltonian cycle of G (i.e.’ x ( H )  2 G). To convince V 

that G is Hamiltonian, P just sends him (in writing) the permutation ir and the 

original values of all the entries in x ( S )  which do not correspond to edges in G. V 
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accepts the proof iff all the revealed entries are 0, since this implies that the n 1’s 

that remain in T ( S )  correspond to edges of G . The proof is zero knowledge since 

all the verifier gets is a random permutation and a collection of encryptions of O’S, 
which can be easily simulated. 

The resulting NIZK proof with preprocessing (regardless of whether P is polynomi- 

ally bounded or not) is executed as follows: In the preliminary interactive stage P 

sequentially sends k (=security parameter) such random matrices 4, Sz, . . . , Sk to 

V and receives k random bits bl .  6 2 , .  . . , b k  from V. In the non-interactive move he 

reveals all the entries of those S,’s for which b, = 0, and executes the basic step for 

those S, for which b, = 1. If all the S, with h, = 0 are of the appropriate form, V 

can conclude with high probability that at least one of the other S, is also proper, 

in which case G is guaranteed to  be Hamiltonian. 

In order to compare this protocol to Blum’s protocol for Hamiltonicity [Bl], lets re- 

call that in the f i s t  move of Blum’s scheme P randomly permutes G and sends V 

the encrypted adjacency matrix of this isomorphic copy. V then sends a random 

bit to P and according to that bit P either reveals all the entries in the matrix and 

the permutation, or reveals only the entries whch correspond to the edges of the 

Hamiltonian cycle. Our protocol resembles Blum’s protocol, with one major dif- 

ference: In Blum’s protocol all the moves depend on G, while in our protocol only 

the last move depends on G. -4s a result, Blum’s protocol cannot be split into a 

preprocessing stage and a non-interactive proof as we did in our protocol. 

Remark: 

The NIZK proof with preprocessing can be extended to a variety of graph theoretic 

problems which are satisfied by a single minimal graph (under isomorphism). This 

family includes: Clique, Graph partition into triangles, Graph partition into cliques 

(and therefore also Graph coloring), 3-Dimensional Matching etc. 

3 A NIZK Proof with A Common Random String 

In this section we show that under the assumption that oneway permutations exist, 

if the prover and the verifier initially share a common random string then the initial 

preprocessing stage of our protocol can be discarded, yielding a NIZK proof for any 

NP statement in the original noninteractive model of Blum, Feldman and Micali. 

3.1 Definitions 

Definition: For any NP language L,  Let RL be the relation which contains all the 

pairs ( x , w )  such that 2 E L and w is a witness for that. 

The input of P is a pair of words ( z , w )  and the common random string 0 whose 

length is polynomial in the size of z and in the security parameter k .  

Notation: A ( z , y , z )  denotes the output of a probabilistic algorithm A on input 

Definition: A non interactive proof system for an N P  language L is a pair of 

0 

( X ’  Y’ 2). 
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probabilistic algorithms (P, V )  (where V is polynomially bounded) satisfying: 

1. Completeness: V(z,w) E RL, Vo V ( z , o , P ( z , w , o ) )  =accept  . 

2. Soundnes~ : If o is a random string then the probability of succeeding in 

proving a false statement is negligible, even if the theorem is chosen by P 
after seeing c. Formally: 

36 3c Qd 3N s.t. Vk > N 

at least (1 - $) of the strings u of length Islbk' satisfy: 

Vx' 6 L Vy V(x', o, y) = reject .  

Definition: A non-interactive proof system for an NP-language L is zero-knowledge 

if there exists a random polynomial time simulator M such that for any ( o , w )  E RL, 
the two ensembles (a ,P( r ,w ,  o)) and M ( o )  are polynomially indistinguishable (by 

nonuniform distinguishers). Formally: 

3M 3 . t .  VD V(X,U) E Rr, Vd 

1 
I P r ( D ( M ( z ) )  = 1) - P r ( D ( u , P ( s , w , o ) )  = I ) /  < - 

kd 

for all sufficiently large k. 

