
Received July 24, 2019, accepted August 15, 2019, date of publication September 2, 2019, date of current version September 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938976

Publicly-Verifiable Proofs of Storage Based
on the Discrete Logarithm Problem

MIAOMIAO TIAN 1, SHIBEI YE1, HONG ZHONG 1, FEI CHEN 2,
CHUANG GAO1, AND JIE CHEN3,4
1School of Computer Science and Technology, Anhui University, Hefei 230601, China
2College of Computer Science and Engineering, Shenzhen University, Shenzhen 518060, China
3Department of Computer Science and Technology, East China Normal University, Shanghai 200062, China
4Co-Innovation Center for Information Supply and Assurance Technology, Anhui University, Hefei 230601, China

Corresponding author: Miaomiao Tian (mtian@ahu.edu.cn)

This work was supported in part by the Special Foundation for Key Program of Science and Technology of Anhui Province under Grant

18030901027, in part by the National Natural Science Foundation of China under Grant 61872243, in part by the Open Foundation of

Co-Innovation Center for Information Supply and Assurance Technology under Grant ADXXBZ201701, and in part by the Science and

Technology Plan Projects of Shenzhen under Grant JCYJ20180305124126741.

ABSTRACT With the rapid development of cloud computing platforms, cloud storage services are becoming

widespread in recent years. Based on these services, clients are able to store data on remote cloud servers

and thereby saving their local storage. This greatly reduces the burden of clients, while it also brings certain

security risks to the outsourced data. Among the risks, a critical one is data corruption, for example cloud

servers may delete some rarely used outsourced data for cost saving. To prevent this risk, proof of storage

(PoS) schemes are invented, which can validate the integrity of cloud data without downloading the entire

data. The existing PoS schemes, however, mostly either involve complex operations e.g. bilinear pairings, or

don’t support public verifiability. To fill this gap, in this paper we construct a new PoS scheme that is publicly

verifiable and only requires simple cryptographic computations. We prove that our scheme is secure under

the discrete logarithm assumption, in the random oracle model. Furthermore, we also show how to extend

the scheme to support data updates. Finally, we implement our scheme. The simulation results demonstrate

that our scheme is more computationally-efficient than the publicly-verifiable PoS schemes of Shacham and

Waters (Journal of Cryptology 2013).

INDEX TERMS Proof of storage, public verifiability, efficiency.

I. INTRODUCTION

Cloud storage service, like Amazon S3, is one of the main

services provided by cloud computing platforms. As the

data gathered by individuals and organizations is excessively

growing, cloud storage service has become increasingly pop-

ular in the last few years. By this way, clients could outsource

a large amount of data into cloud storage servers for reducing

their local storage overhead, and meanwhile clients can also

access their outsourced data anytime and anywhere. Cloud

storage services benefit people in various contexts, however

they also bring some grievous security risks [3]. For instance,

the cloud storage providers may delete some rarely used

outsourced data or conceal data corruption accidents for com-

mercial reasons. Thus, checking the integrity of outsourced

data is indispensable in cloud storage services.

The associate editor coordinating the review of this manuscript and
approving it for publication was Vicente Alarcon-Aquino.

Proof of storage (PoS) refers to an effective solution of

checking the integrity of outsourced data. Notably it doesn’t

require downloading the entire outsourced data. To do this,

PoS schemes (e.g. [1], [2], [19], [20]) usually first split data

into many blocks, calculate their tags, and then outsource

the data together with all tags into the cloud. Because those

block tags are homomorphic linear authenticators of data

blocks and can be homomorphically aggregated into one

authenticator, the cloud can prove the integrity of outsourced

data in little cost. More specifically, to check the integrity of

outsourced data, a verifier can issue random challenges to the

cloud, then the cloud calculates and returns the corresponding

proofs. If all proofs are valid, the verifier would believe

that the outsourced data is still intact. Otherwise, it must be

broken.

The first practical PoS schemes are respectively pro-

posed by Ateniese et al. [1] and Juels and Kaliski [12]

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 129071

https://orcid.org/0000-0002-8195-5823
https://orcid.org/0000-0002-0392-9734
https://orcid.org/0000-0001-8132-539X

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

in 2007; from then on, many new PoS schemes have been pro-

posed, e.g. [2], [6], [7], [11], [19]–[25]. Generally speaking,

PoS schemes can be classified into two categories: publicly-

verifiable PoS and privately-verifiable PoS. In a privately-

verifiable PoS scheme, a verifier could confirm the validity

of the proofs generated by the cloud only when it knows a

private key. Thus the verifier of a privately-verifiable PoS

scheme must be data owner/client himself, otherwise when

the private key is publicized, the cloud is able to forge valid

proofs using the private key. In contrast, the verifier of a

publicly-verifiable PoS scheme may be anyone since the

proof verification process needs no secret. We argue that

publicly-verifiable PoS schemes could prevent potential dis-

putes between the cloud and clients, and are drawing increas-

ing attention from research community (see [2], [6], [11],

[19]–[24] for examples).

We however note that most of the existing publicly-

verifiable PoS schemes either adopt some costly crypto-

graphic tools such as bilinear pairings and map-to-point

hash functions (introduced in [5]), or can only work over

composite-order groups. To remove this problem, consider-

able efforts have been made by researchers. For example,

Zhang et al. [25] recently have proposed several pairing-free

PoS schemes based on the privately-verifiable PoS of [7].

Their schemes are efficient, while they are still privately

verifiable since their verification procedures must take some

secret information as input.

In this paper we propose a new pairing-free PoS scheme.

Our scheme is publicly verifiable and more computationally

efficient than prior publicly-verifiable ones because it just

involves simple cryptographic operations over prime-order

groups and ordinary hash functions (such as SHA-256). We

prove that our scheme is secure in the random oracle model

under the discrete logarithm (DL) assumption. To our knowl-

edge, it’s the first DL-based publicly-verifiable PoS scheme.