The probabilities are taken over the choices of u and over the coin tosses of P and 

M .  

3.2 Informal Description 

Assume that P and V possess a common random string (CRS) and P wants to send 

V a non-interactive zero-knowledge proof based on the CRS, (rather than on an 

interactive preprocessing stage) that an arbitrary n node graph G is Hamiltonian. 

We do this by mapping the CRS into an appropriate sequence of matrices which 

contain with high probability at least one Hamiltonian matrix. P can then proceed 

exactly as in the final non-interactive step of the protocol described in Section 2. 

How can P construct such matrices? It is possible to get a sequence of hidden 

random bits from the CRS by calculating an appropriate hard bit of a one-way 

permutation with respect to each segment of it. But if we naively pack such a block 

of n2 hidden random bits into a n x n 0/1 matrix, the probability that this is a 

Hamiltonian matrix is exponentially small. Therefore in order to solve this problem 

we have to transform the CFS into a matrix in a more complicated way. 

Assume that the CRS defines a n2 x n2 matrix B of zeroes and ones, such that 

Pr{B;,j = 1) = l /n3 for each ( i , j )  and this matrix has the same security properties 

tts S. In order to construct a matrix such as S from a given matrix B and to prove 

that G is Hamiltonian P has to execute the following: 
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1. If the number of 1’s in B is different from n or there exists a row or a column 

which contains at least two l’s, then P proves this fact by revealing all the 

entries in B.  

2. Otherwise (i.e. B contains a n x n permutation submatrix), P reveals to V 

all the entries in the n2 - n rows and the n2 - n columns which contain only 

zeroes, and removes them from B. If the resulting n x n matrix does not 

represent a single cycle, P proves this fact to V by revealing all the entries of 

the remaining matrix. 

3. Otherwise (i.e. the remaining matrix represents a single cycle), the original 

matrix B is called good and P must use the resulting n x n matrix in the 

execution of the protocol described in the previous section. 

What’s left is to show how to transform the CRS into B and to prove that such a 

matrix is good with sufficiently high probability. 

Consider the CRS as a concatenation of polynomially many blocks of k random bits. 

Let f be a one way ,permutation that both P and V can evaluate but only P can 

invert. [GoLe] prove the existence of a hard bit in any one way function. Therefore 

if we associate such a hard bit with each block of the CRS, we get a new hidden 

random string (HRS). More precisely, let r’ and r” be two consecutive blocks of k 

bits in the CRS, let o = f-’(r’) and y = r” and let s be the hidden random bit 

defined by the scalar product of the boolean vectors z,y. This process transforms 

the sequence of blocks in the CRS into a sequence of hidden random bits. 

All we have to show is how to transform the HRS into a sequence of matrices such as 

B. Consider the HRS as a concatenation of polynomially many consecutive blocks 

of m bits where m = log(n3) (w.1.g. we can assume that it is an integer). We in- 

terpret a block as 1 if all its rn bits are 1 and 0 otherwise, and thus we can pack 

each consecutive segment of n4m hidden random bits into the desired n2 x n2 0/1 

matrix B discussed above. In Section 4.2 we prove that the probability that such 

a matrix is good is -, and therefore if the length of the CRS is large enough 

(polynomial in k and n )  then with high probability at least one of the segments de- 

fines a Hamiltonian matrix for which P must executes the basic step described in 

section 2. 

In order to formally describe the scheme (which is slightly more efficient than the 

informal scheme described above) and prove its correctness we introduce some no- 

tations and definitions. 

3.3 Notations and Definitions 

Let 1‘1 or2 0.. .0rpoly(k,,,) (where ER (0, l} for each I ,  and o denotes concatenation) 

be the common random string (CRS), shared by P and V. Let f be a one-way 

permutation whose definition is known to both of them. Let u1 o ~2 0.. . 0 
(where U; E (0’1) for each z)  be an intermediate random string (1%) which is 
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defined as follows: For each j 2 1, 

f(sj,l) = Yj,1 and xj,2 = ~ j , 2  

where: 

"j,l = % k ( j - l ) + l  U2k(j-1)+2 . . * u2k(j - l )+k 

Xj ,2  = U 2 k ( j - 1 ) + ~ + 1  0 U ~ k ( j - l ) + k + ~  0 . - .  0 U2kj 

Y j , l  = r 2 k ( j - l ) + l  r2k(j-1)+2 . . * r2k(j-l)+k 

yj ,2  = r2k(j - l )+k+l  0 rZk(j-l)+k+2 . . . r 2 k j .  

Let s1 o s2 0 . . . 0 Spo{y(k,n)/2k be the hidden random string (HRS) which is defined 

as follows: for each j 2 1, s j  is the scalar product of the boolean vectors ~ j , i  and 

x j , 2 .  This construction is based the theorem of [GoLe] which says that, according 

to these notations, given random yj,l and Y , , ~ ,  sj is a hard bit. 

For each z >_ 1 let a; be such that its binary representation is 

s ( ; - ~ ) ~ + ~  o ~ ( ; - 1 ) ~ + 2  o . . . o sim. Lets define for each i: 

1 if a; = 2 " - l  
bi = { 0 otherwise 

Let B; be a n2 x n2 matrix which is defined as follows: B;(j ,  Z) = b(i-l)n4+(j-l)nZ+l 

for every 1 5 i ,j ,  1. 
Definition: We say that B; is a proper matrix if it contains exactly n ones and 

each column and row contains at most a single one. 

If B; is a proper matrix let N; be the n x n matrix obtained by removing all the 

n2-n columns and n2-n rows which contain only zeroes. Otherwise N; is undefined. 

Definition: We say that N; is a Hamiltonian matrix if there is a permutation 

?I, E S,, with a single cycle such that for each N ; ( l , j )  which is equal to 1 j = $(I). 
In this case we say that B; is a good matrix. 

3.4 The Scheme 

Assume that P and V have a CRS with 2n7km bits and a common one-way permu- 

tation f .  

P's protocol: 

For each 1 5 i 5 n3 do the following: 

1. If Bi contains more than n ones then reveal n + 1 of them. 

2. If B; contains fewer than n ones then reveal all the entries. 

3. If there is a column or row which contains two ones then reveal the two entries. 

4. (B;  is a proper matrix) Reveal and remove all the n2 - n columns and all the 

n2 - n rows which contain only zeroes. If Ni is not a Hamiltonian matrix then 

reveal the n ones. Otherwise use N; in the execution of the protocol described 

in section 2. 
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V’s protocol: 

For each 1 5 i 5 n3 do the following: 

1. If P reveals n + 1 entries then check that all of them are 1. 

2. If P reveals all the entries then check that Bi contains fewer than n ones. 

3. If P reveals two entries then check that both of them are 1 and in the same 

column or row. 

4. If P reveals TL’ - n columns and n2 - n rows then check that all the entries in 

these rows and columns are zeroes. 

5. If P reveals n entries then check that all of them are 1 and ;V; is not a 

Hamiltonian matrix. 

6. Otherwise check that the protocol described in Section 2 is carried out cor- 

rectly. 

Accept the proof iff for each 1 5 i 5 n3 one of thcsc checks is successful. 

3.5 

The same technique can be used (without reductions) to prove other NP-complete 

statements. Consider for example the 3-Dimensional Matching (3DM) problem. 

Each instance of the problem is a 3-dimensional 0/1 matrix M ( n  x R x n)  and P’s 

goal is to prove that there are R ones in M such that no two of them agree in any 

coordinate. 

Consider each block in the CRS as a hidden random 3-dimensional 0/1 matrix 

whose size is n2 x n2 x n2 and set the probability of 1 at each entry to l/n5. The 

same proof technique implies that with high probability there is a block in the CRS 
which hides a good matrix B ,  namely a matrix with exactly n ones such that no 

two of them agree in any coordinate. P reveals all the 2-dimensional submatrices 

of B which contain only zeroes so that the remaining n x n x n hidden matrix N 
forms a random minimal example for 3-dimensional matching. 