(Notice that publicly-verifiable PoS schemes using parings

like [19], [24] are based on stronger assumptions such as

the computational Diffie-Hellman assumption.) Moreover,

we also show how to extend the scheme to support data

updates. Finally, we implement our scheme to evaluate its

performance. The simulation results demonstrate that our

scheme is more computationally-efficient than the publicly-

verifiable PoS schemes of Shacham and Waters [20].

In summary, this work makes the following contributions:

• We propose a new publicly-verifiable PoS scheme that

involves only simple computations over prime-order

groups and ordinary hash functions. We prove that our

scheme is secure in the random oracle model, assum-

ing the DL assumption holds over some prime-order

groups.

• We also demonstrate how to extend our scheme for han-

dling fully dynamic data, i.e. we approbatemodification,

insertion and deletion operations on outsourced data.

• We conduct extensive experiments for evaluating the

performance of our scheme. The simulation results also

validate its efficiency.

The rest of this paper is organized as follows. Section II

reviews related works. Section III introduces some prelim-

inaries to be used in this work. The proposed scheme and

its security proof are provided in Section IV. We show how

to extend our scheme to support dynamic data in Section V.

SectionVI evaluates the performances of our scheme. Finally,

we conclude this work in Section VII.

II. RELATED WORK

Ateniese et al. [1] and Juels and Kaliski [12] first indepen-

dently introduce several practical PoS schemes (with different

names), and suggest to use them to check the integrity of out-

sourced data. One main difference between their works is that

Ateniese et al.’s schemes just ensure most of outsourced data

is intact while Juels et al.’s schemes could ensure the entire

outsourced data can be recovered by applying an erasure code

to original data. Ateniese et al.’s schemes also support public

verifiability as well as an unbounded number of verifica-

tions. Later, many other publicly-verifiable PoS schemes are

proposed. For instance, Ateniese et al. [2] show how to con-

struct publicly-verifiable PoS schemes from homomorphic

identification protocols and also present a concrete scheme

based on factoring. Chen et al. [6] recently also present some

publicly-verifiable PoS schemes based on the RSA assump-

tion. Because factoring/RSA-based cryptographic schemes

can only work over composite-order groups, they will yield

bigger parameters (and hence more overhead) than schemes

working over prime-order groups for the same security level.

The first publicly-verifiable PoS scheme working over

prime-order groups is designed by Shacham and Waters [19]

upon the BLS short signatures [5]. The authors prove that

their scheme is secure in the random oracle model under the

computational Diffie-Hellman (CDH) assumption (denoted

as CDH-SW). In the full version [20], they also give an ana-

logue of CDH-SW based on the RSA assumption (denoted as

RSA-SW). Following the pioneering work of Shacham and

Waters, other CDH-based publicly-verifiable PoS schemes

have also been proposed such as [21]–[24]. Wang et al. [24]

construct a PoS scheme supporting data updates upon CDH-

SW using Merkle hash tree (MHT) [15]. To protect data pri-

vacy, several privacy-preserving versions of CDH-SW have

been presented e.g. [21]–[23].

One drawback in CDH-SW and its descendants is: they

all utilize complicated bilinear pairings and map-to-point

hash functions. This may restricts the scope of their applica-

tions. To overcome this restriction, Guan et al. [11] develop

new publicly-verifiable PoS schemes upon indistinguisha-

bility obfuscation [9]. The computation overhead of their

schemes is small for producing block tags and proofs,

whereas it’s unaffordable for verifying proofs. Because their

verification procedures rely on indistinguishability obfusca-

tion that is built from very expensive multilinear maps [8].

Zhang et al. [25] recently have proposed certain efficient PoS

schemes upon the privately-verifiable PoS of [7]. However,

their schemes cannot support public verifiability.

129072 VOLUME 7, 2019

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

In this work, we aim to advance the area of PoS by propos-

ing publicly-verifiable, more efficient, yet provably secure

solutions for PoS. In the remainder of the paper, we focus

on publicly-verifiable PoS and we may abbreviate it as PoS

if no confusion arises.

III. PRELIMINARIES

In this section, we give some preliminaries, including system

model, formal definitions of PoS and cryptographic back-

ground used in this work.

A. SYSTEM MODEL

As illustrated in Figure 1, our PoS system comprises of three

entities: a cloud, a user, and an auditor. The cloud is a provider

of the cloud storage services who owns significant storage

space and can provide cheap storage services to clients. The

user represents a client who produces a large amount of data

and wants to outsource its data into the cloud. To check

whether the outsourced data has been destroyed/damaged, the

auditor comes on stage, who models any verifier (including

the user himself). On behalf of the user, the auditor sends a

random audit query (also referred to as a challenge) to the

cloud. After receiving the challenge, the cloud generates a

proof and then forwards it to the auditor. Finally, the auditor

can check the integrity of the outsourced data by verifying the

validity of the proof. If the proof is valid, then the outsourced

data may remain intact. Otherwise, it must be broken.

FIGURE 1. System model.

Similar to other PoS systems, in our system we always

assume the user is fully honest and the cloud is malicious in

the sense that it may conceal data losses.

B. PROOF OF STORAGE

We first introduce the syntax of PoS schemes.

Definition 1 (PoS): A PoS scheme consists of five proba-

bilistic polynomial time (PPT) algorithms (Setup,TagGen,

Audit, Prove, Verify), described as below:

• Setup(λ) → (PP, SK). This algorithm is run by the

user. It takes as input a security parameter λ and outputs

the system public parameters PP and a secret key SK .

• TagGen(PP, SK ,F) → (T ,E). This algorithm is also

run by the user. It takes as input the system public

parameters PP, the user’s secret key SK , and a file F .

It outputs a file tag T and an evidence E for T . The user

then sends the file tag T and the evidence E to the cloud,

and at the same time sends E to the auditor.