To prove that a given iM contains a 3 0  matching, P sends to V the permutation 

that moves the n ones in N to the locations of the matching in M ,  and then proves 

that every 0 in M corresponds to a zero in the permuted N .  

NIZK Proof for Some Other NP-Statements 

4 Correctness 

4.1 Completeness 

The non-interactive proof of Hamiltonicity is complete because in every n2 x n2 

matrix that does not yield a Hamiltonian matrix, all P has to do is to open some 

of its entries, and V will accept his proof as valid. 
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4.2 Soundness 

Lemma : The probability that B, contains exactly n 1’s is >_ 1/3n , for every 2 .  

Proof : The bits of the HRS are unbiased and independent, and for each j the 

probability that bj = 1 is l /n3.  Therefore the expected number of 1’s in B; is n. If 

5 denotes the number of 1’s then Chebyshev’s Inequality implies that 

therefore 
2n 

C P r ( 5  = i} > 1 - n-’. 
;=0 

Since the maximal probability is at z = n 

1 - n-l 

272 + 1 
P r { s  = n}  > ~ > 1/3n 0 

The size of B; is n2 x n2 and therefore by the birthday paradox if B; contains exactly 

n 1’s then the probability that each row and each column contains at most one 1, 

is a constant. 

The number of permutations in S,, which consist of a single cycle (of length n )  is 

( n  - l)!, therefore the probability that Ni is a Hamiltonian matrix, given that it is 

a permutation matrix, is n-l. 

We conclude that, for every i ,  the probability that B; yields a Hamiltonian matrix 

N; is 2 dn-’, where d is a constant. Thus if the length of the CRS is O(n7km) bits 

then with probability (1 - c-”) at least one of the Bi’s yields a Hamiltonian matrix. 

Any such matrix will expose a cheating P. 

Remark: If Zog(n3) is not an integer, we have to set rn = [10g(n3))l and choose B; 

as a [bn21 x n2 matrix where b = 5 (1 < b < 2). 

4.3 Zer 0- Know ledge 

In order to simplify the proof of zero-knowledge we refer only to the informal scheme 

described in (3.1). We construct a random polynomial time simulator M which gen- 

erates a ”random string” and a ”proof” of Hamiltonicity which are polynomially 

indistinguishable (by nonuniform distinguishers) from those generated by a real ex- 

ecution of the protocol. 

We use the transitivity of the property of indistinguishability: First we construct a 

random polynomial time algorithm P’ (with access to the Hamiltonian cycle of G) 
whose oiitpit is indistinguishable from a truly random string appended to a proof 

of the real prover, and then we construct a random polynomial time simulator M 
(who does not know the Hamiltonian cycle) whose output is polynomially indistin- 

guishable from that of P’. Therefore these constructions imply that our scheme is 

zero- knowledge. 
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Let P' be the random polynomial time algorithm which executes the real protocol 

with the following exception: it chooses a sequence of truly random bits (IRS), and 

then gets the CRS by applying the one-way permutation f in the forward direction. 

Clearly the output of I" is indistinguishable from that of the real prover. 

The simulator M accepts G and the security parameter k as inputs, and outputs a 

string b k  of length 2n7km bits and a "prooftl in the following way: 

1. M randomly chooses a sequence of Zn'km truly random bits and uses them as 

the intermediate random string (IRS). In every segment that yields a Hamil- 

tonian matrix it randomly changes the interpretation of all the ones to zeroes. 

More precisely: For each i for which N ,  is a Hamiltonian matrix and for each 

j, I such that N 2 ( j ,  I )  = 1, M randomly and independently chooses 2km bits in- 

dead of: ~ ( ( : - i ) n ' + ( ~ - i ) d + ( / - i ) ) m 2 k + l  . . . "((i-l)n'+(j-l)n2+i)rn2k until N+(j,Z) = 0 

(the probability of success is 1 - 5).  

2. M transforms the modified IRS into a common random string (CRs) gk by 

applying f in the forward direction and computes the [GoLe] hidden random 

string (HRS) as the dot product, of consecutive pairs of blocks in the IRS. 