• Audit(PP,E) → 3. This algorithm is run by the

auditor. It takes as input the system public parameters

PP and an evidence E . It outputs a random audit request

3. The auditor then sends 3 to the cloud.

• Prove(PP, 3,F,T) → P. This algorithm is run by the

cloud. It takes as input the system public parameters PP,

an audit request 3, a file F and the corresponding file

tag T . It outputs a proof P. The cloud then sends the

proof P to the auditor.

• Verify(PP, 3,P,E) → {0, 1}. This algorithm is

run by the auditor. It takes as input the system public

parameters PP, an audit request 3, a proof P, and an

evidenceE . It outputs 0 or 1. Output 0 indicates the proof

is invalid; otherwise the proof is valid.

A PoS scheme must satisfy the following requirements:

• Correctness. If the data stored in the cloud is indeed

intact and all entities are honestly follow the scheme,

then the auditor must accept all proofs generated by the

cloud.

• Security. If the auditor accepts the proofs for any out-

sourced data with non-negligible probability, then there

exists a polynomial-time extraction algorithm that can

recover a large fraction of original outsourced data (say

95%), except with negligible probability.

Formally, we have two definitions below.

Definition 2 (Correctness): We say a PoS scheme satisfies

correctness if for all security parameter λ and data file F , let

(PP, SK) = Setup(λ), (T ,E) = TagGen(PP, SK ,F) and

3 = Audit(PP,E), if P = Prove(PP, 3,F,T), then the

algorithm Verify(PP, 3,P,E) will output 1 with all but

negligible probability.

For security, we consider the following game Game(C,A)

played between a challenger C and an adversary A.

• Setup. The challenger C runs the algorithm Setup(λ)

to obtain the system public parameters PP and the secret

key SK . It then sends PP to the adversary A.

• Query. The adversary A could issue TagGen queries to

C adaptively.WhenA issues such a query on a file F , the

challenger C obtains a file tag T and a corresponding evi-

dence E by running the algorithm TagGen(PP, SK ,F)

and then forwards them to A.

• Challenge. When the above process ends, the challenger

C issues an audit request 3 to the adversary A for

checking the integrity of an outsourced file F . After

receiving 3, the adversary A outputs a proof P to C.

Let the advantage Adv(A) of A with respect to a file F in

the above game be the probability that the proofs generated

by A for verifying file F are valid.

VOLUME 7, 2019 129073

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

Definition 3 (Security): We say a PoS scheme is secure

if for any PPT adversary A and any file F , the advantage

Adv(A) of A with respect to the file F in Game(C,A) is

non-negligible, then there exists a polynomial-time extraction

algorithm that can recover a large fraction of F with non-

negligible probability.

C. CRYPTOGRAPHIC BACKGROUND

1) DISCRETE LOGARITHM PROBLEM

The security of our scheme relies on the hardness of the well-

studied DL problem [16]. Roughly speaking, an instance of

the DL problem is: given some fixed prime p, a cyclic group

G of order p with generator g ∈ G and a random u ∈ G,

output x ∈ Zp such that u = gx . For a large prime p, this

problem is conjectured to be intractable in general.

Definition 4 (DL Assumption): Given a large prime p, a

cyclic groupG of order pwith generator g ∈ G, and a random

u ∈ G, it’s computationally infeasible to get x ∈ Zp satisfying

u = gx .

2) DIGITAL SIGNATURE SCHEMES

Digital signature is a fundamental cryptographic primitive

that can be used to achieve unforgeability of messages. A dig-

ital signature scheme consists of a signing algorithm Sig(·)

and a verification algorithm Ver(·), where Sig(·) takes a

secret signing key and a message as input and outputs a signa-

ture, while Ver(·) takes a public verification key, a message

and its signature as input and outputs accept or reject. For
any signing-verification key pair (sk, vk) and any message

m, we require Ver(vk,m,Sig(sk,m)) → accept. We say a

digital signature scheme is secure if it’s difficult for any PPT

adversary, who has obtained signatures Sig(sk,mi) of all

messages mi in a set M, to output a signature Sig(sk,m) of

messagem such thatm /∈ M andVer(vk,m,Sig(sk,m)) →

accept.

3) SECURE HASH FUNCTIONS

Hash functions are used extensively in cryptosystems. Usu-

ally, we say a hash function H : {0, 1}∗ → {0, 1}ℓ is secure

if it’s collision resistant, i.e., it is intractable to find a pair

x, x ′ ∈ {0, 1}∗ such that x 6= x ′ and H (x) = H (x ′). In this

paper, we only need ordinary hash functions such as SHA-

256 that are very efficient in comparison to the map-to-point

hash functions.

4) MERKLE HASH TREE

Merkle hash tree (MHT) is a well-studied authentication

structure [15], in which only simple hash operations are

involved. A MHT is usually constructed as a binary tree.

Every non-leaf node in a MHT is a hash of its ordered child

nodes and all leaf nodes are hashes of messages. Let H :

{0, 1}∗ → {0, 1}ℓ be a secure hash function such as SHA-

256. Figure 2 illustrates an example of MHT. The messages

are zi (i ∈ {1, 2, 3, 4}), and their hashes hi = H (zi) are the

leaf nodes of the tree. All non-leaf nodes are hashes of their

FIGURE 2. Merkle hash tree example.

two child nodes, e.g. the root node h0 = H (ha, hb). With the

value of root node, a verifier can authenticate the validity of

messages via auxiliary authentication information (AAI) with

respect to their hashes. For instance, in order to authenticate

z2 of Figure 2, a prover returns to a verifier {z2, �2}, where

�2 =< h1, hb > is the AAI of leaf node h2 = H (z2). The

verifier then calculates h2 = H (z2), ha = H (h1, h2) and

checks whether h0 = H (ha, hb). If so, the verifier confirms

the validity of z2; otherwise, it’s invalid.

For notation convenience, in this paper we treat the leaf

nodes of aMHT as a left-to-right sequence; thus any leaf node

can be uniquely determined by complying with this sequence.

IV. OUR SCHEME

In this section, we describe our DL-based PoS scheme.

Throughout the rest of the paper, for a positive integer n, we

let [1, n] = {1, . . . , n}; (Sig(·),Ver(·)) indicates a secure

DL-based signature scheme e.g. the Schnorr signature [18];

H : {0, 1}∗ → {0, 1}ℓ is a secure hash function used inMHTs

such as SHA-256; any outsourced file F will be divided into

n blocks, each s sectors long. Let each sector be one element

of Zp, then F = {mij}i∈[1,n],j∈[1,s], where mij ∈ Zp.

A. CONSTRUCTION

• Setup(λ): Given a security parameter λ, the user first

chooses a prime p = 2(2λ), a cyclic group G of

order p with generator g ∈ G, a secure hash func-

tion f : {0, 1}∗ → Zp, and a random signing-

verification key pair (sk, vk). It then chooses random

y1, y2, . . . , ys from Zp and calculates Y1 = gy1 ,Y2 =

gy2 , . . . ,Ys = gys . The system public parameters PP =

(p,G, g, f , vk,Y1,Y2, . . . ,Ys) and the user’s secret key

SK = (sk, y1, y2, . . . , ys).

• TagGen(PP, SK ,F): Given a file F , the user first

divides it into F = {mij}i∈[1,n],j∈[1,s], where mij ∈ Zp.

Then the user chooses a random file identifier id from

Zp and for each i ∈ [1, n], calculates αi = f (id, i) +
s

∑

j=1

mij · yj and σi = gαi . The block tag for mi is σi and

129074 VOLUME 7, 2019

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

the file tag is T = (id, σ1, σ2, . . . , σn). Next, the user

generates the root R of a MHT, where the leaf nodes

of the tree are the hashes of the ordered n index-tag

pairs (from (1, σ1) to (n, σn)). The user using the above

signature scheme signs (id,R) under the signing key sk
and gets a signature S = Sig(sk, id,R). The evidence

of T is E = (id, S). Finally, the user sends (F,T , S) to

the cloud and E to the auditor, then deletes them from

its local memory.

• Audit(PP,E): To check the integrity of the file F , the

auditor chooses a random I = {(i, vi)} where i ∈ [1, n]

and vi ∈ Zp, and then issues an audit request3 = (id, I)

to the cloud.

• Prove(PP, 3,F,T): After receiving 3 = (id, I), the

cloud sends a proof P = (µ1, . . . , µs, {(i, σi), �i}i∈I) to

the auditor, where µj =
∑

i∈I vi · mij for j ∈ [1, s] and

�i is the AAI of H (i, σi).

• Verify(PP, 3,P,E): When the auditor has received

the proof P = (µ1, . . . , µs, {(i, σi), �i}i∈I) from the

cloud, it generates the root R′ using {(i, σi), �i}i∈I and

verifies if Ver(vk, S, (id,R′)) → accept. If so, it cal-
culates ν =

∑

i∈I vi · f (id, i) and verifies whether

∏

i∈I

(σi)
vi = gν ·

s
∏

j=1

Y
µj
j

If so, the algorithm outputs 1; otherwise, it outputs 0.

Remark: We can observe that the algorithm Verify of

this scheme does not need any secret information, so our

scheme supports public verifiability.

Correctness. We can easily check that if all entities are

honest, then the root generated using {(i, σi), �i}i∈I is always

R, and hence Ver(vk, S, (id,R)) must output accept. Addi-
tionally, we have

∏

i∈I

(σi)
vi =

∏

i∈I

gαi·vi

=
∏

i∈I

g
f (id,i)·vi+

s
∑

j=1

mij·yj·vi

= gν ·
∏

i∈I

(s
∏

j=1

Y
mij·vi
j

)

= gν ·

s
∏

j=1

Y
µj
j

Therefore, the correctness follows.

B. SECURITY

Here we prove the security of our scheme. Our proof follows

the proof strategy of Shacham and Waters [20], where a

security proof consists of three parts. The first part shows

that no PPT adversary can forge a proof for some challenge

with non-negligible probability such that the proof is different

from those computed as in real scheme but can still pass the

auditor’s verification. The second part shows that if one has

received valid proofs for certain challenges, then there is a

polynomial-time algorithm which is able to obtain a large

fraction of data blocks of a file. Finally, the third part shows

that these obtained blocks can be used to recover the full

original file via an erasure code.

Note that in this work we only want to verify the integrity

of a large fraction of outsourced data, so we don’t use erasure

codes in our scheme. We also remark that (µ1, µ2, . . . , µs)

in our scheme is the same as that in [20], thus the second

part security proofs of [20] can be directly applied to ours.

Therefore, in what follows we only need proving that all

proofs passing the auditor’s verifications are identical to the

ones computed as in our real scheme, with all but negligible

probability.

Theorem 1: If the discrete logarithm assumption holds in

G, then in the random oracle model no PPT adversary could

provide valid proofs in Game(C,A) with non-negligible

probability such that the proofs are different from those com-

puted as in our scheme.

Proof: Suppose that there exists a polynomial-time

adversaryAwho could provide proofs that are different from

those of our scheme but can pass the auditor’s verifications

with non-negligible probability, then we can construct an

efficient algorithm B that uses A as a subroutine to solve the

DL problem or to find a collision of H with non-negligible

probability. Here H is modeled as a random oracle, and the

input of the DL problem is a generator g of G and a random

u ∈ G. Algorithm B does so by interacting with A as

follows.

Setup. Given a prime p, a generator g of G and a random

element u ∈ G, the algorithm B chooses secure hash function

f : {0, 1}∗ → Zp, random signing-verification key pair

(sk, vk) of the DL-based signature scheme (Sig(·),Ver(·))

and random αi, βi ∈ Zp for i ∈ [1, s]. Then B calculates

Yi = gαiuβi (i ∈ [1, s]). The system public parameters

PP = (p,G, g, f , vk,Y1,Y2, . . . ,Ys).