3. For each i such that B, has not changed in the first step M reveals all the 

entries of B,. For each of the other Bl's it randomly reveals n2 - n rows and 

n2 - n columns. Since the resulting n x n matrix contains only zeroes, M can 

easily simulate the basic step by choosing a random permutation II, ER S, and 

revealing every B,(j ,  I) such that there is no edge between j and I in II,(G). 

The output of M is denoted by ( B k , p T o O f ' ( c r k ,  G)) where the second component 

includes all the revealed bits and permutations. Let rk be a string of length 2n7km 

bit, and denote by p r O O f ( T k ,  G) a proof of P' based on G and 

For any nonuniform distinguisher D, let D( z) denote the 0/1 output of D on input 

x. Let 

p P , k  = Pr{D((rk,proof(rk,G)),G) = 1) 

P M , k  = Pr{D((ak,proof'(gk, G)), G) = 1). 

The probabilities are taken over the choices of Tk and over the coin tosses of P' and 

M .  

Theorem: For any Hamiltonian graph G , for any nonuniform random polynomial 

time distinguisher D and for any polynomial Q : 

1 

for all sufficiently large k. 
Proof: Assume that there exists an efficient distinguisher D, a polynomial 

an infinite subset 1 c n/ such that for every k E 1: 

and 
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Let I; be an element in 2. Let ct = (zl,. . . , z t ,  . . ,w,) (1 5 z 1  < . . . < t t  I: 7~’m 

and for each 1 5 z 5 u 4, E S,,) and let Pa,k (P;,J be the probability that S,, , . . . , s,, 

are the hidden bits revealed by P’ ( M I  and &, . . . . v,, are the permutations given 

by P’ (A!) (each one associated with a Hamiltonian matrix). Since 7-k is a truly 

random string, M simulates P’ and all the choices of M are random we conclude 

that for any a: 

pa,k = PL,k. 

Let p o o f ( T k , G , ( Y )  and proof l (ok,G,a)  denote proofs of P’ and 111 based on r k  

and gk respectively, in which the revealed bits and the random permutations are 

according to a. It is obvious that in the case of P’, once r is chosen. a is fixed. 

Denote by ~ r $ . ~ , k  the probability that D outputs 1 on the input ( T ~ , ~ T O O ~ ( Q ,  G,a ) )  

(while r is a truly random string) and by P,M,~,~ the probability that outputs 1 

on input ( g k , p o O f ’ ( g k ,  G, a ) ) .  

It is obvious that 

(**) PP,k = CPu,kPP,n.k 
a 

and 

u 

The following Lemma claims that for any a ,  D is unable to  distinguish between 

Lemma: For every a 

( % , p T O o f ( T k ’ G ,  a ) )  and ( ‘ k , p r O ~ f ( ~ k , G ,  a ) ) .  

Proof: Assume that this is not true, namely there is a for which w.1.g. 

1 

For every 1 5 j 5 n7m,, P;fA[,a,k denotes the probability that D outputs 1 on the 

following (string, proof): The first 2 k ( j  - 1) bits in the string are randomly chosen 

(a  prefix of a real CRS) and associated with a proof of P’ until that point, while 

all the other bits and the rest of the proof are generated by M and both of these 

parts follow the vector a. Following the well known Hybrid argument of [GoMi] we 

conclude that there is 1 5 i 5 n7m for which : 

From the description of P’ and M we conclude that i is the index of one of the 

hidden bits of one of the appearances of 1,1,.. . ,1 in a segment which defines a 

Hamiltonian matrix in the simulation of P’ .  We’ll construct a random polynomial 

time nonuniform algorithm C;, whose auxiliary input is the graph G ,  including the 

definition of a Hamiltonian cycle, a and i which on input (f(r), y) ( 2 ,  y are randomly 

- 
m 



363 

chosen) outputs a bit h which is the hard bit of (f(z),  y) with probability 2 ++&. 
This is a contradiction to the assumption that f is one-way. This algorithm uses 

P’, M and I) as subroutines and executes the following steps: 

1. Run P’ so that the indices of the hidden bits which are revealed and the 

permutations associated with the Hamiltonian matrices are according to a. 