Query. The adversaryA issues TagGen queries adaptively.

When A queries the file tag of file F , B first obtains F =

{mij}i∈[1,n],j∈[1,s], then chooses a random identifier id from

Zp and calculates the i-th block tag σi = gf (id,i) ·
s
∏

j=1

Y
mij
j

for each i ∈ [1, n]. The file tag is T = (id, σ1, σ2, . . . , σn).

Observe that the block tags are equal to those of our real

scheme. Next, B generates the root R of a MHT, where the

leaf nodes of the tree are the hashes of the ordered n index-

tag pairs (from (1, σ1) to (n, σn)). Using the signature scheme,

B signs (id,R) under the signing key sk and gets a signature

S = Sig(sk, id,R). Finally, B returns (F,T , S) toA. Notice

that in the simulation B will also store (F,T , S) locally, but

it’s unconscious for A.

Challenge. The algorithm B chooses a random set I =

{(i, vi)} where i ∈ [1, n] and vi ∈ Zp, and then issues an audit

request 3 = (id, I) to A.

Forge. A with non-negligible probability outputs a valid

proof P′ = (µ′
1, µ

′
2, . . . , µ

′
s, {(i, σ

′
i), �

′
i}i∈I) for an audit

request 3 = (id, I = {(i, vi)}) such that P′ is not identical

VOLUME 7, 2019 129075

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

to the proof P = (µ1, . . . , µs, {(i, σi), �i}i∈I) computed as in

our scheme.

Since the proof P′ is valid, then we know

∏

i∈I

(σ ′
i)
vi = gν ·

s
∏

j=1

Y
µ′
j

j (1)

and Ver(vk, S, (id,R′)) → accept, where R′ is the root of

a MHT generated using {(i, σ ′
i), �

′
i}i∈I and ν =

∑

i∈I vi ·

f (id, i). Algorithm B could compute the root R of a MHT

generated upon {(i, σi), �i}i∈I and µj =
∑

i∈I vi · mij for

j ∈ [1, s]. It’s clear that Ver(vk, S, (id,R)) → accept and

∏

i∈I

(σi)
vi = gν ·

s
∏

j=1

Y
µj
j (2)

As the signature scheme (Sig(·),Ver(·)) is secure under

the DL assumption, then we know R′ = R. Now we consider

the following two possible cases.

Case 1: ((i, σ ′
i), �

′
i) = ((i, σi), �i) for all i ∈ I . In this

case, we know that there exists at least one k ∈ [1, s] such

that µ′
k 6= µk as per our presupposition. Then B divides the

two equations 1 and 2, and gets

s
∏

j=1

Y
µ′
j−µj

j = 1.

Let 1µj = µ′
j − µj, the above equation implies

u = g
−

∑s
j=1

αj1µj
∑s
j=1

βj1µj .

That is, B solves the DL problem, unless
∑s

j=1 βj1µj = 0.

However, we argue that Pr
[
∑s

j=1 βj1µj = 0
]

= 1/p since

{1µj} are not all zero, and {βj} are information-theoretically

hidden from A by the result of [17]. Therefore, we know B

can solve the DL problem with non-negligible probability.

Case 2: ((k, σ ′
k), �

′
k) 6= ((k, σk), �k) for some k ∈ I . In

this case, we have σ ′
k 6= σk or �′

k 6= �k . If �′
k 6= �k ,

since the two MHTs have one same root, then we know

for some pair of nodes (hL, hR) in one tree, there exists a

different pair of nodes (h′
L
, h′

R
) in the other tree such that

H (hL, hR) = H (h′
L
, h′

R
). Therefore, B finds a collision of H .

Else if σ ′
k 6= σk , then H (k, σ ′

k) 6= H (k, σk) (otherwise

B also finds a collision of H). However, we note that this

indicates �′
k 6= �k . By the above analysis, we know that

B can still find a collision of H .

In short, when there exists k ∈ I such that ((k, σ ′
k), �

′
k) 6=

((k, σk), �k), then B can find a collision of H . However, this

contradicts our assumption thatH is a random oracle because

such random oracles are collision resistant as per [13].

Finally, we can conclude that assuming the DL assump-

tion holds in G, then in the random oracle model no PPT

adversary could provide valid proofs in Game(C,A) with

non-negligible probability such that they are different from

those computed as in our scheme, as required.

V. HANDLING DYNAMIC DATA

Our scheme already supports static data. In this section,

we extend our scheme to efficiently handle fully dynamic

data. In other words, we permit the user to perform block

modification, insertion and deletion operations on outsourced

data. We use the notation Mod to denote modification, Ins

to denote insertion, and Del to denote deletion respectively.

In the following we assume the file F = {m1, . . . ,mn} and

its tag T = (id, σ1, . . . , σn) have already been stored in the

cloud. The evidence E = (id, S) has also been sent to the

cloud and the auditor, where S = Sig(sk, id,R).

Like CDH-SW/RSA-SW [20], each block tag σi in our

scheme is also relevant with the block index i, which may not

be immutable when updating data. Wang et al. [24] overcome

this issue by replacing each block index i with data block mi
and then employing a MHT to ensure the completeness of the

new block tag. Clearly, applying this method to our scheme

will make our scheme complicated. To simplify updating

process, we keep the existing block tags and their indexes

unchanged when updating data and introduce an extra index

table tab to record the relationships between tag indexes and

block indexes. An example of a 5-length index table is shown

in Table 1. The index table tab is public for all entities while

can only be maintained by the user himself. We claim that all

entities must access to tab when they ask for the tag index

of a block. Let the length of tab initially be n, the number

of premier file blocks. When a file block is inserted, the user

increases n by 1, and sets the tag index of the inserted block is

n and updates all block indexes as usual. If the user wants to

delete a file block, it just updates all block indexes as usual.

For block modification, tab has no change. Below are the

details of our data updating operations.

TABLE 1. Example of index table.

A. DATA MODIFICATION

Suppose the user wants to modify block mi into m
′
i.

1) The user keeps tab invariable and computes the

block tag σ ′
i of m′

i, and then issues the request

(Mod, id, i,m′
i, σ

′
i) to the cloud.

2) When the cloud receives the request, it updates the file

and responds the user with {(i, σi), �i, S}, where �i

is the AAI of H (i, σi). Then it replaces H (i, σi) with

H (i, σ ′
i) and updates the MHT accordingly.

3) Upon receiving the response, the user first retrieves the

previous root R using {(i, σi), �i} and then verifies if

Ver(vk, S, (id,R)) → accept. If so, the user generates
the new root R′ of the updated MHT using H (i, σ ′

i)

and �i, produces a signature S ′ = Sig(sk, id,R′),

and sends (id, S ′) to both the cloud and the auditor.

Otherwise, the user outputs ⊥.

129076 VOLUME 7, 2019

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

4) If the message received from the user is ⊥, the auditor

aborts. Otherwise, it replaces the old evidence with

(id, S ′).

Figure 3 shows an example of this procedure.

FIGURE 3. Example of block modification.

B. DATA INSERTION

Suppose the user wants to insert block m in file F after the

i-th block mi.

1) The user first increases the length n of tab by 1, sets the

tag index of the inserted block is n and updates all block

indexes. Then it publishes the updated index table tab,

computes the block tag σ of m and issues the request

(Ins, id, i,m, σ) to the cloud.

2) After receiving the request, the cloud inserts m after mi
and responds the user with {(i, σi), �i, S}, where �i is

the AAI of H (i, σi). Then it adds σ after σi and updates

the MHT accordingly.

3) Upon receiving the response, the user first retrieves the

previous root R using {(i, σi), �i} and then verifies if

Ver(vk, S, (id,R)) → accept. If so, the user replaces
H (i, σi) with H (H (i, σi),H (i + 1, σ)), and generates

the new root R′ of the updated MHT using H (i, σi) and

�i. Then it produces a signature S ′ = Sig(sk, id,R′)

and sends (id, S ′) to both the cloud and the auditor.

Otherwise, the user outputs ⊥.

4) If the message received from the user is ⊥, the auditor

aborts. Otherwise, it replaces the old evidence with

(id, S ′).

Figure 4 shows an example of this procedure.

FIGURE 4. Example of block insertion.

C. DATA DELETION

Suppose the user wants to delete block mi in the file F .

1) The user first updates all block indexes and publishes

the updated index table tab. Then it issues the request

(Del, id, i) to the cloud.

2) After receiving the request, the cloud deletes mi and

responds the user with {(i, σi), �i, S}, where �i is the

AAI of H (i, σi). Then the cloud deletes the leaf node

H (i, σi) and updates the MHT accordingly.

3) Upon receiving the response, the user first retrieves the

previous root R using {(i, σi), �i} and then verifies if

Ver(vk, S, (id,R)) → accept. If so, the user generates
the new root R′ of the updatedMHT using�i, produces

a signature S ′ = Sig(sk, id,R′) and sends (id, S ′)

to both the cloud and the auditor. Otherwise, the user

outputs ⊥.

VOLUME 7, 2019 129077

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

4) If the message received from the user is ⊥, the auditor

aborts. Otherwise, it replaces the old evidence with

(id, S ′).

Figure 5 shows an example of this procedure.

FIGURE 5. Example of block deletion.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme.

We will demonstrate the computation and communication

costs of our scheme and also compare them with those of the

publicly-verifiable schemes CDH-SW and RSA-SW in [20].

A. EXPERIMENT SETUP

The simulations are implemented in C language on a Ubuntu

18.10 system using Intel Core i5-4590 CPU at 3.30 GHz with

8 GB RAM. We set the security levels of all systems to be

128 bits. Hash functions are implemented using SHA-256.

The implementation of CDH-SW utilizes the PBC library

[14] and the Barreto-Naehrig curves [4] with base field size

and group order length both are 256 bits. The messages in

CDH-SW are signed by BLS short signature scheme [5]. We

rely on the GMP library [10] to implement RSA-SW and

our scheme, while employ RSA-PSS signature scheme of

OpenSSL version 1.1.1 and Schnorr signature scheme [18]

respectively to sign messages in RSA-SW and our scheme.

TABLE 2. Default parameters used in simulations.

All simulation results represent the mean of 10 trials. Table 2

lists some default parameters used in simulations.

Before evaluating the performance of our scheme, we first

determine the block size by analyzing the impact of various

block sizes on the computation costs of CDH-SW, RSA-SW

and our scheme. Specifically, we focus on the computation

overhead of the user for generating file tags and the com-

putation overhead of the auditor for verifying proofs, since

both the user and the auditor have fewer computing resources

than the cloud. Figure 6 illustrates the experimental result, in

which we fix the file size to be 64 MB and the number of

challenged blocks to be 460 for achieving a 99% confidence

level [1].

The tag generation times of CDH-SW, RSA-SW and

our scheme for various block sizes ranging from 2 KB to

32 KB are respectively shown in Figure 6(a), Figure 6(b) and

Figure 6(c). Figure 6(d) depicts the impact of block size on

the proof verification time of all three schemes. From these

figures, we can find that the most balanced performance is

achieved when the block size is 4 KB. Therefore, in what

follows, we will fix the block size to 4 KB.

B. COMPUTATION COST

1) USER SIDE

We first evaluate the computation overhead of the user. The

most expensive operation for the user is calculating file tags

and its computation time is determined by the size of files.

In this simulation, we vary the sizes of files from 1 MB to

64 MB. The experimental result is shown in Figure 7. From

the figure, we can see clearly that the computation time of the

user in our scheme is much less than that in CDH-SW and

RSA-SW. Specifically, this process in our scheme is about

250 times faster than that in CDH-SW and about 200 times

faster than that in RSA-SW.