2. Run A4 according to the same rule. 

3. Erase from the output of P’ all the bits coming after the ( i  - 1)’th block, 

namely remain with the first 2(i  - l ) k  bits of the string appending the revealed 

bits and the permutations associated with the Hamiltonian matrices (call this 

prefix S p ) .  

4. Erase from the output of M the first i blocks, namely remain with the 1 s t  

2n7km - 2ik  bits of the string appending the revealed bits and the permuta- 

tions associated with the Hamiltonian matrices (call this suffix SM). 

5. Feed D with Sp o f(x) o y o Sht. 

6. If D(Sp o f ( x )  o y o S,) = 1 then h = 1 else b = 0. 

It is easy to verify that with probability 2 f + - h is the hard bit of ( f ( x ) , ~ )  

and this is a contradiction to the assumption that f is one-way. 

This lemma together with (**) and ( * *  *) contradicts (*) which completes the proof 

of the theorem. 

Remark: Consider an NP-statement which is polynomially chosen as a function of 

the random string namely, there is a nonuniform random polynomial time algorithm 

which gets a random string and outputs an NP-statement (which is a function of 

it) including an appropriate witness. 

The simulator generates the ”random string” independently of the NP-theorem. 

Therefore considering the construction of the appropriate Ck, we conclude that: 

Corollary: Our non-interactive proof remains zero-knowledge even if the NP- 

statement (of size n )  is polynomially chosen as a function of the common random 

string. 

poly(k).’ 
0 

5 Extensions and Applications 

5.1 A Polynomial Time Prover 

If the prover is polynomial time bounded then our scheme is based on the stronger 

assumption that trapdoor permutations exist. In fact, we assume that for every 

security parameter there exists an exponentially large family of trapdoor permuta- 

tions whose indices are nc bit strings ( c  is constant). The only difference from the 

scheme described in section 3 is that now P randomly chooses a trapdoor pernu- 

tation f from that family, sends its index to V and keeps the trapdoor information 
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secret. Now the ability of P to invert f is implied by his knowledge of the trapdoor. 

The proof of completeness remains unchanged, but there might be a problem with 

the soundness: In contrast to the scheme described in section 3 in which the (un- 

bounded) prover does not choose the one-way permutation, in this scheme a cheat- 

ing prover may choose a particularly useful trapdoor permutation after seeing the 

CRS. TO overcome this difficulty, we only have to extend the CRS: If the number 

of bits in it is O(n"+"km) then the probability of cheating in our scheme is at most 

O($)  since this is an upper bound on the fraction of random strings which can be 

bad for any trapdoor permutation. 

The proof of the zero-knowledge property resembles its counterpart for the original 

scheme, except that we have to consider all the choices of trapdoor permutations. 

5.2 Public-Key Cryptosystems Secure against Chosen Ci- 

phertext Attacks 

The existence of public-key cryptosystems which are secure against passive eaves- 

dropping under the assumption that trapdoor permutations exist is well known. 

[NaYu] show how to construct a public-key cryptosystem which is provably secure 

against chosen ciphertext attacks (CCS-PKC), given a public-key cryptosystem 

which is secure against passive eavesdropping and a non-interactive zero-knowledge 

proof system in the shared string model. Using their result together with our con- 

struction (for polynomial time provers) we have: 

Corollary: CCS-PKC exist under the general assumption that trapdoor permuta- 

tions exist. 

This is the first known CCS-PKC which is not based on the difficlilty of specific 

computational problems. 

5.3 Multiple NIZK Proofs 

We have to emphasize that our scheme is a bounded NIZIC proof system in the 

sense that using a random string, the prover can prove in zero-knowledge only 

a single theorem. Recently, Feige, Lapidot and Shamir [FeLaSh] have shown how 

to transform any bounded NIZK proof system with polynomial time provers into a 

general NIZK proof system in which polynomially many independent provers can 

share the same random string and use it to prove polynomially many statements of 

polynomial length in a completely memoryless way. 
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