2) CLOUD SIDE

The computation overhead of the cloud is the cost of gener-

ating proofs for challenges from the auditor. In our scheme,

each proof includes messages, tags and their corresponding

AAIs. Thus, the computation cost of the cloud for one proof in

our scheme is determined by the number c of indexes in I , i.e.

the number of challenged file blocks, and the size of MHTs.

In this simulation, we set the size of files to be 64 MB and

vary the number c of challenged blocks from 100 to 500.

The experimental result is illustrated in Figure 8(a). From the

figure, we know that the computation cost of the cloud for

one proof in our scheme is much less than that in CDH-SW

129078 VOLUME 7, 2019

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

FIGURE 6. Computation overhead for various block sizes.

FIGURE 7. Tag generation time comparison for different file sizes.

and RSA-SW, and it grows very slowly with c. Moreover, the

figure also indicates that the computation costs of the cloud

in CDH-SW and RSA-SW increases quickly when c raises.

This is due to the fact that the computations performed by the

cloud in CDH-SW and RSA-SW are expensive.

3) AUDITOR SIDE

The computation overhead of the auditor is dominated by

the cost of verifying proofs. We show the computation time

of the auditor when verifying one proof returned from the

cloud in Figure 8(b). Here we still vary the number c of

challenged blocks from 100 to 500. As the figure illustrates,

the auditor in our scheme spends much less time to verify

a proof. Specifically, the simulation result demonstrates that

when c = 460 the proof verification process of our scheme is

roughly 2.5 times faster than CDH-SW and 2.1 times faster

than RSA-SW.

C. COMMUNICATION COST

Nowwe compare the communication overhead of our scheme

with that of CDH-SW and RSA-SW. The communication

overhead in these schemes is comprised of the user side

communication overhead and the communication overhead

between the auditor and the cloud. The user side commu-

nication overhead is introduced by user uploading files and

their tags, while the communication overhead between the

auditor and the cloud owes to issuing audit requests and

returning relevant proofs. We compare the above two types

of communication costs among CDH-SW, RSA-SW and our

scheme in Figure 9(a) and Figure 9(b) respectively.

As the file size is identical for all schemes, in Figure 9(a)

we just consider the communication overhead of uploading

VOLUME 7, 2019 129079

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

FIGURE 8. Computation overhead comparison for different number of challenged blocks.

FIGURE 9. Communication overhead comparison.

file tags and range file sizes from 1 MB to 64 MB. From the

figure, we can see that CDH-SW incurs a small additional

overhead in communication on the user when compared to

our scheme (here the block tags in CDH-SWare compressed).

However, the user communication cost in our scheme is much

less than that in RSA-SW. For the communication overhead

between the auditor and the cloud, we challenge a fixed file

of size 64 MB and range c from 100 to 500. Figure 9(b)

shows that the costs of one-round communication between

the auditor and the cloud in CDH-SW and RSA-SW are less

than ours. (Yet, we argue that the communication overhead of

our scheme can be greatly reduced if we let the auditor store

the tags and the relevant AAIs received from the cloud. Then

several times later the cloud does not have to send them in

proofs any more.)

In summary, we know from the above simulation results

that our scheme is much more efficient than both CDH-

SW and RSA-SW in terms of computation overhead, while

each of the three schemes has its own merit in terms of

communication overhead.

VII. CONCLUSION

In this paper, we propose a practical publicly-verifiable PoS

scheme based on the well-studied discrete logarithm prob-

lem and prove its security in the random oracle model. Our

scheme removes the habitual bilinear pairings and map-to-

point hash functions, and works well in prime-order groups.

Furthermore, we also show how to extend the scheme to

support dynamic data. Finally, we implement our scheme and

the experimental results demonstrate its efficiency.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, ‘‘Provable data possession at untrusted stores,’’ in Proc. ACM

Conf. Comput. Commun. Secur. (CCS), 2007, pp. 598–609.

[2] G.Ateniese, S. Kamara, and J. Katz, ‘‘Proofs of storage from homomorphic

identification protocols,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf.

Secur. (ASIACRYPT). Berlin, Germany: Springer, 2009, pp. 319–333.

[3] Charles Babcock. (2014). 9 Worst Cloud Security Threats. [Online].

Available: http://www.informationweek.com/cloud/infrastructure-as-a-

service/9-worst-cloud-security-threats/d/d-id/1114085

[4] P. S. L. M. Barreto and M. Naehrig, ‘‘Pairing-friendly elliptic curves of

prime order,’’ in Proc. 12th Int. Workshop Sel. Areas Cryptogr. (SAC),

Kingston, ON, Canada. Berlin, Germany: Springer-Verlag, Aug. 2005,

pp. 319–331.

129080 VOLUME 7, 2019

M. Tian et al.: Publicly-Verifiable PoSs Based on the Discrete Logarithm Problem

[5] D. Boneh, B. Lynn, and H. Shacham, ‘‘Short signatures from theWeil pair-

ing,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. (ASIACRYPT).

Berlin, Germany: Springer, 2001, pp. 514–532.

[6] F. Chen, T. Xiang, Y. Yang, and S. S. M. Chow, ‘‘Secure cloud storage

meets with secure network coding,’’ IEEE Trans. Comput., vol. 65, no. 6,

pp. 1936–1948, Jun. 2016.

[7] F. Chen, T. Xiang, Y. Yang, C. Wang, and S. Zhang, ‘‘Secure cloud stor-

age hits distributed string equality checking: More efficient, conceptually

simpler, and provably secure,’’ in Proc. IEEE Conf. Comput. Commun.

(INFOCOM), Apr./May 2015, pp. 2389–2397.

[8] S. Garg, C. Gentry, and S. Halevi, ‘‘Candidate multilinear maps from

ideal lattices,’’ in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn.

(EUROCRYPT). Berlin, Germany: Springer, 2013, pp. 1–17.

[9] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,

‘‘Candidate indistinguishability obfuscation and functional encryption for

all circuits,’’ SIAM J. Comput., vol. 45, no. 3, pp. 882–929, 2016.

[10] T. Granlund and The GMP Development Team. (2016). GNU MP:

The GNU Multiple Precision Arithmetic Library, 6.1.2 Edition. [Online].

Available: https://gmplib.org/

[11] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu, ‘‘Symmetric-key

based proofs of retrievability supporting public verification,’’ in Proc.

Eur. Symp. Res. Comput. Secur. (ESORICS). Cham, Switzerland: Springer,

2015, pp. 203–223.

[12] A. Juels and B. Kaliski, ‘‘Pors: Proofs of retrievability for large files,’’ in

Proc. ACM Conf. Comput. Commun. Secur. (CCS), 2007, pp. 584–597.

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca Raton,

FL, USA: CRC Press, 2014.

[14] (2007). PBC Library. [Online]. Available: https://crypto.stanford.edu/pbc/

[15] R. C. Merkle, ‘‘Protocols for public key cryptosystems,’’ in Proc. IEEE

Symp. Secur. Privacy, Apr. 1980, p. 122.

[16] A. Odlyzko, ‘‘Discrete logarithms: The past and the future,’’ Des. Codes

Cryptogr., vol. 19, nos. 2–3, pp. 129–145, 2000.

[17] T. P. Pedersen, ‘‘Non-interactive and information-theoretic secure verifi-

able secret sharing,’’ in Proc. Annu. Int. Cryptol. Conf. Berlin, Germany:

Springer, 1991, pp. 129–140.

[18] C. P. Schnorr, ‘‘Efficient signature generation by smart cards,’’ J. Cryptol.,

vol. 4, no. 3, pp. 161–174, 1991.

[19] H. Shacham and B. Waters, ‘‘Compact proofs of retrievability,’’ in Proc.

Int. Conf. Theory Appl. Cryptol. Inf. Secur. (ASIACRYPT), vol. 5350.

Berlin, Germany: Springer, 2008, pp. 90–107.

[20] H. Shacham and B.Waters, ‘‘Compact proofs of retrievability,’’ J. Cryptol.,

vol. 26, no. 3, pp. 442–483, Jul. 2013.

[21] M. Tian, L. Wang, H. Zhong, and J. Chen, ‘‘Attribute-based data

integrity checking for cloud storage,’’ Fundam. Inform., vol. 163, no. 4,

pp. 395–411, 2018.

[22] M. Tian, S. Ye, H. Zhong, L. Wang, F. Chen, and J. Cui, ‘‘Identity-based

proofs of storage with enhanced privacy,’’ in Proc. Int. Conf. Algorithms

Archit. Parallel Process. Cham, Switzerland: Springer, 2018, pp. 461–480.

[23] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, ‘‘Privacy-

preserving public auditing for secure cloud storage,’’ IEEE Trans. Comput.,

vol. 62, no. 2, pp. 362–375, Feb. 2013.

[24] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, ‘‘Enabling public verifiabil-

ity and data dynamics for storage security in cloud computing,’’ in Proc.

Eur. Symp. Res. Comput. Secur. (ESORICS), 2009, pp. 355–370.

[25] J. Zhang, Y. Yang, Y. Chen, and F. Chen, ‘‘A secure cloud storage system

based on discrete logarithm problem,’’ in Proc. IEEE/ACM Int. Symp.

Qual. Service (IWQoS), Jun. 2017, pp. 1–10.

MIAOMIAO TIAN received the Ph.D. degree from the University of Science

and Technology of China, in 2014. He is currently an Associate Professor

with the School of Computer Science and Technology, Anhui University,

China. His research interests include cryptography and information security.

SHIBEI YE is currently pursuing the master’s degree with the School of

Computer Science and Technology, Anhui University, China. Her research

interests include cryptography and information security.

HONG ZHONG received the Ph.D. degree from the University of Science

and Technology of China, in 2005. She is currently a Professor and the

Dean of the School of Computer Science and Technology, Anhui Univer-

sity, China. Her research interests include cryptography, the IoT security,

vehicular ad hoc networks, and software-defined networking.

FEI CHEN received the Ph.D. degree from the Chinese University of Hong

Kong, in 2014. He is currently an Associate Professor with the College

of Computer Science and Engineering, Shenzhen University, China. His

research interests include information security and data privacy protection.

CHUANG GAO is currently pursuing the master’s degree with the School of

Computer Science and Technology, Anhui University, China. His research

interests include cryptography and information security.

JIE CHEN received the B.S. degree from Soochow University, China,

in 2008, and the Ph.D. degree from Nanyang Technological University,

Singapore, in 2013, both in mathematics. He was a Researcher with the

ENS de Lyon, France, in 2016. He is currently a Professor with East China

Normal University, China. His research interests include cryptography and

information security.

VOLUME 7, 2019 129081

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	SYSTEM MODEL
	PROOF OF STORAGE
	CRYPTOGRAPHIC BACKGROUND
	DISCRETE LOGARITHM PROBLEM
	DIGITAL SIGNATURE SCHEMES
	SECURE HASH FUNCTIONS
	MERKLE HASH TREE

	OUR SCHEME
	CONSTRUCTION
	SECURITY

	HANDLING DYNAMIC DATA
	DATA MODIFICATION
	DATA INSERTION
	DATA DELETION

	PERFORMANCE EVALUATION
	EXPERIMENT SETUP
	COMPUTATION COST
	USER SIDE
	CLOUD SIDE
	AUDITOR SIDE

	COMMUNICATION COST

	CONCLUSION
	REFERENCES
	Biographies
	MIAOMIAO TIAN
	SHIBEI YE
	HONG ZHONG
	FEI CHEN
	CHUANG GAO
	JIE CHEN

